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Resumo

Este trabalho apresenta um estudo sobre análise de sensibilidade e quantificação de in-

certezas de um modelo matemático de interação entre células-citocinas e cortisol, consi-

derando dados experimentais de glicose. O estudo visa entender melhor a dinâmica do

sistema imunológico e sua resposta a diferentes est́ımulos, considerando a influência do

cortisol no metabolismo da glicose e na resposta imune. Para isso, são aplicadas técnicas

de análise de sensibilidade que identificam os parâmetros mais influentes no comporta-

mento do modelo, e a quantificação de incertezas fornece uma medida da robustez das

previsões do modelo diante de variações nos parâmetros. Os resultados obtidos podem

contribuir para o desenvolvimento de estratégias terapêuticas mais eficazes, considerando

tanto a resposta imunológica quanto o controle glicêmico.

Palavras-chave: Análise de Sensibilidade, Quantificação de Incertezas, Modelagem Com-

putacional



Abstract

This work presents a study on sensitivity analysis and uncertainty quantification of a

mathematical model of the interaction between cytokine cells and cortisol, considering

glucose experimental data. The study aims to better understand the dynamics of the

immune system and its response to different stimuli, considering the influence of cortisol

on glucose metabolism and immune response. Sensitivity analysis techniques are applied

to identify the most influential parameters in the model’s behavior, and uncertainty quan-

tification provides a measure of the robustness of the model’s predictions in the face of

parameter variations. The results obtained may contribute to the development of more

effective therapeutic strategies, considering both the immune response and glycemic con-

trol.

Keywords: Sensitivity Analysis, Uncertainty Quantification, Computational Modeling



Agradecimentos
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3.6 Análise de Sensibilidade e Quantificação de Incertezas . . . . . . . . . . . . 37
3.7 Considerações Finais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Métodos 41
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1 Introdução

O sistema imunológico é essencial para proteger o organismo contra bactérias, v́ırus,

doenças e infecções. Ele mantém o equiĺıbrio saudável do corpo, prevenindo infecções,

reações alérgicas e doenças autoimunes. Entre seus principais componentes estão os

macrófagos, que atuam como células fagocitárias e apresentadoras de ant́ıgenos. Os

macrófagos coordenam a resposta imunológica através da produção de citocinas importan-

tes, como a Interleucina-1 (IL-1), Fator de Necrose Tumoral alfa (TNF-α) e Interleucina-6

(IL-6), que facilitam a comunicação entre células do sistema imune. Estas citocinas ativam

outras células e promovem inflamação no local da infecção. Além disso, os macrófagos

podem apresentar ant́ıgenos para outras células imunes, iniciando a resposta imunológica

adaptativa. Este processo coordenado assegura uma defesa eficaz contra ameaças ao or-

ganismo (SOMPAYRAC, 2022).

Em situações de estresse ou em situações que ameaçam a sobrevivência, o sistema

imunológico, como uma resposta fisiológica, libera o hormônio cortisol. Sua liberação é

um componente crucial da resposta ao estresse, preparando o organismo para enfren-

tar desafios iminentes. O cortisol atua aumentando a quantidade de glicose na corrente

sangúınea, o que fornece energia rápida para os músculos e o cérebro, essenciais para a

resposta de luta ou fuga. Além disso, o hormônio eleva a pressão arterial e a frequência

card́ıaca, otimizando o fluxo sangúıneo para os órgãos e músculos mais cŕıticos durante

situações de emergência (KARUPPAIAH et al., 2023).

Paralelamente, o cortisol reduz a atividade do sistema imunológico, diminuindo

a inflamação e a resposta imunológica para evitar uma reação excessiva que poderia pre-

judicar o organismo. Essas adaptações fisiológicas permitem ao corpo mobilizar recursos

e ajustar suas funções para enfrentar e superar eficazmente situações estressantes ou

ameaçadoras (KARUPPAIAH et al., 2023).

Além disso, o processo de envelhecimento afeta o sistema que regula a produção

de cortisol, conhecido como eixo hipotálamo-hipófise-adrenal (HPA). Com o avançar da

idade, ocorrem modificações significativas neste sistema. Entre essas mudanças, observa-
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se uma elevação gradual nos ńıveis de cortisol, refletindo um aumento na produção do

hormônio. Paralelamente, o mecanismo de controle que normalmente atua para reduzir

os ńıveis de cortisol e manter seu equiĺıbrio é comprometido. Esse comprometimento

resulta em falhas na regulação adequada dos ńıveis hormonais. Além disso, o padrão

diário de secreção de cortisol também é alterado, com uma posśıvel mudança na dinâmica

de liberação ao longo do dia (STAMOU; COLLING; DICHTEL, 2023). A imagem 1.1

ilustra o ńıvel experimental de cortisol para cada década, e é posśıvel perceber que a cada

década, o valor experimental aumenta.

Figura 1.1: Dados experimentais do cortisol em cada década (QUINTELA et al., 2023)

Assim, como o cortisol atua reduzindo a atividade do sistema imunológico, pode-

se concluir que, no processo de envelhecimento, a atividade diária deste sistema é reduzida.

Este processo é chamado de inflammaging.

Para obter respostas sobre questões relacionadas a contextos como o do sistema

imunológico, são empregados modelos matemáticos e computacionais que simulam o com-

portamento e as respostas fisiológicas desses sistemas de estudo. Tais modelos com-

putacionais podem ser empregados em diversos contextos, incluindo o entendimento de

doenças, como a diabetes mellitus tipo 2 (DM2), capturando as anomalias metabólicas

dessa doença, a partir de modelagem das dinâmicas glicêmicas (LÓPEZ-PALAU; OLAIS-

GOVEA, 2020). Outro exemplo que pode ser aplicado no contexto da medicina, é para
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compreender situações fisiológicas como o estômago nervoso, que pode provocar sintomas

de ansiedade e estresse, que frequentemente interferem na realização de tarefas. Com

a utilização de um modelo, é posśıvel simular esses efeitos e analisar o impacto do es-

tresse no sistema gastrointestinal, fornecendo informações úteis para reduzir seus impactos

(SÁNCHEZ et al., 2020).

Um outro exemplo nesta área é o caso da utilização de um modelo matemático

para analisar a situação na Coreia do Sul, Itália e Brasil, durante a pandemia de COVID-

19. O modelo usado revelou poĺıticas eficazes na Coreia do Sul e alta subnotificação no

Brasil e na Itália. Foi destacado a importância das poĺıticas de mitigação e os desafios

adicionais enfrentados por páıses com economia emergente (REIS et al., 2020).

Assim como é posśıvel utilizar tais ferramentas para ajudar no tratamento de

problemas relacionados à saúde, também se faz muito útil sua utilização para a prevenção

de doenças. Um exemplo disso é a utilização de modelos matemáticos para simular a

função do coração humano, complementando medições experimentais, e proporcionando

uma visão mais aprofundada da função card́ıaca (BUCELLI et al., 2023).

Outro trabalho sobre o coração, em 2008, apresenta um modelo de acoplamento

eletromecânico do tecido card́ıaco usando o método dos elementos finitos. É desenvolvida

uma abordagem matemática que combina a propagação elétrica no tecido card́ıaco com

sua contração e deformação, criando um sistema acoplado onde a atividade elétrica es-

timula a contração muscular, que por sua vez influencia a propagação da onda elétrica.

Os resultados mostram que o modelo consegue simular adequadamente a propagação da

onda elétrica no tecido e as deformações resultantes, observando-se que na presença de

deformação a velocidade de propagação da onda elétrica é ligeiramente menor devido

ao alongamento na frente da onda (ROCHA, 2008). Com isso, mostra-se que um en-

tendimento mais detalhados sobre órgãos essenciais como o coração pode ser de suma

importância para se traçar um melhor caminho para a prevenção de doenças cardiovas-

culares.
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1.1 Justificativa

Estudos de modelagem matemática aplicada à área da saúde são altamente relevante e

tem o potencial de trazer grandes benef́ıcios à sociedade. No entanto, por lidar com

condições cĺınicas e senśıveis, é crucial garantir a confiabilidade dos modelos utilizados.

Com isso, se faz útil utilizar análises de sensibilidade e quantificação de incertezas para

garantir a robustez e a precisão dos modelos.

A Análise de Sensibilidade (AS) examina como a incerteza nas sáıdas de um mo-

delo está relacionada às incertezas nas suas entradas. Incorporar a AS em uma análise

de modelo matemático pode trazer grandes benef́ıcios. Entre as aplicações mais frequen-

tes da AS estão a simplificação de modelos, e a investigação de diferentes aspectos do

fenômeno em estudo (QIAN; MAHDI, 2020).

Em conjunto com isso, a Quantificação de Incertezas, do inglês Uncertainty Quan-

tification (UQ), possibilita identificar posśıveis limitações nos processos de modelagem,

computacionais ou experimentais devido à variabilidade inerente (incerteza aleatória) ou

à falta de conhecimento (incerteza epistêmica) (COURCELLES et al., 2024)

Com isso, a pergunta cient́ıfica que o presente trabalho de conclusão de curso se

propõe a investigar é qual o grau de confiança que podemos ter ao utilizar o modelo células-

citocinas com cortisol (QUINTELA et al., 2024) adaptado para considerar concentração

de glicose diária.

