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Resumo

Este trabalho apresenta um estudo sobre andlise de sensibilidade e quantificacao de in-
certezas de um modelo matematico de interagao entre células-citocinas e cortisol, consi-
derando dados experimentais de glicose. O estudo visa entender melhor a dinamica do
sistema imunoldgico e sua resposta a diferentes estimulos, considerando a influéncia do
cortisol no metabolismo da glicose e na resposta imune. Para isso, sao aplicadas técnicas
de anélise de sensibilidade que identificam os parametros mais influentes no comporta-
mento do modelo, e a quantificacao de incertezas fornece uma medida da robustez das
previsoes do modelo diante de variacoes nos parametros. Os resultados obtidos podem
contribuir para o desenvolvimento de estratégias terapéuticas mais eficazes, considerando

tanto a resposta imunolégica quanto o controle glicémico.

Palavras-chave: Analise de Sensibilidade, Quantificacao de Incertezas, Modelagem Com-

putacional



Abstract

This work presents a study on sensitivity analysis and uncertainty quantification of a
mathematical model of the interaction between cytokine cells and cortisol, considering
glucose experimental data. The study aims to better understand the dynamics of the
immune system and its response to different stimuli, considering the influence of cortisol
on glucose metabolism and immune response. Sensitivity analysis techniques are applied
to identify the most influential parameters in the model’s behavior, and uncertainty quan-
tification provides a measure of the robustness of the model’s predictions in the face of
parameter variations. The results obtained may contribute to the development of more
effective therapeutic strategies, considering both the immune response and glycemic con-

trol.

Keywords: Sensitivity Analysis, Uncertainty Quantification, Computational Modeling
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1 Introducao

O sistema imunolégico é essencial para proteger o organismo contra bactérias, virus,
doengas e infeccoes. Ele mantém o equilibrio saudavel do corpo, prevenindo infecgoes,
reacgoes alérgicas e doencas autoimunes. Entre seus principais componentes estao os
macréfagos, que atuam como células fagocitarias e apresentadoras de antigenos. Os
macréfagos coordenam a resposta imunoldgica através da producgao de citocinas importan-
tes, como a Interleucina-1 (IL-1), Fator de Necrose Tumoral alfa (TNF-«/) e Interleucina-6
(IL-6), que facilitam a comunicagao entre células do sistema imune. Estas citocinas ativam
outras células e promovem inflamacao no local da infeccao. Além disso, os macréfagos
podem apresentar antigenos para outras células imunes, iniciando a resposta imunolégica
adaptativa. Este processo coordenado assegura uma defesa eficaz contra ameacas ao or-
ganismo (SOMPAYRAC, 2022).

Em situagoes de estresse ou em situagoes que ameacgam a sobrevivéncia, o sistema
imunoldgico, como uma resposta fisiolégica, libera o hormonio cortisol. Sua liberagao é
um componente crucial da resposta ao estresse, preparando o organismo para enfren-
tar desafios iminentes. O cortisol atua aumentando a quantidade de glicose na corrente
sanguinea, o que fornece energia rapida para os musculos e o cérebro, essenciais para a
resposta de luta ou fuga. Além disso, o hormonio eleva a pressao arterial e a frequéncia
cardiaca, otimizando o fluxo sanguineo para os 6rgaos e musculos mais criticos durante
situagoes de emergéncia (KARUPPAIAH et al., 2023).

Paralelamente, o cortisol reduz a atividade do sistema imunolégico, diminuindo
a inflamacao e a resposta imunoldgica para evitar uma reacao excessiva que poderia pre-
judicar o organismo. Essas adaptacoes fisiologicas permitem ao corpo mobilizar recursos
e ajustar suas funcoes para enfrentar e superar eficazmente situagoes estressantes ou
ameagadoras (KARUPPAIAH et al., 2023).

Além disso, o processo de envelhecimento afeta o sistema que regula a producao
de cortisol, conhecido como eixo hipotalamo-hipdfise-adrenal (HPA). Com o avangar da

idade, ocorrem modificagoes significativas neste sistema. Entre essas mudancas, observa-
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se uma elevacao gradual nos niveis de cortisol, refletindo um aumento na producao do
hormonio. Paralelamente, o mecanismo de controle que normalmente atua para reduzir
os niveis de cortisol e manter seu equilibrio é comprometido. Esse comprometimento
resulta em falhas na regulacao adequada dos niveis hormonais. Além disso, o padrao
didrio de secrecao de cortisol também é alterado, com uma possivel mudanca na dinamica
de liberacao ao longo do dia (STAMOU; COLLING; DICHTEL, 2023). A imagem 1.1
ilustra o nivel experimental de cortisol para cada década, e é possivel perceber que a cada

década, o valor experimental aumenta.
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Figura 1.1: Dados experimentais do cortisol em cada década (QUINTELA et al., 2023)

Assim, como o cortisol atua reduzindo a atividade do sistema imunolégico, pode-
se concluir que, no processo de envelhecimento, a atividade diaria deste sistema é reduzida.
Este processo é chamado de inflammaging.

Para obter respostas sobre questoes relacionadas a contextos como o do sistema
imunolégico, sao empregados modelos matematicos e computacionais que simulam o com-
portamento e as respostas fisiologicas desses sistemas de estudo. Tais modelos com-
putacionais podem ser empregados em diversos contextos, incluindo o entendimento de
doencas, como a diabetes mellitus tipo 2 (DM2), capturando as anomalias metabdlicas
dessa doenca, a partir de modelagem das dinamicas glicémicas (LOPEZ—PALAU; OLAIS-

GOVEA, 2020). Outro exemplo que pode ser aplicado no contexto da medicina, é para
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compreender situagoes fisiologicas como o estomago nervoso, que pode provocar sintomas
de ansiedade e estresse, que frequentemente interferem na realizacao de tarefas. Com
a utilizacao de um modelo, é possivel simular esses efeitos e analisar o impacto do es-
tresse no sistema gastrointestinal, fornecendo informacoes tteis para reduzir seus impactos
(SANCHEZ et al., 2020).

Um outro exemplo nesta drea é o caso da utilizacao de um modelo matematico
para analisar a situagao na Coreia do Sul, Itédlia e Brasil, durante a pandemia de COVID-
19. O modelo usado revelou politicas eficazes na Coreia do Sul e alta subnotificacao no
Brasil e na Italia. Foi destacado a importancia das politicas de mitigagao e os desafios
adicionais enfrentados por paises com economia emergente (REIS et al., 2020).

Assim como é possivel utilizar tais ferramentas para ajudar no tratamento de
problemas relacionados a satide, também se faz muito 1til sua utilizacao para a prevencao
de doencas. Um exemplo disso é a utilizacao de modelos matematicos para simular a
funcao do coracao humano, complementando medi¢oes experimentais, e proporcionando
uma visao mais aprofundada da fungao cardiaca (BUCELLI et al., 2023).

Outro trabalho sobre o coracao, em 2008, apresenta um modelo de acoplamento
eletromecanico do tecido cardfaco usando o método dos elementos finitos. E desenvolvida
uma abordagem matemaética que combina a propagacao elétrica no tecido cardiaco com
sua contracao e deformacao, criando um sistema acoplado onde a atividade elétrica es-
timula a contragao muscular, que por sua vez influencia a propagacao da onda elétrica.
Os resultados mostram que o modelo consegue simular adequadamente a propagacao da
onda elétrica no tecido e as deformagoes resultantes, observando-se que na presenca de
deformagao a velocidade de propagacao da onda elétrica é ligeiramente menor devido
ao alongamento na frente da onda (ROCHA, 2008). Com isso, mostra-se que um en-
tendimento mais detalhados sobre 6rgaos essenciais como o coracao pode ser de suma
importancia para se tracar um melhor caminho para a prevencao de doengas cardiovas-

culares.
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1.1 Justificativa

Estudos de modelagem matematica aplicada a area da saide sao altamente relevante e
tem o potencial de trazer grandes beneficios a sociedade. No entanto, por lidar com
condicoes clinicas e sensiveis, é crucial garantir a confiabilidade dos modelos utilizados.
Com isso, se faz util utilizar andlises de sensibilidade e quantificacao de incertezas para
garantir a robustez e a precisao dos modelos.

A Anélise de Sensibilidade (AS) examina como a incerteza nas saidas de um mo-
delo esta relacionada as incertezas nas suas entradas. Incorporar a AS em uma analise
de modelo matematico pode trazer grandes beneficios. Entre as aplicagoes mais frequen-
tes da AS estao a simplificacao de modelos, e a investigacao de diferentes aspectos do
fenomeno em estudo (QIAN; MAHDI, 2020).

Em conjunto com isso, a Quantificagao de Incertezas, do inglés Uncertainty Quan-
tification (UQ), possibilita identificar possiveis limitagoes nos processos de modelagem,
computacionais ou experimentais devido a variabilidade inerente (incerteza aleatéria) ou
a falta de conhecimento (incerteza epistémica) (COURCELLES et al., 2024)

Com isso, a pergunta cientifica que o presente trabalho de conclusao de curso se
propoe a investigar é qual o grau de confianga que podemos ter ao utilizar o modelo células-
citocinas com cortisol (QUINTELA et al., 2024) adaptado para considerar concentragao

de glicose diaria.