1.2 Objetivos

1.2.1 Objetivo Geral

O principal objetivo é realizar a analise de sensibilidade e quantificação de incertezas do

modelo de células-citocinas com cortisol (QUINTELA et al., 2024)

1.2.2 Objetivos Espećıficos

Entre os objetivos espećıficos cita-se analisar a literatura para identificar bibliotecas que

possam ser utilizadas para a analise de sensibilidade e/ou quantificação de incertezas
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(UQ), implementar a análise de sensibilidade dos parâmetros do modelo e analisar os

resultados, e implementar pelo menos uma abordagem para realizar uma quantificação de

incertezas e analisar os resultados obtidos.

1.3 Organização do texto

Este trabalho está estruturado nos seguintes caṕıtulos para o entendimento da pesquisa:

no Caṕıtulo 2, é apresentado a Fundamentação Teórica necessária para compreensão do

estudo, abordando inicialmente os sistemas imunológico (com suas vertentes inata e adap-

tativa) e endócrino. Em seguida, é feita uma contextualização dos modelos matemáticos

aplicáveis a estes sistemas, finalizando com considerações sobre análise de sensibilidade

e quantificação de incertezas, juntamente com as principais bibliotecas computacionais

que utilizamos para estes fins. No Caṕıtulo 3, é feita uma revisão de literatura que está

organizada em três partes: primeiramente, explora as pesquisas que aplicam modelagem

matemática ao sistema imunológico; depois, analisa os trabalhos voltados à modelagem do

sistema endócrino; e, por fim, explora estudos que implementam análise de sensibilidade

e quantificação de incertezas em modelos desses sistemas biológicos. Já no Caṕıtulo 4, há

um detalhamento da metodologia utilizada, descrevendo o modelo matemático adotado

e os procedimentos espećıficos que são empregados tanto para a análise de sensibilidade

quanto para a quantificação de incertezas. Então, no caṕıtulo 5 são apresentados os resul-

tados do estudo, e uma análise sobre estes resultados. Após isso, há uma breve conclusão

sobre o trabalho no Caṕıtulo 6.
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2 Fundamentação Teórica

2.1 Introdução

Neste caṕıtulo, serão abordados os conceitos fundamentais para entender o modelo apli-

cado ao sistema imuno-endócrino, destacando também a importância da Análise de Sensi-

bilidade e da Quantificação de Incertezas. Esses métodos são essenciais para garantir que

o modelo seja confiável e robusto. Serão apresentadas definições-chave sobre os sistemas

biológicos do modelo, além de uma introdução ao que são modelos matemáticos e como

eles funcionam.

2.2 Sistema Imunológico

O sistema imunológico pode ser dividido em dois grupos principais: o sistema imunológico

inato e o sistema imunológico adaptativo.

Figura 2.1: Ilustração do sistema imunológico inato e adaptativo (DIANA, 2025)

2.2.1 Sistema Imunológico Inato

O sistema inato constitui a primeira linha de defesa do organismo, sendo composto por

barreiras f́ısicas naturais, como a pele e as mucosas, além de protéınas e células especia-

lizadas, como as células assassinas naturais. Essas barreiras atuam como uma proteção
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imediata contra patógenos que invadem o corpo, respondendo de forma rápida e ines-

pećıfica. Ou seja, a resposta imune inata não é direcionada a um tipo espećıfico de

patógeno, mas age de maneira generalizada, atacando qualquer substância estranha que

consiga superar essas defesas iniciais (SOMPAYRAC, 2022).

2.2.2 Sistema Imunológico Adaptativo

Em contraste, o sistema imunológico adaptativo oferece uma resposta mais sofisticada e

especializada. Ele tem a capacidade de reconhecer e se adaptar a invasores espećıficos,

proporcionando uma resposta imunológica mais espećıfica. A principal caracteŕıstica do

sistema adaptativo é sua capacidade de criar uma memória imunológica, permitindo que

o corpo responda de forma mais eficaz a patógenos previamente encontrados. As células

B, um componente fundamental deste sistema, são responsáveis pela produção de anti-

corpos, protéınas que se ligam a ant́ıgenos espećıficos (substâncias estranhas ao corpo) e

neutralizam essas ameaças. Esse processo garante uma defesa mais direcionada e eficiente,

aprimorando a proteção do organismo com o tempo (SOMPAYRAC, 2022)

Dessa forma, o sistema imunológico integra as respostas rápidas e inespećıficas do

sistema inato com a capacidade de adaptação e memória do sistema adaptativo. Juntos,

esses sistemas garantem a proteção do corpo tanto contra ameaças generalizadas quanto

contra patógenos espećıficos, adaptando-se continuamente para aprimorar a eficiência da

resposta imunológica (SOMPAYRAC, 2022)

O sistema imune funciona com base na liberação de citocinas pelo nosso organismo

em resposta a diversos est́ımulos, como infecções, inflamações ou traumas. Inicialmente,

em situações de inflamação ou lesão, citocinas pró-inflamatórias como a Interleucina 1

(IL-1) e o Fator de Necrose Tumoral (TNF-α) são secretadas por macrófagos e outras

células do sistema imunológico. Essas citocinas ativam células endoteliais, promovendo

vasodilatação e aumentando a permeabilidade dos vasos sangúıneos. Isso facilita a entrada

de leucócitos e protéınas plasmáticas nos tecidos afetados, onde o processo de defesa imune

pode ser mais eficaz (SOMPAYRAC, 2022).

Citocinas como IL-2, IL-4 e IL-6 também desempenham papéis espećıficos na

ativação de diferentes tipos de células imunes. Por exemplo, a IL-2 estimula a proli-
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feração de células T, enquanto IL-4 e IL-6 promovem a ativação das células B, levando à

produção de anticorpos. O TNF-α, por sua vez, ativa macrófagos e neutrófilos, aumen-

tando sua capacidade de destruir patógenos. A IL-8, uma citocina quimiotática, também

é fundamental na resposta inflamatória. Ela é produzida por várias células, incluindo

macrófagos e fibroblastos, e atua atraindo neutrófilos para o local da infecção ou lesão.

A IL-8 contribui para a migração desses neutrófilos através do endotélio vascular e para

o aumento de sua capacidade de fagocitar e destruir patógenos, reforçando a resposta

inflamatória e facilitando a eliminação de agentes infecciosos.

Além das citocinas pró-inflamatórias, as citocinas anti-inflamatórias desempe-

nham um papel crucial na regulação da resposta inflamatória, ajudando a manter o

equiĺıbrio do sistema imunológico e a evitar danos aos tecidos. Essas citocinas são libera-

das em resposta a sinais inflamatórios e são produzidas por uma variedade de células do sis-

tema imunológico, incluindo macrófagos, linfócitos T e células dendŕıticas. A Interleucina-

10 (IL-10) é uma das principais citocinas anti-inflamatórias conhecidas. Ela é produzida

predominantemente por linfócitos T reguladores e macrófagos e tem a função de inibir a

produção de citocinas pró-inflamatórias, como TNF-α, IL-1 e IL-6. Além disso, a IL-10

reduz a atividade de células imunológicas envolvidas na inflamação e promove a reparação

tecidual. Ao fazer isso, a IL-10 ajuda a controlar a intensidade e a duração da resposta

inflamatória, prevenindo a inflamação crônica e o dano aos tecidos (OLIVEIRA et al.,

2011).

Figura 2.2: Ilustração citocinas pró-inflamatórias e citocinas anti-inflamatórias.
Dispońıvel em ⟨https://cdn.medblog.estrategiaeducacional.com.br/wp-content/uploads/
2024/06/image-48.png⟩

https://cdn.medblog.estrategiaeducacional.com.br/wp-content/uploads/2024/06/image-48.png
https://cdn.medblog.estrategiaeducacional.com.br/wp-content/uploads/2024/06/image-48.png
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2.3 Sistema Endócrino

O sistema endócrino é composto por diversas glândulas que secretam hormônios direta-

mente na corrente sangúınea. Estas glândulas são classificadas em exócrinas e endócrinas.

As glândulas exócrinas, como as sudoŕıparas, sebáceas e mucosas, liberam suas secreções

através de dutos para superf́ıcies corporais externas. Em contraste, as glândulas endócrinas

não possuem dutos e liberam seus hormônios diretamente no espaço extracelular ao redor

das células secretoras. A partir desse local, os hormônios são absorvidos pelos capilares

sangúıneos e transportados pelo sangue para suas células-alvo em todo o corpo (ARAGÃO

et al., 2007).

Os hormônios regulam as atividades das células-alvo por dois mecanismos prin-

cipais: a ativação do sistema de Adenosina Monofosfato (AMP) ćıclico e a ativação dos

genes celulares. No primeiro mecanismo, o hormônio se liga a um receptor na superf́ıcie da

célula, ativando a enzima adenilciclase, que converte Adenosina Trifosfato (ATP) em AMP

ćıclico. Este composto então ativa diversas reações intracelulares, promovendo funções

como a ativação de enzimas, alteração da permeabilidade celular e secreção. Exemplos

incluem o hormônio antidiurético e o glucagon. No segundo mecanismo, os hormônios

ativam genes dentro da célula, estimulando a produção de protéınas que desencadeiam

funções celulares espećıficas (ARAGÃO et al., 2007).

Entre as várias glândulas do sistema endócrino, as glândulas supra-renais são

especialmente importantes para este estudo devido à produção de cortisol, hormônio que

é o mais abundante em sua classe e desempenha funções essenciais. O cortisol ajuda a

garantir que haja energia suficiente no corpo, aumentando os ńıveis de glicose no sangue.