1.2 Objetivos

1.2.1 Objetivo Geral

O principal objetivo é realizar a analise de sensibilidade e quantificagao de incertezas do

modelo de células-citocinas com cortisol (QUINTELA et al., 2024)

1.2.2 Objetivos Especificos

Entre os objetivos especificos cita-se analisar a literatura para identificar bibliotecas que

possam ser utilizadas para a analise de sensibilidade e/ou quantificacdo de incertezas
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(UQ), implementar a andlise de sensibilidade dos parametros do modelo e analisar os
resultados, e implementar pelo menos uma abordagem para realizar uma quantificacao de

incertezas e analisar os resultados obtidos.

1.3 Organizacao do texto

Este trabalho esta estruturado nos seguintes capitulos para o entendimento da pesquisa:
no Capitulo 2, é apresentado a Fundamentacao Tedrica necessaria para compreensao do
estudo, abordando inicialmente os sistemas imunoldgico (com suas vertentes inata e adap-
tativa) e enddcrino. Em seguida, é feita uma contextualizacao dos modelos mateméticos
aplicdveis a estes sistemas, finalizando com consideragoes sobre andlise de sensibilidade
e quantificacao de incertezas, juntamente com as principais bibliotecas computacionais
que utilizamos para estes fins. No Capitulo 3, ¢ feita uma revisao de literatura que esta
organizada em trés partes: primeiramente, explora as pesquisas que aplicam modelagem
matematica ao sistema imunoldgico; depois, analisa os trabalhos voltados a modelagem do
sistema enddcrino; e, por fim, explora estudos que implementam analise de sensibilidade
e quantificacao de incertezas em modelos desses sistemas bioldgicos. Ja no Capitulo 4, ha
um detalhamento da metodologia utilizada, descrevendo o modelo matematico adotado
e os procedimentos especificos que sao empregados tanto para a analise de sensibilidade
quanto para a quantificacao de incertezas. Entao, no capitulo 5 sao apresentados os resul-
tados do estudo, e uma analise sobre estes resultados. Apds isso, ha uma breve conclusao

sobre o trabalho no Capitulo 6.
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2 Fundamentacao Teodrica

2.1 Introducao

Neste capitulo, serao abordados os conceitos fundamentais para entender o modelo apli-
cado ao sistema imuno-enddécrino, destacando também a importancia da Andlise de Sensi-
bilidade e da Quantificacao de Incertezas. Esses métodos sao essenciais para garantir que
o modelo seja confidvel e robusto. Serao apresentadas definigoes-chave sobre os sistemas
biolégicos do modelo, além de uma introducao ao que sao modelos mateméticos e como

eles funcionam.

2.2 Sistema Imunolégico

O sistema imunolégico pode ser dividido em dois grupos principais: o sistema imunolégico

inato e o sistema imunologico adaptativo.

Microrganismeo

* Imunidade inata Imunidade adaptativa
Linfécitos B
ﬁ‘ Barreiras Anticorpos
epiteliais

Yy

~ )
- s Células T
Fagoécitos Linfocitos T

dendriticas
R

Complemento  Células NK

Células T efetoras

Figura 2.1: Tlustracao do sistema imunoldgico inato e adaptativo (DIANA, 2025)

2.2.1 Sistema Imunolégico Inato

O sistema inato constitui a primeira linha de defesa do organismo, sendo composto por
barreiras fisicas naturais, como a pele e as mucosas, além de proteinas e células especia-

lizadas, como as células assassinas naturais. Essas barreiras atuam como uma protecao
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imediata contra patégenos que invadem o corpo, respondendo de forma rapida e ines-
pecifica. Ou seja, a resposta imune inata nao é direcionada a um tipo especifico de
patogeno, mas age de maneira generalizada, atacando qualquer substancia estranha que

consiga superar essas defesas iniciais (SOMPAYRAC, 2022).

2.2.2 Sistema Imunolégico Adaptativo

Em contraste, o sistema imunolégico adaptativo oferece uma resposta mais sofisticada e
especializada. Ele tem a capacidade de reconhecer e se adaptar a invasores especificos,
proporcionando uma resposta imunolégica mais especifica. A principal caracteristica do
sistema adaptativo é sua capacidade de criar uma meméria imunolégica, permitindo que
o corpo responda de forma mais eficaz a patégenos previamente encontrados. As células
B, um componente fundamental deste sistema, sao responsaveis pela producao de anti-
corpos, proteinas que se ligam a antigenos especificos (substancias estranhas ao corpo) e
neutralizam essas ameacas. Esse processo garante uma defesa mais direcionada e eficiente,
aprimorando a prote¢ao do organismo com o tempo (SOMPAYRAC, 2022)

Dessa forma, o sistema imunolégico integra as respostas rapidas e inespecificas do
sistema inato com a capacidade de adaptacao e memoria do sistema adaptativo. Juntos,
esses sistemas garantem a protegao do corpo tanto contra ameacas generalizadas quanto
contra patégenos especificos, adaptando-se continuamente para aprimorar a eficiéncia da
resposta imunoldgica (SOMPAYRAC, 2022)

O sistema imune funciona com base na liberagao de citocinas pelo nosso organismo
em resposta a diversos estimulos, como infeccoes, inflamacoes ou traumas. Inicialmente,
em situacoes de inflamacao ou lesao, citocinas pro-inflamatorias como a Interleucina 1
(IL-1) e o Fator de Necrose Tumoral (TNF-a) sao secretadas por macréfagos e outras
células do sistema imunoldgico. Essas citocinas ativam células endoteliais, promovendo
vasodilatacao e aumentando a permeabilidade dos vasos sanguineos. Isso facilita a entrada
de leucécitos e proteinas plasmaticas nos tecidos afetados, onde o processo de defesa imune
pode ser mais eficaz (SOMPAYRAC, 2022).

Citocinas como IL-2, IL-4 e IL-6 também desempenham papéis especificos na

ativacao de diferentes tipos de células imunes. Por exemplo, a IL-2 estimula a proli-
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feragao de células T, enquanto IL-4 e IL-6 promovem a ativacao das células B, levando a
produgao de anticorpos. O TNF-a, por sua vez, ativa macréfagos e neutréfilos, aumen-
tando sua capacidade de destruir patégenos. A IL-8, uma citocina quimiotatica, também
¢é fundamental na resposta inflamatéria. Ela é produzida por varias células, incluindo
macréfagos e fibroblastos, e atua atraindo neutrdéfilos para o local da infecgao ou lesao.
A TL-8 contribui para a migracao desses neutrofilos através do endotélio vascular e para
o aumento de sua capacidade de fagocitar e destruir patogenos, reforcando a resposta
inflamatodria e facilitando a eliminagao de agentes infecciosos.

Além das citocinas pré-inflamatoérias, as citocinas anti-inflamatorias desempe-
nham um papel crucial na regulagao da resposta inflamatéria, ajudando a manter o
equilibrio do sistema imunolégico e a evitar danos aos tecidos. Essas citocinas sao libera-
das em resposta a sinais inflamatorios e sao produzidas por uma variedade de células do sis-
tema imunolégico, incluindo macréfagos, linfocitos T e células dendriticas. A Interleucina-
10 (IL-10) é uma das principais citocinas anti-inflamatdérias conhecidas. Ela é produzida
predominantemente por linfécitos T reguladores e macréfagos e tem a funcao de inibir a
producao de citocinas pro-inflamatorias, como TNF-«, IL-1 e IL-6. Além disso, a IL-10
reduz a atividade de células imunoldgicas envolvidas na inflamacao e promove a reparacao
tecidual. Ao fazer isso, a IL-10 ajuda a controlar a intensidade e a duracao da resposta

inflamatdria, prevenindo a inflamagao crénica e o dano aos tecidos (OLIVEIRA et al.,

2011).

CITOCINAS PRO-INFLAMATORIAS X CITOCINAS ANTI-INFLAMATORIAS

TINF
Linfotoxina-u

Interferon-y

IL-6 IL-8 -4 110 k11 L-13

A Iy

Figura 2.2: Ilustragdo citocinas pro-inflamatérias e citocinas anti-inflamatérias.
Disponivel em (https://cdn.medblog.estrategiaeducacional.com.br/wp-content /uploads/
2024/06/image-48.png)
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2.3 Sistema Endécrino

O sistema enddécrino é composto por diversas glandulas que secretam hormonios direta-
mente na corrente sanguinea. Estas glandulas sao classificadas em exécrinas e enddcrinas.
As glandulas exécrinas, como as sudoriparas, sebdceas e mucosas, liberam suas secrecoes
através de dutos para superficies corporais externas. Em contraste, as glandulas endécrinas
nao possuem dutos e liberam seus hormonios diretamente no espaco extracelular ao redor
das células secretoras. A partir desse local, os hormonios sao absorvidos pelos capilares
sanguineos e transportados pelo sangue para suas células-alvo em todo o corpo (ARAGAO
et al., 2007).

Os hormonios regulam as atividades das células-alvo por dois mecanismos prin-
cipais: a ativagao do sistema de Adenosina Monofosfato (AMP) ciclico e a ativagao dos
genes celulares. No primeiro mecanismo, o hormonio se liga a um receptor na superficie da
célula, ativando a enzima adenilciclase, que converte Adenosina Trifosfato (ATP) em AMP
ciclico. Este composto entao ativa diversas reacoes intracelulares, promovendo fungoes
como a ativagao de enzimas, alteracao da permeabilidade celular e secre¢ao. Exemplos
incluem o hormonio antidiurético e o glucagon. No segundo mecanismo, os hormonios
ativam genes dentro da célula, estimulando a producao de proteinas que desencadeiam
funcoes celulares especificas (ARAGAOQ et al., 2007).