Além disso, ele oferece resistência ao estresse, auxilia no aumento da pressão arterial e atua

como um anti-inflamatório, diminuindo a atividade do sistema imunológico (ARAGÃO

et al., 2007).

2.4 Modelos Matemáticos

Um modelo matemático pode ser definido como uma representação matemática de um

sistema real, em outras palavras, uma simplificação do mundo real, mas mantendo as ca-
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racteŕısticas essenciais do sistema, representando a forma como acontecem as modificações

do ambiente. Tais modelos são usados em diversos campos, como Demografia, Biologia,

Economia, e outros campos da atividade humana (SODRÉ, 2007).

É comum em modelos ter os sistemas representados por Equações Diferenciais

Ordinárias (EDOs). Essas equações permitem descrever quantitativamente o comporta-

mento de sistemas dinâmicos e suas mudanças ao longo do tempo e oferecem uma maneira

precisa de prever a evolução de um sistema com base em suas variáveis e condições iniciais,

capturando a relação entre as taxas de variação e os estados do sistema (SODRÉ, 2007).

2.5 Análise de Sensibilidade

A Análise de Sensibilidade permite entender o quanto as entradas de um sistema ou

modelo influenciam nos seus resultados finais (sáıdas). Os “fatores”, ou entradas de

interesse, podem incluir parâmetros do modelo, escolhas de configurações estruturais do

modelo, suposições e restrições. As sáıdas são as respostas do sistema ou modelo (RAZAVI

et al., 2021).

Na AS, o modelo é executado várias vezes, onde as entradas são alteradas a cada

execução, para avaliar seu efeito em alguma sáıda de interesse. O termo “Análise de

Sensibilidade Local (ASL)” geralmente se refere a este método, que avalia a sensibilidade

do problema apenas em torno de um ponto espećıfico dentro do espaço dos parâmetros.

Esta abordagem é caracterizada por sua simplicidade e intuição, sendo particularmente

útil em situações restritas. No entanto, ela tem sido aplicada de forma mais ampla, levan-

tando cŕıticas por fornecer uma perspectiva limitada do problema, especialmente quando

utilizada para investigar a importância dos parâmetros em contextos de modelagem ma-

temática (RAZAVI et al., 2021).

Na Figura(2.3), o painel (a) representa uma ferramenta de AS que gera entradas

θ1, ..., θn para o sistema, e recebe sáıdas Z. O painel (b) representa o sistema de interesse.

O painel (c) representa o resultado da AS onde a contribuição da variabilidade de cada

entrada na variabilidade da sáıda é quantificada. O resultado da AS também pode incluir
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Figura 2.3: Representação do fluxo de AS. Adaptado de (RAZAVI et al., 2021).

informações sobre interações entre as entradas, variabilidade estat́ıstica dos resultados, e

outras análises, que não estão sendo representadas na imagem.

Na área da saúde e biologia, a AS é importante por várias razões. Os processos

biológicos são, por natureza, impreviśıveis, e os dados coletados geralmente apresentam

algum grau de incerteza. Embora os modelos matemáticos sejam fundamentais para criar

e testar hipóteses sobre sistemas biológicos complexos, um dos grandes desafios é que

eles costumam ter muitos parâmetros, cujos valores podem alterar o comportamento do

modelo e como ele é interpretado. Muitas vezes, os parâmetros do modelo são ajustados

com base em dados dispońıveis, e não por medições diretas, o que pode gerar incertezas

grandes se o modelo não for identificável.(QIAN; MAHDI, 2020)

2.6 Quantificação de Incertezas

Segundo o Vocabulário Internacional de Termos Básicos e Gerais em Metrologia, incerteza

é definido como “Um parâmetro associado ao resultado de uma medição, que caracteriza

a dispersão dos valores que podem com razoabilidade ser atribúıdos ao mensurando”. Ou

seja, a incerteza indica o quanto o resultado da medição pode variar devido a fatores como

limitações do instrumento de medição, condições ambientais, ou imperfeições no processo

de medição (CAMÕES, 2001).

Após identificar as fontes de incerteza, o próximo passo é quantificar a incerteza

associada a essas fontes. Isso pode ser realizado de duas maneiras: avaliando a incerteza
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de cada fonte individualmente e, em seguida, combinando esses valores, ou determinando

diretamente o impacto conjunto de várias fontes na incerteza total, utilizando informações

sobre o desempenho do método. Na prática, é comum e geralmente mais eficiente utilizar

uma combinação dessas abordagens (CAMÕES, 2001).

Segundo o Guia EURACHEM, a quantificação e avaliação das incertezas envolve

inicialmente a identificação de todas as posśıveis fontes de incerteza, que podem incluir

condições experimentais, caracteŕısticas dos instrumentos de medição e procedimentos

utilizados, entre outros fatores. Após essa identificação, as incertezas são quantificadas,

seja individualmente ou por meio da determinação direta da contribuição combinada das

fontes de incerteza com base no desempenho do método. Uma vez quantificadas, as in-

certezas são combinadas de acordo com a lei de propagação de incertezas, resultando

na incerteza padrão combinada, que reflete a dispersão dos valores atribúıveis ao mensu-

rando. Na prática, o processo é simplificado ao concentrar-se nas fontes mais significativas,

desconsiderando aquelas com impacto mı́nimo no resultado final (CAMÕES, 2001).

2.7 Bibliotecas

É posśıvel utilizar, para um modelos computacional, análises de sensibilidade e quanti-

ficação de incertezas por meio de ferramentas implementadas em código. Dentro deste

contexto, algumas bibliotecas podem ser utilizadas para realizar tais objetivos.

Dentro das bibliotecas utilizadas em Python para análise de sensibilidade, existe

a SALib, que é uma biblioteca de código aberto desenvolvida para realizar análises de

sensibilidade em modelos computacionais. Ela implementa uma variedade de métodos

amplamente utilizados, como os ı́ndices de Sobol, o método de Morris, FAST (Fourier

Amplitude Sensitivity Test), Delta Moment-Independent Measure, e outros. A biblioteca

facilita a geração de amostras dos parâmetros de entrada de um modelo, análise dos

resultados das sáıdas e visualização das sensibilidades de maneira integrada. Seu objetivo

é simplificar a implementação desses métodos em fluxos de trabalho t́ıpicos de simulação,

otimização e modelagem de sistemas (HERMAN; USHER, 2017).

Para quantificação de incertezas, o Chaospy é uma biblioteca de código aberto,

implementada também em Python, e projetada para realizar as quantificação de incerte-
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zas por meio de expansões em polinômios do caos (Polynomial Chaos Expansions, PCE)

e simulação de Monte Carlo. A biblioteca oferece ferramentas modulares que permi-

tem criar distribuições personalizadas, polinômios ortogonais, esquemas de integração e

amostragens estat́ısticas adaptadas às necessidades do usuário. Além disso, o Chaospy

inclui avanços metodológicos como o uso de transformações de Rosenblatt, que facilitam

o tratamento de variáveis estocásticas dependentes, e suporte a métodos como projeções

pseudoespectrais e método da colocação. A biblioteca também integra técnicas de redução

de variância, como quasi-Monte Carlo, para melhorar a eficiência das simulações. (FEIN-

BERG; LANGTANGEN, 2015)

Além dessas duas bibliotecas, também se destaca a Uncertainpy, que realiza tanto

a quantificações de incertezas como a análise de sensibilidade. Para quantificação de

incertezas, o Uncertainpy combina simulações baseadas em métodos de polinômios do

caos e amostragens quase-Monte Carlo para estimar estat́ısticas relevantes, como média,

variância e intervalos de confiança das sáıdas do modelo. O foco está em propagar as

incertezas nos parâmetros de entrada para calcular como elas afetam os resultados do mo-

delo, proporcionando uma visão detalhada sobre a robustez das previsões. O Uncertainpy

também permite que o usuário defina distribuições probabiĺısticas personalizadas para os

parâmetros, incluindo variáveis dependentes, o que torna o processo mais adaptável a

diferentes cenários. Com isso, a biblioteca facilita a obtenção de informações quantitati-

vas sobre a confiabilidade e os limites de incerteza das sáıdas do modelo. Para a análise

de sensibilidade com base em expansão em caos polinomeal generalizados (generalized

polynomial chaos, gPC), permitindo que os ı́ndices de Sobol sejam calculados de maneira

eficiente e com alto grau de precisão. Esses ı́ndices medem como cada parâmetro de

entrada contribui para a variabilidade do modelo, tanto individualmente quanto em in-

teração com outros parâmetros. A análise de sensibilidade no Uncertainpy é não intrusiva,

ou seja, não exige alterações na estrutura interna do modelo, o que facilita sua aplicação.

Essa abordagem ajuda a identificar quais parâmetros têm maior impacto nos resultados

do modelo, sendo essencial para priorizar esforços de calibração e coleta de dados, bem

como para compreender melhor a dinâmica do sistema estudado. Além disso, a biblio-

teca oferece opções de gráficos para facilitar a visualização final da análise (TENNØE;
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HALNES; EINEVOLL, 2018).

2.8 Considerações Finais

Em um modelo matemático, principalmente para representar questões relacionadas à

saúde, é necessário realizar análise de sensibilidade e quantificação de incertezas por conta

da incerteza natural dos processos biológicos, assegurando a precisão dos dados. Isto é

muito importante principalmente quando os sistemas simulados estão ligados à sistemas

biológicos relacionados à saúde.