Entre as varias glandulas do sistema enddcrino, as glandulas supra-renais sao
especialmente importantes para este estudo devido a produgao de cortisol, hormonio que
é o mais abundante em sua classe e desempenha fungoes essenciais. O cortisol ajuda a
garantir que haja energia suficiente no corpo, aumentando os niveis de glicose no sangue.
Além disso, ele oferece resisténcia ao estresse, auxilia no aumento da pressao arterial e atua
como um anti-inflamatério, diminuindo a atividade do sistema imunolégico (ARAGAO

et al., 2007).

2.4 Modelos Matematicos

Um modelo matematico pode ser definido como uma representacao matematica de um

sistema real, em outras palavras, uma simplificacao do mundo real, mas mantendo as ca-
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racteristicas essenciais do sistema, representando a forma como acontecem as modificagoes
do ambiente. Tais modelos sao usados em diversos campos, como Demografia, Biologia,
Economia, e outros campos da atividade humana (SODRE, 2007).

E comum em modelos ter os sistemas representados por Equagoes Diferenciais
Ordindrias (EDOs). Essas equagoes permitem descrever quantitativamente o comporta-
mento de sistemas dinamicos e suas mudancas ao longo do tempo e oferecem uma maneira
precisa de prever a evolugao de um sistema com base em suas variaveis e condigoes iniciais,

capturando a relagao entre as taxas de variacao e os estados do sistema (SODRE, 2007).

2.5 Analise de Sensibilidade

A Anélise de Sensibilidade permite entender o quanto as entradas de um sistema ou
modelo influenciam nos seus resultados finais (saidas). Os “fatores”, ou entradas de
interesse, podem incluir parametros do modelo, escolhas de configuracoes estruturais do
modelo, suposigoes e restrigoes. As saidas sao as respostas do sistema ou modelo (RAZAVI
et al., 2021).

Na AS, o modelo é executado varias vezes, onde as entradas sao alteradas a cada
execugao, para avaliar seu efeito em alguma saida de interesse. O termo “Anadlise de
Sensibilidade Local (ASL)” geralmente se refere a este método, que avalia a sensibilidade
do problema apenas em torno de um ponto especifico dentro do espago dos parametros.
Esta abordagem é caracterizada por sua simplicidade e intuicao, sendo particularmente
util em situacoes restritas. No entanto, ela tem sido aplicada de forma mais ampla, levan-
tando criticas por fornecer uma perspectiva limitada do problema, especialmente quando
utilizada para investigar a importancia dos parametros em contextos de modelagem ma-

tematica (RAZAVI et al., 2021).

Na Figura(2.3), o painel (a) representa uma ferramenta de AS que gera entradas
01, ..., On para o sistema, e recebe saidas Z. O painel (b) representa o sistema de interesse.
O painel (c) representa o resultado da AS onde a contribui¢do da variabilidade de cada

entrada na variabilidade da saida é quantificada. O resultado da AS também pode incluir
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(a)

Ferramenta de Andlise de Sensibilidade

Sistema f/\

Figura 2.3: Representagao do fluxo de AS. Adaptado de (RAZAVT et al., 2021).

informagoes sobre interacoes entre as entradas, variabilidade estatistica dos resultados, e

outras analises, que nao estao sendo representadas na imagem.

Na area da saude e biologia, a AS é importante por varias razoes. Os processos
bioldgicos sao, por natureza, imprevisiveis, e os dados coletados geralmente apresentam
algum grau de incerteza. Embora os modelos matematicos sejam fundamentais para criar
e testar hipdteses sobre sistemas bioldgicos complexos, um dos grandes desafios é que
eles costumam ter muitos parametros, cujos valores podem alterar o comportamento do
modelo e como ele ¢ interpretado. Muitas vezes, os parametros do modelo sao ajustados
com base em dados disponiveis, e nao por medigoes diretas, o que pode gerar incertezas

grandes se o modelo nao for identificavel.(QIAN; MAHDI, 2020)

2.6 Quantificacao de Incertezas

Segundo o Vocabulario Internacional de Termos Bésicos e Gerais em Metrologia, incerteza
¢ definido como “Um parametro associado ao resultado de uma medicao, que caracteriza
a dispersao dos valores que podem com razoabilidade ser atribuidos ao mensurando”. Ou
seja, a incerteza indica o quanto o resultado da medic¢ao pode variar devido a fatores como
limitacoes do instrumento de medigao, condi¢oes ambientais, ou imperfei¢des no processo
de medigao (CAMOES, 2001).

Apo6s identificar as fontes de incerteza, o proximo passo é quantificar a incerteza

associada a essas fontes. Isso pode ser realizado de duas maneiras: avaliando a incerteza
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de cada fonte individualmente e, em seguida, combinando esses valores, ou determinando
diretamente o impacto conjunto de varias fontes na incerteza total, utilizando informacoes
sobre o desempenho do método. Na pratica, ¢ comum e geralmente mais eficiente utilizar
uma combinacdo dessas abordagens (CAMOES, 2001).

Segundo o Guia EURACHEM, a quantificacao e avaliagao das incertezas envolve
inicialmente a identificacao de todas as possiveis fontes de incerteza, que podem incluir
condicoes experimentais, caracteristicas dos instrumentos de medi¢ao e procedimentos
utilizados, entre outros fatores. Apds essa identificacdo, as incertezas sao quantificadas,
seja individualmente ou por meio da determinacao direta da contribuicao combinada das
fontes de incerteza com base no desempenho do método. Uma vez quantificadas, as in-
certezas sao combinadas de acordo com a lei de propagacao de incertezas, resultando
na incerteza padrao combinada, que reflete a dispersao dos valores atribuiveis ao mensu-
rando. Na pratica, o processo é simplificado ao concentrar-se nas fontes mais significativas,

desconsiderando aquelas com impacto minimo no resultado final (CAM()ES, 2001).

2.7 Bibliotecas

E possivel utilizar, para um modelos computacional, andlises de sensibilidade e quanti-
ficacao de incertezas por meio de ferramentas implementadas em coédigo. Dentro deste
contexto, algumas bibliotecas podem ser utilizadas para realizar tais objetivos.

Dentro das bibliotecas utilizadas em Python para analise de sensibilidade, existe
a SALib, que é uma biblioteca de cédigo aberto desenvolvida para realizar analises de
sensibilidade em modelos computacionais. Ela implementa uma variedade de métodos
amplamente utilizados, como os indices de Sobol, o método de Morris, FAST (Fourier
Amplitude Sensitivity Test), Delta Moment-Independent Measure, e outros. A biblioteca
facilita a geragao de amostras dos parametros de entrada de um modelo, andlise dos
resultados das saidas e visualizagao das sensibilidades de maneira integrada. Seu objetivo
é simplificar a implementacao desses métodos em fluxos de trabalho tipicos de simulacao,
otimizacao e modelagem de sistemas (HERMAN; USHER, 2017).

Para quantificacao de incertezas, o Chaospy é uma biblioteca de cédigo aberto,

implementada também em Python, e projetada para realizar as quantificacao de incerte-
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zas por meio de expansoes em polinémios do caos (Polynomial Chaos Expansions, PCE)
e simulacao de Monte Carlo. A biblioteca oferece ferramentas modulares que permi-
tem criar distribuicoes personalizadas, polinomios ortogonais, esquemas de integracao e
amostragens estatisticas adaptadas as necessidades do usudrio. Além disso, o Chaospy
inclui avangos metodolégicos como o uso de transformacoes de Rosenblatt, que facilitam
o tratamento de variaveis estocasticas dependentes, e suporte a métodos como projegoes
pseudoespectrais e método da colocacao. A biblioteca também integra técnicas de reducao
de variancia, como quasi-Monte Carlo, para melhorar a eficiéncia das simulagoes. (FEIN-
BERG; LANGTANGEN, 2015)

Além dessas duas bibliotecas, também se destaca a Uncertainpy, que realiza tanto
a quantificagoes de incertezas como a andlise de sensibilidade. Para quantificacao de
incertezas, o Uncertainpy combina simulacoes baseadas em métodos de polinomios do
caos e amostragens quase-Monte Carlo para estimar estatisticas relevantes, como média,
variancia e intervalos de confianca das saidas do modelo. O foco esta em propagar as
incertezas nos parametros de entrada para calcular como elas afetam os resultados do mo-
delo, proporcionando uma visao detalhada sobre a robustez das previsoes. O Uncertainpy
também permite que o usudrio defina distribuicoes probabilisticas personalizadas para os
parametros, incluindo variaveis dependentes, o que torna o processo mais adaptavel a
diferentes cendrios. Com isso, a biblioteca facilita a obtencao de informagoes quantitati-
vas sobre a confiabilidade e os limites de incerteza das saidas do modelo. Para a andlise
de sensibilidade com base em expansao em caos polinomeal generalizados (generalized
polynomial chaos, gPC), permitindo que os indices de Sobol sejam calculados de maneira
eficiente e com alto grau de precisao. Esses indices medem como cada parametro de
entrada contribui para a variabilidade do modelo, tanto individualmente quanto em in-
teracao com outros parametros. A analise de sensibilidade no Uncertainpy é nao intrusiva,
ou seja, nao exige alteracoes na estrutura interna do modelo, o que facilita sua aplicacao.
Essa abordagem ajuda a identificar quais parametros tém maior impacto nos resultados
do modelo, sendo essencial para priorizar esforcos de calibragao e coleta de dados, bem
como para compreender melhor a dindmica do sistema estudado. Além disso, a biblio-

teca oferece opgoes de gréficos para facilitar a visualizacao final da andlise (TENNQOE;
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HALNES; EINEVOLL, 2018).