23

3 Revisão da Literatura

3.1 Introdução

Este caṕıtulo revisa os principais trabalhos sobre modelagem matemática do sistema imu-

nológico e endócrino e suas interações com diferentes patógenos e tratamentos, essenciais

para simular com precisão a dinâmica imunológica em doenças como HIV, infecções virais,

e tratamentos como radioterapia e vacinação.

O caṕıtulo descreve cada trabalho em termos de objetivos, métodos, resultados,

vantagens e limitações, concluindo com uma tabela comparativa das abordagens.

3.2 Modelos Matemáticos do Sistema Imune

Em um trabalho de 2022, foi apresentado modelo matemático para investigar os efeitos da

radioterapia (RT) nas interações tumor-imunidade (BEKKER et al., 2022) considerando

a crescente aceitação do impacto imunomodulatório da radiação. A pesquisa visa compre-

ender a combinação da radioterapia com imunoterapias, buscando melhorar a regressão

tumoral além do observado com tratamentos isolados. O foco está em modelos ma-

temáticos que simulam as respostas biológicas e imunológicas, com o objetivo de avançar

na personalização dos tratamentos oncológicos.

Os modelos investigam as interações entre os efeitos biológicos da radioterapia e as

respostas imunológicas. Eles indicam que a combinação de radioterapia com imunoterapia

tem o potencial de melhorar as respostas antitumorais, mas ainda existem incertezas

sobre a dose e o fracionamento ideais para maximizar os efeitos imunológicos. Resultados

pré-cĺınicos sugerem que fracionamentos espećıficos de radiação podem induzir respostas

imunes mais eficazes, e os modelos matemáticos ajudam a prever quais combinações de

tratamentos têm maior probabilidade de sucesso.

A pesquisa de Bekker avança na compreensão dos mecanismos de interação entre

radioterapia e imunidade, promovendo o desenvolvimento de tratamentos personaliza-
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dos. Além disso, a utilização de modelos matemáticos permite simular diferentes cenários

cĺınicos, economizando tempo e recursos experimentais, e possibilita a integração de dados

experimentais e cĺınicos, melhorando a previsão das respostas aos tratamentos combina-

dos. Contudo, muitos desses modelos ainda requerem validação cĺınica adicional para

garantir sua eficácia na prática. A complexidade dos modelos matemáticos também pode

dificultar sua aplicação em larga escala, especialmente devido à necessidade de grandes

quantidades de dados para calibrá-los. Além disso, a variabilidade entre diferentes tipos

de câncer e respostas individuais ainda apresenta desafios consideráveis na implementação

prática desses modelos.

Em um trabalho de Munteanu (2022) (MUNTEANU, 2022), foi apresentado um

estudo comparativo de três modelos matemáticos para interação entre o sistema imu-

nológico humano e um v́ırus: o modelo loǵıstico, o modelo de Gompertz, e o modelo

loǵıstico generalizado (ou modelo de Richards). Uma análise qualitativa desses modelos

é realizada com base na teoria de sistemas dinâmicos, estudando o comportamento local

nos pontos de equiĺıbrio e obtendo as propriedades dinâmicas locais a partir da estabili-

dade linear. A pesquisa também busca entender qual dos modelos é mais apropriado para

descrever essa interação.

Os resultados indicam que, embora todos os modelos estudados sejam úteis, o

modelo loǵıstico é simétrico em relação ao ponto de inflexão, enquanto o modelo de

Gompertz tem o ponto de inflexão mais baixo, e o modelo loǵıstico generalizado permite

mais flexibilidade no ponto de inflexão dependendo do parâmetro utilizado. A análise

dinâmica revela a existência de bifurcações transcŕıticas, sem a ocorrência de bifurcações

de Hopf, o que indica que não há ciclos-limite nos modelos analisados.

O estudo oferece uma visão comparativa relevante, ajudando na escolha do mo-

delo mais adequado para descrever a interação entre o sistema imunológico e v́ırus. Além

disso, a abordagem baseada em sistemas dinâmicos possibilita uma análise eficaz do com-

portamento dos modelos em torno dos pontos de equiĺıbrio. Outro ponto positivo é que

os três modelos fornecem diferentes interpretações médicas, ampliando a aplicabilidade

para diversas doenças virais. No entanto, a ausência de bifurcações de Hopf indica que

nenhum dos modelos consegue capturar a possibilidade de ciclos-limite, o que pode ser
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uma limitação importante em alguns contextos biológicos espećıficos.

Em 2023, um trabalho (JAN et al., 2023) apresentou uma modelagem da dinâmica

do HIV in vivo, explorando a interação entre o HIV e o sistema imunológico utilizando

derivadas não inteiras. Os autores propõem um modelo matemático que usa o cálculo

fracionário para representar de maneira mais precisa a complexidade dessa interação.

Métodos numéricos são aplicados para demonstrar como diferentes parâmetros de entrada

afetam a sáıda do sistema, além de visualizar o comportamento dinâmico e a natureza

caótica do sistema com a variação desses fatores.

Os resultados indicam que a forte não linearidade do sistema é responsável pelo

caos e pelas oscilações observadas, que estão intimamente relacionadas. Os parâmetros

caóticos do sistema são destacados e recomenda-se seu controle para gerenciar o caos do

sistema.

O uso de métodos numéricos para explorar a dinâmica e o comportamento caótico

proporciona uma nova perspectiva sobre o controle da infecção por HIV. Além disso, o

modelo proposto oferece um potencial significativo para a melhoria das estratégias de

tratamento, levando em conta a complexidade inerente à interação entre o HIV e o sistema

imunológico. No entanto, um ponto negativo é que o estudo não aborda diretamente as

implicações cĺınicas das oscilações e do caos observados no modelo, o que pode limitar sua

aplicabilidade prática em contextos cĺınicos reais.

Um trabalho de 2020 de (SRIVASTAVA et al., 2020) explora novos modelos

matemáticos para o sistema imunológico humano usando derivadas de ordem fracionária

no contexto da infecção pelo v́ırus da influenza A (IAV). Os autores propõem esquemas

numéricos para simular operadores de derivada fracionária com núcleos baseados em leis

de potência e exponencial. Esses esquemas são aplicados para modelar a resposta imune

ao IAV, com foco no controle da infecção pela imunidade inata e adaptativa.

Os resultados apresentados mostram a aplicabilidade e eficiência dos esquemas

numéricos desenvolvidos. A pesquisa destaca a importância da escolha adequada dos ope-

radores fracionários para modelar de forma precisa a complexa dinâmica entre o sistema

imunológico e o IAV.

O estudo apresenta novas abordagens para modelar a dinâmica da resposta imune
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utilizando cálculo fracionário, o que proporciona maior precisão na simulação de sistemas

complexos. A aplicação desses operadores de derivada fracionária confere uma flexibili-

dade significativa à modelagem, permitindo capturar nuances da resposta imune que os

modelos tradicionais poderiam deixar de lado. Além disso, os esquemas numéricos propos-

tos são altamente eficazes e podem ser aplicados a outros sistemas biológicos que envolvem

dinâmicas complexas. No entanto, a validação emṕırica dos modelos propostos ainda é

limitada, o que pode restringir sua aplicação cĺınica direta. O estudo também se concen-

tra principalmente em aspectos teóricos e numéricos, abordando de forma superficial as

implicações biológicas e cĺınicas dos resultados obtidos.

Em um outro trabalho, de 2023, de (XU et al., 2023) é apresentado um modelo

matemático que simula a resposta imune adaptativa do corpo humano em diferentes tipos

de vacinas e estratégias de vacinação. Os autores propõem um modelo para descrever a

dinâmica dos ńıveis de anticorpos após a administração de vacinas, comparando vacinas

tradicionais inativadas, vacinas de mRNA e vacinas atenuadas baseadas em part́ıculas

virais interferentes defeituosas (DVG). O estudo explora como a administração de doses

de reforço pode melhorar os ńıveis de anticorpos IgG, além de discutir as vantagens e

desvantagens dos diferentes tipos de vacinas.

Os resultados do modelo sugerem quatro abordagens essenciais para orientar o

design de vacinas: melhorar a imunogenicidade das células T espećıficas do ant́ıgeno, di-

recionar a produção de anticorpos de alta afinidade, reduzir a taxa de decaimento dos an-

ticorpos IgG e diminuir o ńıvel máximo dos complexos ant́ıgeno-anticorpo induzidos pela

vacina. O estudo contribui para o entendimento do design de vacinas e suas aplicações,

oferecendo orientações para a compreensão das interações entre anticorpos e substâncias

antigênicas durante o processo imune.

O modelo matemático desenvolvido proporciona uma ferramenta quantitativa

para avaliar a resposta imune a diferentes estratégias de vacinação. A abordagem ado-

tada no estudo permite uma comparação eficaz entre diversos tipos de vacinas, oferecendo

ideias sobre como otimizar a eficácia dos programas de vacinação. Além disso, o estudo

oferece recomendações práticas, como a importância das doses de reforço e a seleção de

vacinas que induzem uma resposta imune mais duradoura. Um ponto negativo deste
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estudo é que a modelagem não aborda diretamente os posśıveis efeitos adversos em po-

pulações espećıficas, como indiv́ıduos com imunidade comprometida, o que pode limitar

sua aplicabilidade cĺınica em alguns contextos.