2.8 Consideracoes Finais

Em um modelo matematico, principalmente para representar questoes relacionadas a
saude, é necessario realizar andlise de sensibilidade e quantificacao de incertezas por conta
da incerteza natural dos processos bioldgicos, assegurando a precisao dos dados. Isto é
muito importante principalmente quando os sistemas simulados estao ligados a sistemas

bioldgicos relacionados a saude.



23

3 Revisao da Literatura

3.1 Introducao

Este capitulo revisa os principais trabalhos sobre modelagem matemaética do sistema imu-
nolégico e enddcrino e suas interacoes com diferentes patdgenos e tratamentos, essenciais
para simular com precisao a dinamica imunoldgica em doencas como HIV, infecgoes virais,
e tratamentos como radioterapia e vacinagao.

O capitulo descreve cada trabalho em termos de objetivos, métodos, resultados,

vantagens e limitagoes, concluindo com uma tabela comparativa das abordagens.

3.2 Modelos Matematicos do Sistema Imune

Em um trabalho de 2022, foi apresentado modelo matematico para investigar os efeitos da
radioterapia (RT) nas interagoes tumor-imunidade (BEKKER et al., 2022) considerando
a crescente aceitacao do impacto imunomodulatério da radiagao. A pesquisa visa compre-
ender a combinacao da radioterapia com imunoterapias, buscando melhorar a regressao
tumoral além do observado com tratamentos isolados. O foco estd em modelos ma-
tematicos que simulam as respostas biolégicas e imunoldgicas, com o objetivo de avancar
na personalizagao dos tratamentos oncologicos.

Os modelos investigam as interagoes entre os efeitos biolégicos da radioterapia e as
respostas imunolégicas. Eles indicam que a combinagao de radioterapia com imunoterapia
tem o potencial de melhorar as respostas antitumorais, mas ainda existem incertezas
sobre a dose e o fracionamento ideais para maximizar os efeitos imunolégicos. Resultados
pré-clinicos sugerem que fracionamentos especificos de radiacao podem induzir respostas
imunes mais eficazes, e os modelos matematicos ajudam a prever quais combinacoes de
tratamentos tém maior probabilidade de sucesso.

A pesquisa de Bekker avanca na compreensao dos mecanismos de interagao entre

radioterapia e imunidade, promovendo o desenvolvimento de tratamentos personaliza-
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dos. Além disso, a utilizacao de modelos matematicos permite simular diferentes cenarios
clinicos, economizando tempo e recursos experimentais, e possibilita a integracao de dados
experimentais e clinicos, melhorando a previsao das respostas aos tratamentos combina-
dos. Contudo, muitos desses modelos ainda requerem validagao clinica adicional para
garantir sua eficdcia na pratica. A complexidade dos modelos matematicos também pode
dificultar sua aplicacao em larga escala, especialmente devido a necessidade de grandes
quantidades de dados para calibra-los. Além disso, a variabilidade entre diferentes tipos
de cancer e respostas individuais ainda apresenta desafios consideraveis na implementacao
pratica desses modelos.

Em um trabalho de Munteanu (2022) (MUNTEANU, 2022), foi apresentado um
estudo comparativo de trés modelos mateméaticos para interacao entre o sistema imu-
nolégico humano e um virus: o modelo logistico, o0 modelo de Gompertz, e o modelo
logistico generalizado (ou modelo de Richards). Uma anélise qualitativa desses modelos
é realizada com base na teoria de sistemas dinamicos, estudando o comportamento local
nos pontos de equilibrio e obtendo as propriedades dinamicas locais a partir da estabili-
dade linear. A pesquisa também busca entender qual dos modelos é mais apropriado para
descrever essa interacao.

Os resultados indicam que, embora todos os modelos estudados sejam tteis, o
modelo logistico é simétrico em relagao ao ponto de inflexao, enquanto o modelo de
Gompertz tem o ponto de inflexao mais baixo, e o0 modelo logistico generalizado permite
mais flexibilidade no ponto de inflexdao dependendo do parametro utilizado. A andlise
dinamica revela a existéncia de bifurcacoes transcriticas, sem a ocorréncia de bifurcagoes
de Hopf, o que indica que nao ha ciclos-limite nos modelos analisados.

O estudo oferece uma visao comparativa relevante, ajudando na escolha do mo-
delo mais adequado para descrever a interagao entre o sistema imunoldgico e virus. Além
disso, a abordagem baseada em sistemas dinamicos possibilita uma analise eficaz do com-
portamento dos modelos em torno dos pontos de equilibrio. Outro ponto positivo é que
os trés modelos fornecem diferentes interpretacoes médicas, ampliando a aplicabilidade
para diversas doencas virais. No entanto, a auséncia de bifurcagoes de Hopf indica que

nenhum dos modelos consegue capturar a possibilidade de ciclos-limite, o que pode ser
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uma limitacao importante em alguns contextos biolégicos especificos.

Em 2023, um trabalho (JAN et al., 2023) apresentou uma modelagem da dinamica
do HIV in vivo, explorando a interagao entre o HIV e o sistema imunolégico utilizando
derivadas nao inteiras. Os autores propoem um modelo matematico que usa o céalculo
fracionario para representar de maneira mais precisa a complexidade dessa interacao.
Métodos numéricos sao aplicados para demonstrar como diferentes parametros de entrada
afetam a saida do sistema, além de visualizar o comportamento dinamico e a natureza
caodtica do sistema com a variacao desses fatores.

Os resultados indicam que a forte nao linearidade do sistema é responsavel pelo
caos e pelas oscilagoes observadas, que estao intimamente relacionadas. Os parametros
caoticos do sistema sao destacados e recomenda-se seu controle para gerenciar o caos do
sistema.

O uso de métodos numéricos para explorar a dinamica e o comportamento cadtico
proporciona uma nova perspectiva sobre o controle da infeccao por HIV. Além disso, o
modelo proposto oferece um potencial significativo para a melhoria das estratégias de
tratamento, levando em conta a complexidade inerente a interagao entre o HIV e o sistema
imunolégico. No entanto, um ponto negativo é que o estudo nao aborda diretamente as
implicacoes clinicas das oscilagoes e do caos observados no modelo, o que pode limitar sua
aplicabilidade pratica em contextos clinicos reais.

Um trabalho de 2020 de (SRIVASTAVA et al., 2020) explora novos modelos
matematicos para o sistema imunologico humano usando derivadas de ordem fracionaria
no contexto da infecgao pelo virus da influenza A (IAV). Os autores propoem esquemas
numeéricos para simular operadores de derivada fraciondria com nicleos baseados em leis
de poténcia e exponencial. Esses esquemas sao aplicados para modelar a resposta imune
ao TAV, com foco no controle da infecgao pela imunidade inata e adaptativa.

Os resultados apresentados mostram a aplicabilidade e eficiencia dos esquemas
numéricos desenvolvidos. A pesquisa destaca a importancia da escolha adequada dos ope-
radores fracionarios para modelar de forma precisa a complexa dindmica entre o sistema
imunoldgico e o TAV.

O estudo apresenta novas abordagens para modelar a dinamica da resposta imune
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utilizando calculo fracionéario, o que proporciona maior precisao na simulagao de sistemas
complexos. A aplicacao desses operadores de derivada fracionaria confere uma flexibili-
dade significativa & modelagem, permitindo capturar nuances da resposta imune que os
modelos tradicionais poderiam deixar de lado. Além disso, os esquemas numéricos propos-
tos sao altamente eficazes e podem ser aplicados a outros sistemas bioldgicos que envolvem
dinamicas complexas. No entanto, a validacao empirica dos modelos propostos ainda é
limitada, o que pode restringir sua aplicagao clinica direta. O estudo também se concen-
tra principalmente em aspectos tedricos e numéricos, abordando de forma superficial as
implicacoes bioldgicas e clinicas dos resultados obtidos.

Em um outro trabalho, de 2023, de (XU et al., 2023) é apresentado um modelo
matematico que simula a resposta imune adaptativa do corpo humano em diferentes tipos
de vacinas e estratégias de vacinacao. Os autores propoem um modelo para descrever a
dinamica dos niveis de anticorpos apds a administracao de vacinas, comparando vacinas
tradicionais inativadas, vacinas de mRNA e vacinas atenuadas baseadas em particulas
virais interferentes defeituosas (DVG). O estudo explora como a administragao de doses
de refor¢co pode melhorar os niveis de anticorpos IgG, além de discutir as vantagens e
desvantagens dos diferentes tipos de vacinas.

Os resultados do modelo sugerem quatro abordagens essenciais para orientar o
design de vacinas: melhorar a imunogenicidade das células T especificas do antigeno, di-
recionar a producao de anticorpos de alta afinidade, reduzir a taxa de decaimento dos an-
ticorpos IgG e diminuir o nivel maximo dos complexos antigeno-anticorpo induzidos pela
vacina. O estudo contribui para o entendimento do design de vacinas e suas aplicagoes,
oferecendo orientacoes para a compreensao das interagoes entre anticorpos e substancias
antigénicas durante o processo imune.

O modelo matematico desenvolvido proporciona uma ferramenta quantitativa
para avaliar a resposta imune a diferentes estratégias de vacinagao. A abordagem ado-
tada no estudo permite uma comparacao eficaz entre diversos tipos de vacinas, oferecendo
ideias sobre como otimizar a eficacia dos programas de vacinagao. Além disso, o estudo
oferece recomendacgoes praticas, como a importancia das doses de reforgo e a selecao de

vacinas que induzem uma resposta imune mais duradoura. Um ponto negativo deste
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estudo é que a modelagem nao aborda diretamente os possiveis efeitos adversos em po-
pulagoes especificas, como individuos com imunidade comprometida, o que pode limitar
sua aplicabilidade clinica em alguns contextos.

Outro trabalho ainda no ano de 2023, de (STUBLER7 2023) apresenta um mo-
delo matematico desenvolvido para descrever a resposta imune mucosal em doencas infla-
matorias intestinais (Inflammatory Bowel Disease, IBD) e seus tratamentos. Este modelo,
baseado em equacoes diferenciais ordinarias, foca nos processos mais importantes do sis-
tema imunoldgico do intestino a nivel celular, incluindo neutréfilos, macréfagos, células
dendriticas, células T e bactérias, cada um subdividido em diferentes tipos e estados de
ativacao. O modelo é avaliado por meio de simulagoes que incluem tanto a resposta imune
saudavel quanto a resposta a diferentes cendrios inflamatorios.

Os resultados indicam que o modelo é capaz de simular a resposta imune tanto em
condicoes normais quanto em situagoes patoldgicas, como a doenga inflamatoéria intestinal.
A simulagao permite a andlise de diferentes estratégias terapéuticas, com previsoes sobre
o resultado do tratamento baseadas no estado do paciente antes do inicio do tratamento.

O modelo matemético permite uma analise detalhada da resposta imune, ofe-
recendo uma ferramenta valiosa para entender a patogénese da IBD e as razoes para
a variabilidade na resposta ao tratamento. A abordagem sistémica adotada no estudo
fornece insights sobre como diferentes fatores contribuem para o desenvolvimento e pro-
gressao da doenca. Além disso, as simulacoes de terapias variadas podem guiar a escolha
de tratamentos mais eficazes, especialmente em casos de falha terapéutica inicial. Entre-
tanto, a complexidade do modelo pode representar um desafio na sua aplicagao pratica
em ambientes clinicos, uma vez que exige um entendimento mais avancado dos processos
imunoloégicos envolvidos. Outro ponto negativo é que o modelo nao diferencia entre as
principais formas de IBD, como a Doenca de Crohn e a Colite Ulcerativa, o que pode
limitar sua aplicabilidade para o desenvolvimento de tratamentos especificos.

Em 2022, foi publicado um trabalho que apresenta um modelo matematico para
investigar a dinamica da co-infecgao entre HIV e COVID-19, utilizando estratégias de
controle 6timas para mitigar a propagacao dessas infecgdes (RINGA et al., 2022). O

modelo é aplicado ao contexto da Africa do Sul, um pais severamente afetado por ambas
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as doencas. O estudo incorpora controles dependentes do tempo para intervencgoes de
prevencao e tratamento, buscando avaliar o impacto dessas medidas na reducao de novos
casos de co-infeccao.

Os resultados do modelo indicam que a implementacao de estratégias de pre-
vencao tanto para HIV quanto para COVID-19 pode reduzir significativamente a carga
de co-infeccoes. A analise sugere que medidas de prevencao para uma das doencas tém
um impacto positivo na diminuicao de casos da outra, destacando a importancia de abor-
dagens integradas para o controle de doencas infecciosas em populagoes vulneraveis.

O modelo fornece uma ferramenta 1til para explorar a interagao dinamica entre
HIV e COVID-19, sendo uma contribuicao crucial para o desenvolvimento de politicas
de saude publica em regides com alta prevaléncia de ambas as doencas. A inclusao de
controles dependentes do tempo permite a analise detalhada de diferentes estratégias de
intervencao, oferecendo insights importantes sobre como otimizar a resposta a pandemia.
Além disso, o estudo aborda uma questao de satde publica altamente relevante, ao con-
tribuir para o entendimento de como gerenciar co-infec¢goes em contextos com recursos
limitados. No entanto, a complexidade do modelo pode dificultar sua aplicacao pratica
em cenarios diferentes do estudado, exigindo ajustes especificos para outras regides ou
populagoes. Além disso, a modelagem depende fortemente de parametros que podem
variar significativamente com o tempo e entre populagoes distintas, o que pode compro-
meter a robustez das conclusoes. Por fim, o foco em um tnico pais limita a abrangéncia
da abordagem, que pode nao capturar completamente as nuances globais da co-infeccao
entre HIV e COVID-19, especialmente em contextos com diferentes sistemas de satude e
infraestrutura.

Além disso, em 2020, um trabalho apresenta um estudo sobre a modelagem ma-
tematica e a simulagao numérica da infeccao por HIV, focando no comportamento das
células T CD4+, células T CD4+ infectadas e particulas livres do virus HIV. (SOHAIB
et al., 2020) Os autores implementam dois esquemas numéricos, o método continuo de
Galerkin-Petrov (¢cGP(2)) e o Método de Colocacao Wavelet de Legendre (LWCM), para
obter a solucao aproximada do modelo matematico. O modelo é avaliado considerando

termos de fonte constantes e varidaveis para a producao de novas células T CD4+ pelo
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timo, dependendo da carga viral. Além disso, os resultados obtidos sao comparados com o
método de Runge-Kutta de quarta ordem (RK4) para validar a precisao e a confiabilidade
dos esquemas propostos.

Os resultados indicam que os métodos cGP(2) e LWCM apresentam precisao em
comparacao com o método RK4, confirmando a eficiéncia dos esquemas propostos. O
estudo destaca a importancia da escolha adequada dos termos de fonte para modelar com
precisao a dinamica do HIV e a resposta imunologica.

Os métodos ¢cGP(2) e LWCM demonstraram precisao quando comparados ao
método RK4, confirmando a eficiéncia dos esquemas propostos. O estudo também des-
taca a importancia de escolher os termos de fonte adequados para modelar com precisao
a dinamica da infeccao por HIV e a resposta imunolégica. O artigo introduz métodos
numéricos inovadores, como o ¢cGP(2) e o LWCM, que se mostraram altamente eficientes
na solucao do modelo de infeccao por HIV. Além disso, a comparacao com métodos tra-
dicionais, como o RK4, reforca a validade e robustez dos esquemas propostos. A analise
detalhada dos termos de fonte variaveis fornece insights valiosos sobre como a carga viral
afeta a producao de células T CD4+ e a progressao da infeccao. No entanto, a comple-
xidade dos métodos numéricos pode dificultar sua acessibilidade e aplicabilidade em con-
textos clinicos praticos, especialmente sem uma base matematica sélida. A dependéncia
dos parametros especificos do modelo também pode limitar a generalizagao dos resultados
para diferentes populagoes ou cenarios de infecgao por HIV. Por fim, o estudo nao aborda
diretamente as implicagoes clinicas dos resultados, o que poderia ampliar sua relevancia

para profissionais de satude.

3.3 Tabela Comparativa dos modelos do Sistema Imune

A seguir, foi feita uma tabela comparativa entre o conteidos dos trabalhos especificados
na sessao anterior. A tabela apresenta dados como o tipo de modelo matematico utilizado,

o objetivo do estudo, os pontos positivos e negativos, e se o trabalho utiliza AS ou UQ.
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3.4 Modelos Matematicos do Sistema Enddocrino

O trabalho de (PRITCHARD-BELL, 2016) apresentou o desenvolvimento de modelos
matematicos para controle glicémico em ambientes de cuidados criticos, com foco na
medicina baseada em sistemas. O estudo aborda as complexidades da hiperglicemia de
estresse, especialmente no contexto de resisténcia a insulina em pacientes gravemente
enfermos. O trabalho propoe um sistema de suporte a decisao baseado em modelos (DSS),
que incorpora dados bioldgicos e clinicos para personalizar o tratamento com insulina e o
controle glicemico.

Os principais elementos da pesquisa incluem a modelagem da resisténcia a in-
sulina, utilizando dados humanos que capturam as flutuagoes na sensibilidade a insu-
lina, bem como a modelagem da dinamica da glicose, descrevendo o metabolismo da
glicose em resposta a diferentes processos biolégicos e inflamatorios. Além disso, o estudo
também explora a modelagem do eixo hipotdlamo-hipédfise-adrenal (HPA), analisando
como hormonios do estresse, como o cortisol, e citocinas (por exemplo, 11-6 e TNF)
afetam a sinalizacao da insulina.

Outro aspecto importante é a exploracao de estratégias de controle em cuidados
criticos, onde o uso de abordagens baseadas em modelos pode otimizar os protocolos de
controle glicemico e reduzir a mortalidade associada a hipoglicemia. O estudo também
utiliza pacientes virtuais e simulagoes de Monte Carlo para refinar as estratégias de tra-
tamento voltadas para o controle glicemico personalizado.