Outro trabalho ainda no ano de 2023, de (STÜBLER, 2023) apresenta um mo-

delo matemático desenvolvido para descrever a resposta imune mucosal em doenças infla-

matórias intestinais (Inflammatory Bowel Disease, IBD) e seus tratamentos. Este modelo,

baseado em equações diferenciais ordinárias, foca nos processos mais importantes do sis-

tema imunológico do intestino a ńıvel celular, incluindo neutrófilos, macrófagos, células

dendŕıticas, células T e bactérias, cada um subdividido em diferentes tipos e estados de

ativação. O modelo é avaliado por meio de simulações que incluem tanto a resposta imune

saudável quanto a resposta a diferentes cenários inflamatórios.

Os resultados indicam que o modelo é capaz de simular a resposta imune tanto em

condições normais quanto em situações patológicas, como a doença inflamatória intestinal.

A simulação permite a análise de diferentes estratégias terapêuticas, com previsões sobre

o resultado do tratamento baseadas no estado do paciente antes do ińıcio do tratamento.

O modelo matemático permite uma análise detalhada da resposta imune, ofe-

recendo uma ferramenta valiosa para entender a patogênese da IBD e as razões para

a variabilidade na resposta ao tratamento. A abordagem sistêmica adotada no estudo

fornece insights sobre como diferentes fatores contribuem para o desenvolvimento e pro-

gressão da doença. Além disso, as simulações de terapias variadas podem guiar a escolha

de tratamentos mais eficazes, especialmente em casos de falha terapêutica inicial. Entre-

tanto, a complexidade do modelo pode representar um desafio na sua aplicação prática

em ambientes cĺınicos, uma vez que exige um entendimento mais avançado dos processos

imunológicos envolvidos. Outro ponto negativo é que o modelo não diferencia entre as

principais formas de IBD, como a Doença de Crohn e a Colite Ulcerativa, o que pode

limitar sua aplicabilidade para o desenvolvimento de tratamentos espećıficos.

Em 2022, foi publicado um trabalho que apresenta um modelo matemático para

investigar a dinâmica da co-infecção entre HIV e COVID-19, utilizando estratégias de

controle ótimas para mitigar a propagação dessas infecções (RINGA et al., 2022). O

modelo é aplicado ao contexto da África do Sul, um páıs severamente afetado por ambas
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as doenças. O estudo incorpora controles dependentes do tempo para intervenções de

prevenção e tratamento, buscando avaliar o impacto dessas medidas na redução de novos

casos de co-infecção.

Os resultados do modelo indicam que a implementação de estratégias de pre-

venção tanto para HIV quanto para COVID-19 pode reduzir significativamente a carga

de co-infecções. A análise sugere que medidas de prevenção para uma das doenças têm

um impacto positivo na diminuição de casos da outra, destacando a importância de abor-

dagens integradas para o controle de doenças infecciosas em populações vulneráveis.

O modelo fornece uma ferramenta útil para explorar a interação dinâmica entre

HIV e COVID-19, sendo uma contribuição crucial para o desenvolvimento de poĺıticas

de saúde pública em regiões com alta prevalência de ambas as doenças. A inclusão de

controles dependentes do tempo permite a análise detalhada de diferentes estratégias de

intervenção, oferecendo insights importantes sobre como otimizar a resposta à pandemia.

Além disso, o estudo aborda uma questão de saúde pública altamente relevante, ao con-

tribuir para o entendimento de como gerenciar co-infecções em contextos com recursos

limitados. No entanto, a complexidade do modelo pode dificultar sua aplicação prática

em cenários diferentes do estudado, exigindo ajustes espećıficos para outras regiões ou

populações. Além disso, a modelagem depende fortemente de parâmetros que podem

variar significativamente com o tempo e entre populações distintas, o que pode compro-

meter a robustez das conclusões. Por fim, o foco em um único páıs limita a abrangência

da abordagem, que pode não capturar completamente as nuances globais da co-infecção

entre HIV e COVID-19, especialmente em contextos com diferentes sistemas de saúde e

infraestrutura.

Além disso, em 2020, um trabalho apresenta um estudo sobre a modelagem ma-

temática e a simulação numérica da infecção por HIV, focando no comportamento das

células T CD4+, células T CD4+ infectadas e part́ıculas livres do v́ırus HIV. (SOHAIB

et al., 2020) Os autores implementam dois esquemas numéricos, o método cont́ınuo de

Galerkin-Petrov (cGP(2)) e o Método de Colocação Wavelet de Legendre (LWCM), para

obter a solução aproximada do modelo matemático. O modelo é avaliado considerando

termos de fonte constantes e variáveis para a produção de novas células T CD4+ pelo
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timo, dependendo da carga viral. Além disso, os resultados obtidos são comparados com o

método de Runge-Kutta de quarta ordem (RK4) para validar a precisão e a confiabilidade

dos esquemas propostos.

Os resultados indicam que os métodos cGP(2) e LWCM apresentam precisão em

comparação com o método RK4, confirmando a eficiência dos esquemas propostos. O

estudo destaca a importância da escolha adequada dos termos de fonte para modelar com

precisão a dinâmica do HIV e a resposta imunológica.

Os métodos cGP(2) e LWCM demonstraram precisão quando comparados ao

método RK4, confirmando a eficiência dos esquemas propostos. O estudo também des-

taca a importância de escolher os termos de fonte adequados para modelar com precisão

a dinâmica da infecção por HIV e a resposta imunológica. O artigo introduz métodos

numéricos inovadores, como o cGP(2) e o LWCM, que se mostraram altamente eficientes

na solução do modelo de infecção por HIV. Além disso, a comparação com métodos tra-

dicionais, como o RK4, reforça a validade e robustez dos esquemas propostos. A análise

detalhada dos termos de fonte variáveis fornece insights valiosos sobre como a carga viral

afeta a produção de células T CD4+ e a progressão da infecção. No entanto, a comple-

xidade dos métodos numéricos pode dificultar sua acessibilidade e aplicabilidade em con-

textos cĺınicos práticos, especialmente sem uma base matemática sólida. A dependência

dos parâmetros espećıficos do modelo também pode limitar a generalização dos resultados

para diferentes populações ou cenários de infecção por HIV. Por fim, o estudo não aborda

diretamente as implicações cĺınicas dos resultados, o que poderia ampliar sua relevância

para profissionais de saúde.

3.3 Tabela Comparativa dos modelos do Sistema Imune

A seguir, foi feita uma tabela comparativa entre o conteúdos dos trabalhos especificados

na sessão anterior. A tabela apresenta dados como o tipo de modelo matemático utilizado,

o objetivo do estudo, os pontos positivos e negativos, e se o trabalho utiliza AS ou UQ.
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aç
ão

em
ṕ
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çã
o

C
om

p
le
x
id
ad

e
d
o
m
o-

d
el
o;

d
ep

en
d
ên
ci
a

d
e

p
ar
âm
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3.4 Modelos Matemáticos do Sistema Endócrino

O trabalho de (PRITCHARD-BELL, 2016) apresentou o desenvolvimento de modelos

matemáticos para controle glicêmico em ambientes de cuidados cŕıticos, com foco na

medicina baseada em sistemas. O estudo aborda as complexidades da hiperglicemia de

estresse, especialmente no contexto de resistência à insulina em pacientes gravemente

enfermos. O trabalho propõe um sistema de suporte à decisão baseado em modelos (DSS),

que incorpora dados biológicos e cĺınicos para personalizar o tratamento com insulina e o

controle glicêmico.

Os principais elementos da pesquisa incluem a modelagem da resistência à in-

sulina, utilizando dados humanos que capturam as flutuações na sensibilidade à insu-

lina, bem como a modelagem da dinâmica da glicose, descrevendo o metabolismo da

glicose em resposta a diferentes processos biológicos e inflamatórios. Além disso, o estudo

também explora a modelagem do eixo hipotálamo-hipófise-adrenal (HPA), analisando

como hormônios do estresse, como o cortisol, e citocinas (por exemplo, IL-6 e TNF)

afetam a sinalização da insulina.

Outro aspecto importante é a exploração de estratégias de controle em cuidados

cŕıticos, onde o uso de abordagens baseadas em modelos pode otimizar os protocolos de

controle glicêmico e reduzir a mortalidade associada à hipoglicemia. O estudo também

utiliza pacientes virtuais e simulações de Monte Carlo para refinar as estratégias de tra-

tamento voltadas para o controle glicêmico personalizado.

Em um trabalho de 2009 (MCAULEY et al., 2009), foi desenvolvido um modelo

matemático para explorar a disfunção do hipocampo relacionada ao envelhecimento e

induzida pelo cortisol. Esse estudo investiga os efeitos do aumento crônico e agudo do

cortisol nos ńıveis de atrofia e atividade do hipocampo, que desempenha um papel central

na memória declarativa e está associado a doenças neurodegenerativas como o Alzheimer.

Utilizando a linguagem de marcação de biologia de sistemas (SBML), o modelo simula

as interações entre o cortisol, os receptores do hipocampo e o eixo hipotálamo-hipófise-

adrenal (HPA). A pesquisa também introduz intervenções biológicas para verificar se a

disfunção hipocampal induzida pelo cortisol poderia ser atenuada.

Os resultados do modelo mostram que tanto o aumento agudo quanto o crônico
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do cortisol reduzem significativamente a atividade hipocampal e aumentam a atrofia. No

entanto, intervenções biológicas mostraram atenuar esses efeitos de maneira mais eficaz

em casos de aumento crônico do cortisol. Essa abordagem in silico pode fornecer uma base

para a modelagem computacional de alterações cerebrais relacionadas ao envelhecimento,

auxiliando na previsão de disfunções do hipocampo em idosos vulneráveis.