Em um trabalho de 2009 (MCAULEY et al., 2009), foi desenvolvido um modelo
matematico para explorar a disfuncao do hipocampo relacionada ao envelhecimento e
induzida pelo cortisol. Esse estudo investiga os efeitos do aumento cronico e agudo do
cortisol nos niveis de atrofia e atividade do hipocampo, que desempenha um papel central
na memoria declarativa e estd associado a doencas neurodegenerativas como o Alzheimer.
Utilizando a linguagem de marcacao de biologia de sistemas (SBML), o modelo simula
as interagoes entre o cortisol, os receptores do hipocampo e o eixo hipotalamo-hipofise-
adrenal (HPA). A pesquisa também introduz intervengoes bioldgicas para verificar se a
disfuncao hipocampal induzida pelo cortisol poderia ser atenuada.

Os resultados do modelo mostram que tanto o aumento agudo quanto o cronico
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do cortisol reduzem significativamente a atividade hipocampal e aumentam a atrofia. No
entanto, intervengoes biologicas mostraram atenuar esses efeitos de maneira mais eficaz
em casos de aumento cronico do cortisol. Essa abordagem in silico pode fornecer uma base
para a modelagem computacional de alteracoes cerebrais relacionadas ao envelhecimento,
auxiliando na previsao de disfungoes do hipocampo em idosos vulneraveis.

Os pontos positivos desse estudo incluem a inovacao de modelar os efeitos do
cortisol no hipocampo de forma quantitativa, o que pode contribuir para a compreensao
dos mecanismos envolvidos em doencas como Alzheimer. O modelo também oferece uma
ferramenta 1til para testar hipoteses que seriam dificeis de investigar em estudos in vivo,
fornecendo uma abordagem promissora para o desenvolvimento de estratégias preventivas
em idosos.

Por outro lado, alguns pontos negativos incluem a complexidade do modelo e
a necessidade de mais dados clinicos para validar os parametros utilizados, o que pode
limitar a aplicabilidade pratica imediata dos resultados. Além disso, o estudo nao aborda
diretamente outros fatores de risco associados a disfungao do hipocampo, como doencas

vasculares e diabetes, que poderiam influenciar os resultados modelados.

3.5 Tabela Comparativa de modelos do Sistema Enddécrino

Novamente a seguir, foi feita uma tabela comparativa entre o contetidos dos trabalhos
especificados na sessao anterior. A tabela apresenta dados como o tipo de modelo ma-

tematico utilizado, o objetivo do estudo, os pontos positivos e negativos, e se o trabalho

utiliza AS ou UQ.
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3.6 Analise de Sensibilidade e Quantificacao de In-

certezas

Em um trabalho de 2020, sobre um modelo a respeito da pandemia de COVID-19 nos
péises Coreia do Sul, Italia e Brasil (REIS et al., 2020), foi feito um estudo com andlise de
sensibilidade e quantificacao de incertezas do mesmo. A andlise de sensibilidade revelou
que a taxa de transmissao é o parametro mais sensivel em todos os cenarios simulados,
enquanto a fracao de casos notificados desempenha um papel crucial em contextos com
alta subnotificacao, como no Brasil. Além disso, parametros como a taxa de mortalidade
e o periodo entre os primeiros sintomas e a morte tém impacto significativo na dinamica
de mortes. No inicio das simulacoes para o Brasil e a Itédlia, o periodo de incubacao
foi determinante, destacando a sensibilidade das notificagoes aos atrasos no diagnéstico.
Estes resultados evidenciaram que a subnotificacao e politicas de distanciamento social
menos eficazes aumentam as incertezas na modelagem.

Ainda neste modelo, a quantificacdo de incertezas mostrou que os parametros
do modelo variam significativamente entre os paises, refletindo diferencas nas dinamicas
da pandemia, subnotificacao e politicas de mitigacao. A andlise inversa ajustou funcoes
de densidade de probabilidade para os parametros, destacando maior incerteza no Brasil
devido a fase inicial da pandemia e subnotificacao elevada. A analise direta demons-
trou que as incertezas nas simulagoes crescem na ordem Coreia do Sul, Italia e Brasil,
correlacionando-se com os niveis de subnotificacao. FEsses resultados reforcam a im-
portancia de mitigar subnotificacoes e aprimorar politicas de controle para reduzir in-
certezas e melhorar o manejo da pandemia.

Em um outro artigo, de 2021, ainda sobre a pandemia de COVID-19, desta vez
relacionando os paises Austria, Alemanha, Coreia do Sul e Italia (REIS et al., 2021a), a
analise de sensibilidade identificou os parametros mais impactantes nas previsoes do mo-
delo, especialmente a taxa de transmissao, que apresentou variacao significativa préxima
ao pico da pandemia. Durante os picos, mudancas na taxa de transmissao geralmente
precedem os dados visiveis de casos ativos por até 15 dias, devido ao tempo de incubagao

e atrasos nos testes. Parametros relacionados, como inicio e duracao de politicas de inter-
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vencao, também foram sensiveis, indicando que pequenos erros nesses fatores podem levar
a grandes desvios nas previsoes. Na quantificacao de incertezas, duas abordagens foram
realizadas: inversa e direta. A quantificacao inversa estimou as fungoes de densidade de
probabilidade (PDFs) dos parametros com base nos dados disponiveis, permitindo ajustar
o modelo as realidades locais de cada pais. Ja a quantificacao direta propagou essas incer-
tezas para as saidas do modelo usando simulagoes de Monte Carlo. As analises mostraram
que incertezas nos parametros, especialmente na taxa de transmissao, téem um impacto
significativo nas previsoes. Isso reforca que, para entender melhor os picos, é essencial
incluir dados mais completos e priorizar projecoes que considerem diferentes cenarios de
reducgao de transmissao.

Outro trabalho de 2021, desta vez, apresenta um modelo mateméatico para des-
crever a resposta imune ao SARS-CoV-2 (REIS et al., 2021b), com foco na sindrome de
liberacao de citocinas (CRS). A andlise de sensibilidade foi realizada para identificar quais
parametros do modelo mais afetam os resultados, como as dinamicas do virus, citocinas
e anticorpos IgG e IgM. Para isso, os autores usaram os indices de Sobol, que avaliam a
contribuicao de cada parametro na variancia total do modelo. A partir dessa andlise, des-
cobriram que os parametros relacionados as células apresentadoras de antigenos (APCs)
tiveram grande influéncia, como as taxas de infec¢ao (5 apm) e de produgao de citocinas
(m capm). Além disso, a taxa de replicacao viral (7 v) também se mostrou um fator
relevante, especialmente nas populacoes de virus e anticorpos. A andlise destacou a im-
portancia de entender as interacoes entre o virus e as APCs para explicar a desregulagao
imunolégica observada em pacientes graves.

Na quantificagao de incertezas, o modelo foi ajustado com dados experimen-
tais de estudos sobre viremia, citocinas e anticorpos em pacientes sobreviventes e nao-
sobreviventes. Para isso, foi utilizada a evolucao diferencial, uma técnica de otimizacao
que minimiza a diferenca entre as saidas do modelo e os dados experimentais. Trés
parametros (7 ci,5 apm, [ tke) foram ajustados no cendrio de nao-sobreviventes, pois
eles estao diretamente relacionados a hipétese de que o virus infecta células imunes e leva
a producao descontrolada de citocinas. Esse ajuste permitiu observar a diferenca signifi-

cativa nos niveis de IL-6 entre sobreviventes e nao-sobreviventes, com picos muito mais
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altos no segundo grupo, associados a CRS. (SILVA et al., 2020)

Outro trabalho de 2020, investiga a meméria imunoldgica ao virus da febre ama-
rela usando um modelo matemaético baseado em equagoes diferenciais ordinarias (ODEs).
Ele analisa as respostas primarias e secundarias ao virus, destacando o papel das células
B na producao de anticorpos. O estudo utiliza quantificacao de incerteza e analise de
sensibilidade para avaliar como variacoes nos parametros do modelo afetam as dinamicas
imunologicas. A modelagem consegue reproduzir aspectos essenciais das curvas de an-
ticorpos, incluindo uma resposta secundaria mais rapida e intensa devido a memoria
imunoldgica.

Na quantificacao de incertezas, os parametros do modelo foram tratados como
variaveis aleatérias continuas. A analise foi realizada usando o método de Monte Carlo
combinado com expansoes de caos polinomial. Como resultado, foi possivel estimar inter-
valos de confianca de 90% para as previsoes do modelo, mostrando como a incerteza nos
parametros afeta a produgao de anticorpos, especialmente na resposta secundéria.

Com a analise de sensibilidade foi possivel complementar a quantificacao de incer-
tezas, variando um parametro por vez enquanto mantinha os outros fixos. Essa abordagem
revelou que taxas de ativagao de células B naive (C4), diferenciagao de células de meméria
em células ativas (C6), e taxas de decaimento de células ativas (C7) tém impactos sig-
nificativos nas respostas priméria e secundéaria. Por exemplo, a taxa de diferenciacao
de células de memoria afeta apenas a resposta secundaria, enquanto a taxa de ativacao
das células naive tem maior influéncia na resposta primaria. Esses resultados reforcam a

importancia da memoria imunoldgica na resolugao rapida de infecgoes secundéarias.

3.7 Consideracoes Finais

Este capitulo apresentou uma revisao sobre o uso de modelos matematicos para entender
as interagoes entre o sistema imunolégico e diversas doencas, além dos efeitos de diferentes
tratamentos, como radioterapia e vacinas. E principalmente a importancia da anélise de
sensibilidade e quantificacao de incertezas destes modelos para assegurar a confiabilidade
dos mesmos.

Os modelos matematicos mostraram ser ferramentas muito 1teis para simular
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cenarios clinicos, prever o comportamento de doencgas e otimizar estratégias de tratamento.
Assim, é fundamental que se tenha seguranga sobre as respostas e resultados dos modelos
possam ser confidveis.

No entanto, ainda ha desafios significativos. A complexidade dos modelos, a
necessidade de validacao clinica e a dependéncia de parametros especificos limitam a
aplicacao desses modelos em larga escala. Além disso, a variabilidade individual e entre
diferentes tipos de doencas exige que os modelos sejam adaptados para garantir trata-
mentos eficazes.

Em resumo, a modelagem matematica do sistema imunoldgico e do sistema
endocrino continua a evoluir e oferece boas ideias para o desenvolvimento de terapias
mais eficazes e personalizadas. No entanto, para que esses modelos possam ser comple-
tamente integrados na pratica clinica e na saide publica, é fundamental que futuras pes-
quisas superem as limitagoes identificadas, combinando avancos tedricos com validagoes

computacionais solidas, assim como validagoes clinicas.
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4 Métodos

4.1 Modelo Matematico

O modelo de células-citocinas é construido a partir de um conjunto de equagoes diferenciais
ordindrias que representam as interacoes dinamicas entre células imunolégicas e citocinas
pro-inflamatérias no contexto do envelhecimento e do ‘inflammaging”. Cada equagao é
projetada para capturar processos biolégicos especificos, incluindo replicacao bacteriana,
ativacao celular, producao de citocinas e influéncia de fatores externos como o cortisol.
Neste trabalho, o modelo que foi proposto em Quintela et al. (2024) foi modificado para
ao invés de ser acoplado a um modelo de glicose-insulina, passou a considerar os valores

de glicose didrios da literatura (CAUTER et al., 1992). O modelo é dado pelas seguintes

equacoes:
dA A
— = All—— ) — usAM4. 4.1
dt ba ( k A) pasiiia (4.1)
dMp U D y
el (vara + kyrnpHY (TNF)Hy (IL10)) MpA + pip M. (4.2)
dM
dI L6
— = (kuew + kiverneHipg(TNF))Hfpo(1L6)Hp6(1L10) My (4.4)
COR
—kltsCOR(1l — ————) — k I1L6 — .
sCORM = G R mer) — P! ars)
dI L& U D
—k‘ILs([LS - C]ILS)-
dIL10
i = (krpiom + kroiorne Hepyo(IL6))Ma — krpi0(IL10 — qrr10). (4.6)
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Dadas as equagoes, pode-se observar que existem 6 variaveis no modelo: A, MR,
MA, IL6, IL8, IL10, TNF, e COR. Elas representam respectivamente a concentragao
da bactéria S. Aureus, a concentracao de macréfagos em repouso, a concentracao de
macrofagos ativos, a concentracao da citocina IL-6, a concentragao da citocina IL-8, a

concentracao da citocida IL-10, a concentracao de TNF, e a concentracao de cortisol.

4.1.1 Parametros base do modelo

Os parametros base utilizados nas simulagoes sao apresentados na Tabela 4.1 (MARINS,

2023).
Tabela 4.1: Parametros base do modelo

Parametro | Valor | Unidade Significado biolégico

Ba 0.02 | 1/dia Taxa de crescimento das bactérias

Cmax 3 - Capacidade méaxima de cortisol

he1o 4 — Expoente da funcao de Hill para
downregulagao de IL-6 por IL-10

heo 1 — Expoente da funcao de Hill para
auto-feedback negativo de IL-6

herNF 2 — Expoente da fungao de Hill para
upregulacao de IL-6 por TNF-«

hs1o 1.5 - Expoente da fungao de Hill para
downregulacao de IL-8 por IL-10

hsrnF 3 — Expoente da funcao de Hill para
upregulacao de IL-8 por TNF-«

h1og 3.68 | — Expoente da funcao de Hill para
upregulacao de IL-10 por IL-6

hario 0.3 — Expoente da funcao de Hill

hyvTNF 3.16 | — Expoente da funcao de Hill

Continua na préxima pagina
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Tabela 4.1 Parametros base do modelo — Continuacao

Parametro | Valor | Unidade Significado biolégico
hrNF10 3 — Expoente da funcao de Hill para
downregulagao de TNF-« por IL-
10
hTNF6 2 - Expoente da funcao de Hill para
downregulagao de TNF-a por IL-
6
ke 4.64 | dia”! Taxa de ativacao de IL-6
kg 0.464 | dia™! Taxa de ativagao de IL-8
k1o 1.1 dia=? Taxa de ativacao de IL-10
k106 0.0191 | conc. relati- | Upregulagao de IL-10 por IL-6
va/(dia-ntimero
de células)
k1ons 0.19 | conc. relati- | Upregulacao de IL-10 por
va/(dia-nimero | macréfagos ativados
de células)
ka 50.0 | mm3/dia Capacidade de suporte para
bactérias
ked 1.55 | h! Taxa de degradacao de cortisol
krre 0.66 | h™! Taxa de degradacao de IL6
krrem 0.01 | conc. relati- | Upregulacao de IL-6  por
va/(dia-nimero | macréfagos ativados
de células)
krrsur 0.056 | conc. relati- | Upregulacao de  IL-8  por
va/(dia-nimero | macréfagos ativados
de células)
kernr 0.81 | conc. relativa Upregulacao de IL-6 por TNF-«
Continua na préxima péagina
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Tabela 4.1 Parametros base do modelo — Continuacao

Parametro | Valor | Unidade Significado biolégico
ksTnF 0.56 | conc. relati- | Upregulagao de IL-8 por TNF-«
va/(dia-ntimero
de células)
kit 3.35 | h! Magnitude da ativacao do TNF-«
pelo cortisol
klt6 1.35 | h! -
ko 1.414 | — Taxa de ativagao dos macrofagos
kyra 251 |- Taxa de decaimento de
macréfagos ativados
kmct 8.69 | ng/mL Taxa de influéncia do cortisol no
TNF-«
kyur 6 — Taxa de decaimento de
macrofagos em repouso
kyTNF 8.65 | h™! Taxa de ativagao de macréfagos
em repouso
kmtc 2.78 | pg/mL Constante de Michaelis para
producao de cortisol por TNF
krnr 200 | dia™! Taxa de ativacao de TNF-«
krnrm 1.5 conc. relati- | Upregulacao de TNF-a por
va/(dia-nimero | macréfagos ativados
de células)
ktc 3.43 | ng/(pgh) Magnitude da ativacao de cortisol
por TNF
ma 0.9 1/dia Fagocitose das bactérias
MR, 00 5 células/ mm? Maximo de macrofagos em re-
pouso
Continua na préxima péagina
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Tabela 4.1 Parametros base do modelo — Continuacao

Parametro | Valor | Unidade Significado biolégico

Ne610 34.8 | pg/mL Valor de meia-ativacao para
downregulacao de IL-6 por IL-10

Ne6 560 | pg/mL Valor de meia-ativacao para auto-
feedback negativo de IL-6

NGTNF 185 | pg/mL Valor de meia-ativacao para upre-
gulacao de IL-6 por TNF-«

ng10 17.4 | pg/mL Valor de meia-ativacao para
downregulacao de IL-8 por IL-10

NTNF 185 | pg/mL Valor de meia-ativacao para upre-
gulagao de IL-8 por TNF-«

N106 560 | pg/mL Valor de meia-ativacao para upre-
gulagao de IL-10 por IL-6

N0 4.35 | pg/mL Valor de meia-ativagao

NMTNF 100 pg/mL Valor do meio méx. associado a
regulacao positiva de TNF-«

NTNF10 174 | pg/mL Valor de meia-ativacdo para
downregulacao de TNF-a por
IL-10

NTNF6 560 | pg/mL Valor de meia-ativacdo para
downregulacao de TNF-a por
IL-6

qrLe 0.6 conc. relativa Concentragao de IL-6 na auséncia
de patégeno

qrrs 0.2 conc. relativa Concentragao de IL-8 na auséncia
de patégeno

Continua na préxima péagina
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Tabela 4.1 Parametros base do modelo — Continuacao

Parametro | Valor | Unidade Significado biolégico

qrrio 0.15 | conc. relativa Concentracao de IL-10 na
auséncia de patdgeno

ATNF 0.14 | conc. relativa Concentracao de TNF-a na
auséncia de patdgeno

YMA 0.0832 | mm?/(cell-day) | Taxa de ativagao dos macréfagos
em repouso

1A 0.1 1/dia Taxa de morte natural de células
A

LA 0.07 | 1/dia Taxa de decaimento natural dos
macrofagos ativados

MR 0.033 | 1/dia Taxa de decaimento natural dos
macréfagos em repouso
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4.2 Analise de Sensibilidade

A anélise de sensibilidade foi implementada em Python, utilizando o pacote SALib para
realizar a andlise de sensibilidade por meio de indices de Sobol nas equacoes do modelo
células-citocina. Esta biblioteca foi escolhida por nao possuir muita complexidade para
sua utilizagdo, permitindo configurar a AS de maneira simples, e com a possibilidade
de salvar os dados da andlise em um arquivo, para que estes dados sejam manipulados
posteriormente de maneira mais personalizada, permitindo que se possa aplicar filtros e
ordenagoes arbitrarias nestes resultados para a criacao de um gréfico, por exemplo.