Os pontos positivos desse estudo incluem a inovação de modelar os efeitos do

cortisol no hipocampo de forma quantitativa, o que pode contribuir para a compreensão

dos mecanismos envolvidos em doenças como Alzheimer. O modelo também oferece uma

ferramenta útil para testar hipóteses que seriam dif́ıceis de investigar em estudos in vivo,

fornecendo uma abordagem promissora para o desenvolvimento de estratégias preventivas

em idosos.

Por outro lado, alguns pontos negativos incluem a complexidade do modelo e

a necessidade de mais dados cĺınicos para validar os parâmetros utilizados, o que pode

limitar a aplicabilidade prática imediata dos resultados. Além disso, o estudo não aborda

diretamente outros fatores de risco associados à disfunção do hipocampo, como doenças

vasculares e diabetes, que poderiam influenciar os resultados modelados.

3.5 Tabela Comparativa de modelos do Sistema Endócrino

Novamente a seguir, foi feita uma tabela comparativa entre o conteúdos dos trabalhos

especificados na sessão anterior. A tabela apresenta dados como o tipo de modelo ma-

temático utilizado, o objetivo do estudo, os pontos positivos e negativos, e se o trabalho

utiliza AS ou UQ.
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çã
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3.6 Análise de Sensibilidade e Quantificação de In-

certezas

Em um trabalho de 2020, sobre um modelo a respeito da pandemia de COVID-19 nos

páises Coreia do Sul, Itália e Brasil (REIS et al., 2020), foi feito um estudo com análise de

sensibilidade e quantificação de incertezas do mesmo. A análise de sensibilidade revelou

que a taxa de transmissão é o parâmetro mais senśıvel em todos os cenários simulados,

enquanto a fração de casos notificados desempenha um papel crucial em contextos com

alta subnotificação, como no Brasil. Além disso, parâmetros como a taxa de mortalidade

e o peŕıodo entre os primeiros sintomas e a morte têm impacto significativo na dinâmica

de mortes. No ińıcio das simulações para o Brasil e a Itália, o peŕıodo de incubação

foi determinante, destacando a sensibilidade das notificações aos atrasos no diagnóstico.

Estes resultados evidenciaram que a subnotificação e poĺıticas de distanciamento social

menos eficazes aumentam as incertezas na modelagem.

Ainda neste modelo, a quantificação de incertezas mostrou que os parâmetros

do modelo variam significativamente entre os páıses, refletindo diferenças nas dinâmicas

da pandemia, subnotificação e poĺıticas de mitigação. A análise inversa ajustou funções

de densidade de probabilidade para os parâmetros, destacando maior incerteza no Brasil

devido à fase inicial da pandemia e subnotificação elevada. A análise direta demons-

trou que as incertezas nas simulações crescem na ordem Coreia do Sul, Itália e Brasil,

correlacionando-se com os ńıveis de subnotificação. Esses resultados reforçam a im-

portância de mitigar subnotificações e aprimorar poĺıticas de controle para reduzir in-

certezas e melhorar o manejo da pandemia.

Em um outro artigo, de 2021, ainda sobre a pandemia de COVID-19, desta vez

relacionando os páıses Áustria, Alemanha, Coreia do Sul e Itália (REIS et al., 2021a), a

análise de sensibilidade identificou os parâmetros mais impactantes nas previsões do mo-

delo, especialmente a taxa de transmissão, que apresentou variação significativa próxima

ao pico da pandemia. Durante os picos, mudanças na taxa de transmissão geralmente

precedem os dados viśıveis de casos ativos por até 15 dias, devido ao tempo de incubação

e atrasos nos testes. Parâmetros relacionados, como ińıcio e duração de poĺıticas de inter-
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venção, também foram senśıveis, indicando que pequenos erros nesses fatores podem levar

a grandes desvios nas previsões. Na quantificação de incertezas, duas abordagens foram

realizadas: inversa e direta. A quantificação inversa estimou as funções de densidade de

probabilidade (PDFs) dos parâmetros com base nos dados dispońıveis, permitindo ajustar

o modelo às realidades locais de cada páıs. Já a quantificação direta propagou essas incer-

tezas para as sáıdas do modelo usando simulações de Monte Carlo. As análises mostraram

que incertezas nos parâmetros, especialmente na taxa de transmissão, têm um impacto

significativo nas previsões. Isso reforça que, para entender melhor os picos, é essencial

incluir dados mais completos e priorizar projeções que considerem diferentes cenários de

redução de transmissão.

Outro trabalho de 2021, desta vez, apresenta um modelo matemático para des-

crever a resposta imune ao SARS-CoV-2 (REIS et al., 2021b), com foco na śındrome de

liberação de citocinas (CRS). A análise de sensibilidade foi realizada para identificar quais

parâmetros do modelo mais afetam os resultados, como as dinâmicas do v́ırus, citocinas

e anticorpos IgG e IgM. Para isso, os autores usaram os ı́ndices de Sobol, que avaliam a

contribuição de cada parâmetro na variância total do modelo. A partir dessa análise, des-

cobriram que os parâmetros relacionados às células apresentadoras de ant́ıgenos (APCs)

tiveram grande influência, como as taxas de infecção (β apm) e de produção de citocinas

(π capm). Além disso, a taxa de replicação viral (π v) também se mostrou um fator

relevante, especialmente nas populações de v́ırus e anticorpos. A análise destacou a im-

portância de entender as interações entre o v́ırus e as APCs para explicar a desregulação

imunológica observada em pacientes graves.

Na quantificação de incertezas, o modelo foi ajustado com dados experimen-

tais de estudos sobre viremia, citocinas e anticorpos em pacientes sobreviventes e não-

sobreviventes. Para isso, foi utilizada a evolução diferencial, uma técnica de otimização

que minimiza a diferença entre as sáıdas do modelo e os dados experimentais. Três

parâmetros (π ci,β apm, β tke) foram ajustados no cenário de não-sobreviventes, pois

eles estão diretamente relacionados à hipótese de que o v́ırus infecta células imunes e leva

à produção descontrolada de citocinas. Esse ajuste permitiu observar a diferença signifi-

cativa nos ńıveis de IL-6 entre sobreviventes e não-sobreviventes, com picos muito mais
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altos no segundo grupo, associados à CRS. (SILVA et al., 2020)

Outro trabalho de 2020, investiga a memória imunológica ao v́ırus da febre ama-

rela usando um modelo matemático baseado em equações diferenciais ordinárias (ODEs).

Ele analisa as respostas primárias e secundárias ao v́ırus, destacando o papel das células

B na produção de anticorpos. O estudo utiliza quantificação de incerteza e análise de

sensibilidade para avaliar como variações nos parâmetros do modelo afetam as dinâmicas

imunológicas. A modelagem consegue reproduzir aspectos essenciais das curvas de an-

ticorpos, incluindo uma resposta secundária mais rápida e intensa devido à memória

imunológica.

Na quantificação de incertezas, os parâmetros do modelo foram tratados como

variáveis aleatórias cont́ınuas. A análise foi realizada usando o método de Monte Carlo

combinado com expansões de caos polinomial. Como resultado, foi posśıvel estimar inter-

valos de confiança de 90% para as previsões do modelo, mostrando como a incerteza nos

parâmetros afeta a produção de anticorpos, especialmente na resposta secundária.

Com a análise de sensibilidade foi posśıvel complementar a quantificação de incer-

tezas, variando um parâmetro por vez enquanto mantinha os outros fixos. Essa abordagem

revelou que taxas de ativação de células B näıve (C4), diferenciação de células de memória

em células ativas (C6), e taxas de decaimento de células ativas (C7) têm impactos sig-

nificativos nas respostas primária e secundária. Por exemplo, a taxa de diferenciação

de células de memória afeta apenas a resposta secundária, enquanto a taxa de ativação

das células näıve tem maior influência na resposta primária. Esses resultados reforçam a

importância da memória imunológica na resolução rápida de infecções secundárias.

3.7 Considerações Finais

Este caṕıtulo apresentou uma revisão sobre o uso de modelos matemáticos para entender

as interações entre o sistema imunológico e diversas doenças, além dos efeitos de diferentes

tratamentos, como radioterapia e vacinas. E principalmente a importância da análise de

sensibilidade e quantificação de incertezas destes modelos para assegurar a confiabilidade

dos mesmos.

Os modelos matemáticos mostraram ser ferramentas muito úteis para simular
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cenários cĺınicos, prever o comportamento de doenças e otimizar estratégias de tratamento.

Assim, é fundamental que se tenha segurança sobre as respostas e resultados dos modelos

possam ser confiáveis.

No entanto, ainda há desafios significativos. A complexidade dos modelos, a

necessidade de validação cĺınica e a dependência de parâmetros espećıficos limitam a

aplicação desses modelos em larga escala. Além disso, a variabilidade individual e entre

diferentes tipos de doenças exige que os modelos sejam adaptados para garantir trata-

mentos eficazes.

Em resumo, a modelagem matemática do sistema imunológico e do sistema

endócrino continua a evoluir e oferece boas ideias para o desenvolvimento de terapias

mais eficazes e personalizadas. No entanto, para que esses modelos possam ser comple-

tamente integrados na prática cĺınica e na saúde pública, é fundamental que futuras pes-

quisas superem as limitações identificadas, combinando avanços teóricos com validações

computacionais sólidas, assim como validações cĺınicas.
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4 Métodos

4.1 Modelo Matemático

Omodelo de células-citocinas é constrúıdo a partir de um conjunto de equações diferenciais

ordinárias que representam as interações dinâmicas entre células imunológicas e citocinas

pró-inflamatórias no contexto do envelhecimento e do ‘inflammaging”. Cada equação é

projetada para capturar processos biológicos espećıficos, incluindo replicação bacteriana,

ativação celular, produção de citocinas e influência de fatores externos como o cortisol.