A implementacao comeca com a definicio de um conjunto de parametros do
modelo armazenados em um dicionario, sendo estes todos os parametros utilizados no
modelo (Tabela 4.1). O espago de parametros para a andlise de sensibilidade foi construido
estabelecendo limites dentro de 10% para mais e para menos dos valores nominais dos
parametros.

A andlise emprega o método de Sobol, uma técnica de andlise de sensibilidade
baseada em variancia do SALib. O processo de amostragem gerou 1024 conjuntos de
parametros usando o esquema de amostragem de Sobol, com calculos de indices de sen-
sibilidade de primeira ordem, que sao indices de sensibilidade que calculam o quanto a
variancia de uma saida (varidvel) é afetada pela variancia de uma entrada (parametro).
A funcao de avaliagao do modelo processa esses conjuntos de parametros simulando a
dinamica do sistema de cortisol ao longo de um periodo de 24 horas, focando na concen-
tracao de cortisol em estado estacionario no ponto médio da simulacao.

A visualizacao dos resultados foi realizada utilizando as bibliotecas matplotlib e

seaborn, produzindo um grafico de barras dos indices de sensibilidade de primeira ordem.

4.3 Quantificacao de Incertezas

Para realizar a quantificagao de incertezas das equacoes 4.1 a 4.8, foi utilizada a linguagem
Python em conjunto com as bibliotecas Uncertainpy e Chaospy. A biblioteca Uncertainpy
foi escolhida por ser especializada em analise de incertezas para modelos nesta linguagem,

e por gerar os graficos dos intervalos de predicao automaticamente. O modelo analisado
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inclui diferentes outputs (cortisol, TNF, IL-8, IL-6, IL-10, MR, MA e A) que foram
avaliados separadamente através da mesma metodologia e no mesmo intervalo de tempo
de um dia. A anélise foi configurada definindo distribui¢oes uniformes para 28 parametros
do modelo, onde cada parametro varia entre 90% e 110% do seu valor base (variacao de
+10%). Os parametros escolhidos para a UQ foram todos os parametros que mostraram
indices de sensibilidade maiores que zero.

A quantificagao de incertezas foi executada utilizando o método de Monte Carlo
com 1024 amostras e uma semente pseudoaleatéria fixa para garantir reprodutibilidade.
O Uncertainpy automaticamente aplica a transformacao de Rosenblatt durante a analise,
que é tutil para lidar com possiveis correlacoes entre os parametros. Os resultados foram
visualizados através do Uncertainpy, que gera graficos mostrando a variabilidade das

saidas do modelo em funcao da incerteza nos parametros de entrada.
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5 Resultados

5.1 Parametros Base e Quantidades de Interesse

Um total de 8 variaveis foram analisadas neste modelo. Cortisol, TNF, IL-6, IL-8, IL-10,
MA (Macréfagos ativos), MR (Macréfagos Inativos), A (Bactérias S. Aureus). Os graficos
a seguir ilustram os resultados das simulacoes utilizando os valores base dos parametros

para estas variaveis estudadas neste trabalho, ao longo de um periodo de um dia.
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5.2 Indices de Sensibilidade dos Parametros

A anélise de sensibilidade dos parametros do modelo revelou padroes distintos de sensibili-
dade para cada variavel. O cortisol se destacou como a variavel mais sensivel, influenciado
por 29 parametros diferentes, seguido pelo TNF (24 parametros), IL-6 (18), IL-8 (16), IL-
10 e S. aureus (12 cada), macréfagos inativos (10) e macréfagos ativos (9) conforme pode
ser visto nas Figuras 5.3-5.10.

E possivel observar que apenas um pequeno nimero de parametros apresenta sen-
sibilidade significativamente maior que os demais, destacando-se como fatores criticos no
modelo. Analisando cada grafico, é possivel identificar rela¢oes importantes: o parametro
klt exerce influéncia determinante na concentracao de TNF, enquanto a taxa de ativagao
do TNF impacta fortemente os niveis de IL-10. De forma similar, a taxa de ativacao da
IL-8 é crucial para sua propria concentracao no sistema. Quanto a IL-6, trés parametros
se destacam como particularmente influentes: a concentragao na auséncia do patdgeno
(qIL6), sua taxa de ativagao, e o parametro klt6. Para os macréfagos ativos, o fator mais
determinante é sua taxa de decaimento, acompanhado pelo limite maximo de macréfagos
inativos. Este ultimo parametro também exerce a maior influéncia sobre a concentracao
dos proprios macréfagos inativos. No caso da concentragao bacteriana, a analise revela que
a taxa de fagocitose (m_A) apresenta a maior sensibilidade, indicando seu papel central
no controle da populacao de S. aureus no sistema modelado.

Os graficos foram construidos de modo que apenas os parametros que apresen-
taram sensibilidade maior do que 0 para cada variavel fosse exibida em seu respectivo

grafico.
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Figura 5.4: Parametros Sensibilidade de Primeira Ordem do TNF.
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Figura 5.6: Parametros Sensibilidade de Primeira Ordem do ILS.
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Figura 5.8: Parametros Sensibilidade de Primeira Ordem do Macréfagos ativos.
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Figura 5.9: Parametros Sensibilidade de Primeira Ordem do Macréfagos inativos.
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Figura 5.10: Parametros Sensibilidade de Primeira Ordem da Bactérias S. aureus.
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5.3 Quantificacao das Incertezas dos Parametros do

Modelo

A anélise da quantificacao de incerteza de cada variavel do modelo revela comportamentos
diferentes. O cortisol apresenta um valor de concentracao decrescente com intervalos de
predicao relativamente estreitos, sendo as incertezas mais pronunciadas nos picos que
ocorrem ao longo do dia.

Ja o TNF exibe um intervalo de predicao proporcionalmente mais amplo durante
a fase de crescimento, sugerindo maior sensibilidade dos parametros relacionados com sua
producao inicial. No gréafico relativo a interleucina-10, uma citocina anti-inflamatoéria,
a incerteza é relativamente uniforme e moderada ao longo de toda a trajetéria, indi-
cando estabilidade nos parametros que influenciam diretamente em sua concentragao. Os
macrofagos em repouso apresentam um intervalo de predicao estreito durante a fase de
declinio e maior incerteza na fase de recuperacao. A populacdo de macréfagos ativos
demonstra incertezas mais pronunciadas no pico e menor variabilidade relativa na fase de
declinio. A IL-8 exibe o intervalo de predicao proporcionalmente consistente, embora apre-
sente leve ampliacao com o tempo, sugerindo acumulagao de incertezas nos parametros
relacionados a sua producao. O gréafico da IL-6 representa um crescimento constante de
sua incerteza ao longo do dia, refletindo o crescimento da incerteza do cortisol ao longo
do mesmo periodo.

Em conclusao, a sequéncia temporal dos eventos inflamatérios capturada pelo
modelo, com o aumento inicial de TNF, seguido por ativacao de macroéfagos e posterior
modulacao por IL-10 - permanece estavel apesar das incertezas paramétricas e alinhada
com o processo biolégico da resposta inflamatéria. E interessante observar que as variaveis
mais influenciadas pelo cortisol (4.4, 4.6, 4.7) possuem as maiores incertezas, e além disso,
os intervalos de predigao destas variaveis crescem ao longo do dia de maneira semelhante

ao comportamento de crescimento do intervalo para o grafico do cortisol.
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6 Conclusao

A partir da analise da literatura, e observacao de pontos como facilidade de utilizacao
e popularidade, foram escolhidas duas bibliotecas, uma para analise de sensibilidade e
outra para quantificacao de incertezas. Esta selecao considerou também a disponibilidade
de documentacao e suporte. Os resultados da AS foram salvos para serem manipulados
e transformados nos graficos da sessao 5.2, permitindo a visualizacao clara das relacoes
entre os parametros estudados. Os parametros utilizados na UQ foram escolhidos a partir
dos parametros de resposta da SA que tiveram incerteza maior que zero, o que permitiu
concentrar o esfor¢o computacional nos fatores mais relevantes para a variabilidade do
modelo.

Além disso, foi realizada a SA e a UQ das equacoes 4.1 a 4.8 considerando o
intervalo de tempo de um dia. Nestas analises, os resultados indicam que maioria das
variaveis manteve comportamento consistente. Mais experimentos precisam ser realizados
para avaliar o comportamento do modelo a longo prazo, assim, deve ser considerado
para trabalhos futuros a andlise do modelo em um intervalo de tempo ao longo de uma
década ou mais, o que possibilitara identificar padroes de comportamento dos valores
das varidaveis do modelo, e avaliar a estabilidade do sistema em condicoes prolongadas.
Além disso, também é interessante expandir a andlise incluindo também o acoplamento
completo com o modelo de glicose-insulina, permitindo assim avaliar as interacoes entre

o sistema imunoldgico e o metabolismo energético com taxas mais precisas de glicose.
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