Neste trabalho, o modelo que foi proposto em Quintela et al. (2024) foi modificado para

ao invés de ser acoplado a um modelo de glicose-insulina, passou a considerar os valores

de glicose diários da literatura (CAUTER et al., 1992). O modelo é dado pelas seguintes

equações:

dA

dt
= βAA

(
1− A

kA

)
− µAAMA. (4.1)

dMR

dt
= −

(
γMA + kMTNFH

U
M(TNF )HD

M(IL10)
)
MRA+ µMRM̂R. (4.2)

dMA

dt
=

(
γMA + kMTNFH

U
M(TNF )HD

M(IL10)
)
MRA− µMAMA. (4.3)

dIL6

dt
= (kIL6M + kIL6TNFH

U
IL6(TNF ))HD

IL6(IL6)H
D
IL6(IL10)MA (4.4)

−klt6COR(1− COR

COR + kmct
)− kIL6(IL6− qIL6).

dIL8

dt
= (kIL8M + kIL8TNFH

U
IL8(TNF ))HD

IL8(IL10)MA (4.5)

−kIL8(IL8− qIL8).

dIL10

dt
= (kIL10M + kIL10IL6H

U
IL10(IL6))MA − kIL10(IL10− qIL10). (4.6)

dTNF

dt
= kTNFH

D
TNF (IL6)H

D
TNF (IL10)MA − kltCOR(1− COR

COR + kmct
) (4.7)

−kTNF (TNF − qTNF ).

dCOR

dt
= ktc(

TNF

TNF + kmtc
)(Cmax − COR)gluc(t)− kcdCOR. (4.8)
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Dadas as equações, pode-se observar que existem 6 variáveis no modelo: A, MR,

MA, IL6, IL8, IL10, TNF, e COR. Elas representam respectivamente a concentração

da bactéria S. Aureus, a concentração de macrófagos em repouso, a concentração de

macrófagos ativos, a concentração da citocina IL-6, a concentração da citocina IL-8, a

concentração da citocida IL-10, a concentração de TNF, e a concentração de cortisol.

4.1.1 Parâmetros base do modelo

Os parâmetros base utilizados nas simulações sao apresentados na Tabela 4.1 (MARINS,

2023).

Tabela 4.1: Parâmetros base do modelo

Parâmetro Valor Unidade Significado biológico

βA 0.02 1/dia Taxa de crescimento das bactérias

Cmax 3 – Capacidade máxima de cortisol

h610 4 – Expoente da função de Hill para

downregulação de IL-6 por IL-10

h66 1 – Expoente da função de Hill para

auto-feedback negativo de IL-6

h6TNF 2 – Expoente da função de Hill para

upregulação de IL-6 por TNF-α

h810 1.5 – Expoente da função de Hill para

downregulação de IL-8 por IL-10

h8TNF 3 – Expoente da função de Hill para

upregulação de IL-8 por TNF-α

h106 3.68 – Expoente da função de Hill para

upregulação de IL-10 por IL-6

hM10 0.3 – Expoente da função de Hill

hMTNF 3.16 – Expoente da função de Hill

Continua na próxima página
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Tabela 4.1 Parâmetros base do modelo – Continuação

Parâmetro Valor Unidade Significado biológico

hTNF10 3 – Expoente da função de Hill para

downregulação de TNF-α por IL-

10

hTNF6 2 – Expoente da função de Hill para

downregulação de TNF-α por IL-

6

k6 4.64 dia−1 Taxa de ativação de IL-6

k8 0.464 dia−1 Taxa de ativação de IL-8

k10 1.1 dia−1 Taxa de ativação de IL-10

k106 0.0191 conc. relati-

va/(dia·número

de células)

Upregulação de IL-10 por IL-6

k10M 0.19 conc. relati-

va/(dia·número

de células)

Upregulação de IL-10 por

macrófagos ativados

kA 50.0 mm3/dia Capacidade de suporte para

bactérias

kcd 1.55 h−1 Taxa de degradação de cortisol

kIL6 0.66 h−1 Taxa de degradação de IL6

kIL6M 0.01 conc. relati-

va/(dia·número

de células)

Upregulação de IL-6 por

macrófagos ativados

kIL8M 0.056 conc. relati-

va/(dia·número

de células)

Upregulação de IL-8 por

macrófagos ativados

k6TNF 0.81 conc. relativa Upregulação de IL-6 por TNF-α

Continua na próxima página
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Tabela 4.1 Parâmetros base do modelo – Continuação

Parâmetro Valor Unidade Significado biológico

k8TNF 0.56 conc. relati-

va/(dia·número

de células)

Upregulação de IL-8 por TNF-α

klt 3.35 h−1 Magnitude da ativação do TNF-α

pelo cortisol

klt6 1.35 h−1 –

km 1.414 – Taxa de ativação dos macrófagos

kMA 2.51 – Taxa de decaimento de

macrófagos ativados

kmct 8.69 ng/mL Taxa de influência do cortisol no

TNF-α

kMR 6 – Taxa de decaimento de

macrófagos em repouso

kMTNF 8.65 h−1 Taxa de ativação de macrófagos

em repouso

kmtc 2.78 pg/mL Constante de Michaelis para

produção de cortisol por TNF

kTNF 200 dia−1 Taxa de ativação de TNF-α

kTNFM 1.5 conc. relati-

va/(dia·número

de células)

Upregulação de TNF-α por

macrófagos ativados

ktc 3.43 ng/(pg·h) Magnitude da ativação de cortisol

por TNF

mA 0.9 1/dia Fagocitose das bactérias

MRmax 5 células/mm2 Máximo de macrófagos em re-

pouso

Continua na próxima página
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Tabela 4.1 Parâmetros base do modelo – Continuação

Parâmetro Valor Unidade Significado biológico

n610 34.8 pg/mL Valor de meia-ativação para

downregulação de IL-6 por IL-10

n66 560 pg/mL Valor de meia-ativação para auto-

feedback negativo de IL-6

n6TNF 185 pg/mL Valor de meia-ativação para upre-

gulação de IL-6 por TNF-α

n810 17.4 pg/mL Valor de meia-ativação para

downregulação de IL-8 por IL-10

n8TNF 185 pg/mL Valor de meia-ativação para upre-

gulação de IL-8 por TNF-α

n106 560 pg/mL Valor de meia-ativação para upre-

gulação de IL-10 por IL-6

nM10 4.35 pg/mL Valor de meia-ativação

nMTNF 100 pg/mL Valor do meio máx. associado à

regulação positiva de TNF-α

nTNF10 17.4 pg/mL Valor de meia-ativação para

downregulação de TNF-α por

IL-10

nTNF6 560 pg/mL Valor de meia-ativação para

downregulação de TNF-α por

IL-6

qIL6 0.6 conc. relativa Concentração de IL-6 na ausência

de patógeno

qIL8 0.2 conc. relativa Concentração de IL-8 na ausência

de patógeno

Continua na próxima página
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Tabela 4.1 Parâmetros base do modelo – Continuação

Parâmetro Valor Unidade Significado biológico

qIL10 0.15 conc. relativa Concentração de IL-10 na

ausência de patógeno

qTNF 0.14 conc. relativa Concentração de TNF-α na

ausência de patógeno

γMA 0.0832 mm3/(cell·day) Taxa de ativação dos macrófagos

em repouso

µA 0.1 1/dia Taxa de morte natural de células

A

µMA 0.07 1/dia Taxa de decaimento natural dos

macrófagos ativados

µMR 0.033 1/dia Taxa de decaimento natural dos

macrófagos em repouso
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4.2 Análise de Sensibilidade

A análise de sensibilidade foi implementada em Python, utilizando o pacote SALib para

realizar a análise de sensibilidade por meio de ı́ndices de Sobol nas equações do modelo

células-citocina. Esta biblioteca foi escolhida por não possuir muita complexidade para

sua utilização, permitindo configurar a AS de maneira simples, e com a possibilidade

de salvar os dados da análise em um arquivo, para que estes dados sejam manipulados

posteriormente de maneira mais personalizada, permitindo que se possa aplicar filtros e

ordenações arbitrárias nestes resultados para a criação de um gráfico, por exemplo.

A implementação começa com a definição de um conjunto de parâmetros do

modelo armazenados em um dicionário, sendo estes todos os parâmetros utilizados no

modelo (Tabela 4.1). O espaço de parâmetros para a análise de sensibilidade foi constrúıdo

estabelecendo limites dentro de 10% para mais e para menos dos valores nominais dos

parâmetros.

A análise emprega o método de Sobol, uma técnica de análise de sensibilidade

baseada em variância do SALib. O processo de amostragem gerou 1024 conjuntos de

parâmetros usando o esquema de amostragem de Sobol, com cálculos de ı́ndices de sen-

sibilidade de primeira ordem, que são ı́ndices de sensibilidade que calculam o quanto a

variância de uma sáıda (variável) é afetada pela variância de uma entrada (parâmetro).

A função de avaliação do modelo processa esses conjuntos de parâmetros simulando a

dinâmica do sistema de cortisol ao longo de um peŕıodo de 24 horas, focando na concen-

tração de cortisol em estado estacionário no ponto médio da simulação.

A visualização dos resultados foi realizada utilizando as bibliotecas matplotlib e

seaborn, produzindo um gráfico de barras dos ı́ndices de sensibilidade de primeira ordem.

4.3 Quantificação de Incertezas

Para realizar a quantificação de incertezas das equações 4.1 a 4.8, foi utilizada a linguagem

Python em conjunto com as bibliotecas Uncertainpy e Chaospy. A biblioteca Uncertainpy

foi escolhida por ser especializada em análise de incertezas para modelos nesta linguagem,

e por gerar os gráficos dos intervalos de predição automaticamente. O modelo analisado
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inclui diferentes outputs (cortisol, TNF, IL-8, IL-6, IL-10, MR, MA e A) que foram

avaliados separadamente através da mesma metodologia e no mesmo intervalo de tempo

de um dia. A análise foi configurada definindo distribuições uniformes para 28 parâmetros

do modelo, onde cada parâmetro varia entre 90% e 110% do seu valor base (variação de

±10%). Os parâmetros escolhidos para a UQ foram todos os parâmetros que mostraram

ı́ndices de sensibilidade maiores que zero.

A quantificação de incertezas foi executada utilizando o método de Monte Carlo

com 1024 amostras e uma semente pseudoaleatória fixa para garantir reprodutibilidade.

O Uncertainpy automaticamente aplica a transformação de Rosenblatt durante a análise,

que é útil para lidar com posśıveis correlações entre os parâmetros. Os resultados foram

visualizados através do Uncertainpy, que gera gráficos mostrando a variabilidade das

sáıdas do modelo em função da incerteza nos parâmetros de entrada.
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5 Resultados

5.1 Parâmetros Base e Quantidades de Interesse

Um total de 8 variáveis foram analisadas neste modelo. Cortisol, TNF, IL-6, IL-8, IL-10,

MA (Macrófagos ativos), MR (Macrófagos Inativos), A (Bactérias S. Aureus). Os gráficos

a seguir ilustram os resultados das simulações utilizando os valores base dos parâmetros

para estas variáveis estudadas neste trabalho, ao longo de um peŕıodo de um dia.

(a) Concentração de cortisol para um dia
de execução modelo.

(b) Concentração de citocinas para um dia
de execução modelo.

Figura 5.1: Concentração de cortisol e citocinas ao longo de um dia.

(a) Concentração de macrófagos para um
dia de execução modelo.

(b) Concentração de S aureus para um dia
de execução modelo.

Figura 5.2: Concentrações de macrófagos e S. aureus ao londo de um dia.
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5.2 Índices de Sensibilidade dos Parâmetros

A análise de sensibilidade dos parâmetros do modelo revelou padrões distintos de sensibili-

dade para cada variável. O cortisol se destacou como a variável mais senśıvel, influenciado

por 29 parâmetros diferentes, seguido pelo TNF (24 parâmetros), IL-6 (18), IL-8 (16), IL-

10 e S. aureus (12 cada), macrófagos inativos (10) e macrófagos ativos (9) conforme pode

ser visto nas Figuras 5.3-5.10.

É posśıvel observar que apenas um pequeno número de parâmetros apresenta sen-

sibilidade significativamente maior que os demais, destacando-se como fatores cŕıticos no

modelo. Analisando cada gráfico, é posśıvel identificar relações importantes: o parâmetro

klt exerce influência determinante na concentração de TNF, enquanto a taxa de ativação

do TNF impacta fortemente os ńıveis de IL-10. De forma similar, a taxa de ativação da

IL-8 é crucial para sua própria concentração no sistema. Quanto à IL-6, três parâmetros

se destacam como particularmente influentes: a concentração na ausência do patógeno

(qIL6), sua taxa de ativação, e o parâmetro klt6. Para os macrófagos ativos, o fator mais

determinante é sua taxa de decaimento, acompanhado pelo limite máximo de macrófagos

inativos. Este último parâmetro também exerce a maior influência sobre a concentração

dos próprios macrófagos inativos. No caso da concentração bacteriana, a análise revela que

a taxa de fagocitose (m A) apresenta a maior sensibilidade, indicando seu papel central

no controle da população de S. aureus no sistema modelado.

Os gráficos foram constrúıdos de modo que apenas os parâmetros que apresen-

taram sensibilidade maior do que 0 para cada variável fosse exibida em seu respectivo

gráfico.
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Figura 5.3: Parâmetros Sensibilidade de Primeira Ordem do Cortisol.

Figura 5.4: Parâmetros Sensibilidade de Primeira Ordem do TNF.
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Figura 5.5: Parâmetros Sensibilidade de Primeira Ordem do IL10.

Figura 5.6: Parâmetros Sensibilidade de Primeira Ordem do IL8.
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Figura 5.7: Parâmetros Sensibilidade de Primeira Ordem do IL6.

Figura 5.8: Parâmetros Sensibilidade de Primeira Ordem do Macrófagos ativos.
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Figura 5.9: Parâmetros Sensibilidade de Primeira Ordem do Macrófagos inativos.

Figura 5.10: Parâmetros Sensibilidade de Primeira Ordem da Bactérias S. aureus.
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5.3 Quantificação das Incertezas dos Parâmetros do

Modelo

A análise da quantificação de incerteza de cada variável do modelo revela comportamentos

diferentes. O cortisol apresenta um valor de concentração decrescente com intervalos de

predição relativamente estreitos, sendo as incertezas mais pronunciadas nos picos que

ocorrem ao longo do dia.

Já o TNF exibe um intervalo de predição proporcionalmente mais amplo durante

a fase de crescimento, sugerindo maior sensibilidade dos parâmetros relacionados com sua

produção inicial. No gráfico relativo à interleucina-10, uma citocina anti-inflamatória,

a incerteza é relativamente uniforme e moderada ao longo de toda a trajetória, indi-

cando estabilidade nos parâmetros que influenciam diretamente em sua concentração. Os

macrófagos em repouso apresentam um intervalo de predição estreito durante a fase de

decĺınio e maior incerteza na fase de recuperação. A população de macrófagos ativos

demonstra incertezas mais pronunciadas no pico e menor variabilidade relativa na fase de

decĺınio. A IL-8 exibe o intervalo de predição proporcionalmente consistente, embora apre-

sente leve ampliação com o tempo, sugerindo acumulação de incertezas nos parâmetros

relacionados à sua produção. O gráfico da IL-6 representa um crescimento constante de

sua incerteza ao longo do dia, refletindo o crescimento da incerteza do cortisol ao longo

do mesmo peŕıodo.

Em conclusão, a sequência temporal dos eventos inflamatórios capturada pelo

modelo, com o aumento inicial de TNF, seguido por ativação de macrófagos e posterior

modulação por IL-10 - permanece estável apesar das incertezas paramétricas e alinhada

com o processo biológico da resposta inflamatória. É interessante observar que as variáveis

mais influenciadas pelo cortisol (4.4, 4.6, 4.7) possuem as maiores incertezas, e além disso,

os intervalos de predição destas variáveis crescem ao longo do dia de maneira semelhante

ao comportamento de crescimento do intervalo para o gráfico do cortisol.
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(a) Quantificação incerteza de Cortisol (b) Quantificação incerteza de TNF

Figura 5.11: Quantificação de incerteza de Cortisol e TNF

(a) Quantificação incerteza de IL-10 (b) Quantificação incerteza de IL-8

Figura 5.12: Quantificação de incerteza de IL-10 E IL-8

(a) Quantificação incerteza de IL-6
(b) Quantificação incerteza de Macrófagos
Ativos

Figura 5.13: Quantificação de incerteza de IL-6 e Macrófagos Ativos
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(a) Quantificação incerteza de Macrófagos
Inativos

(b) Quantificação incerteza da Bactérias S.
Aureus

Figura 5.14: Quantificação de incerteza de Macrófagos inativos e Bactéricas S. Aureus
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6 Conclusão

A partir da análise da literatura, e observação de pontos como facilidade de utilização

e popularidade, foram escolhidas duas bibliotecas, uma para análise de sensibilidade e

outra para quantificação de incertezas. Esta seleção considerou também a disponibilidade

de documentação e suporte. Os resultados da AS foram salvos para serem manipulados

e transformados nos gráficos da sessão 5.2, permitindo a visualização clara das relações

entre os parâmetros estudados. Os parâmetros utilizados na UQ foram escolhidos a partir

dos parâmetros de resposta da SA que tiveram incerteza maior que zero, o que permitiu

concentrar o esforço computacional nos fatores mais relevantes para a variabilidade do

modelo.

Além disso, foi realizada a SA e a UQ das equações 4.1 a 4.8 considerando o

intervalo de tempo de um dia. Nestas análises, os resultados indicam que maioria das

variáveis manteve comportamento consistente. Mais experimentos precisam ser realizados

para avaliar o comportamento do modelo a longo prazo, assim, deve ser considerado

para trabalhos futuros a análise do modelo em um intervalo de tempo ao longo de uma

década ou mais, o que possibilitará identificar padrões de comportamento dos valores

das variáveis do modelo, e avaliar a estabilidade do sistema em condições prolongadas.

Além disso, também é interessante expandir a análise incluindo também o acoplamento

completo com o modelo de glicose-insulina, permitindo assim avaliar as interações entre

o sistema imunológico e o metabolismo energético com taxas mais precisas de glicose.
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