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Abstract

Recent developments in computer vision techniques have markedly improved fire detec-
tion capabilities compared to conventional systems. This work introduces an innovative
methodology that integrates deep neural networks for identifying instances and regions
of fire, graph cuts, and color thresholding for a nuanced approach to fire segmentation.
The incorporation of fire segmentation masks facilitates precise analysis, providing valu-
able insights into fire origins and propagation to proactively prevent future incidents.
Our method, leveraging graph cuts segmentation with comprehensive color information,
demonstrates enhanced accuracy and detailed fire detection. The results illustrate a no-
table improvement in recall, maintaining competitive precision, thereby establishing an

efficient and effective fire detection framework.

Keywords: Fire detection; fire segmentation; image classification; graph cut; deep learn-

ing; color thresholding.



Resumo

Métodos recentes de visao computacional tém avancado significativamente em deteccao
de incéndios em comparacao com sistemas tradicionais. Este trabalho apresenta uma
metodologia inovadora que integra redes neurais profundas para identificar instancias e
regices de incéndio, cortes de grafos e limiarizacao de cores para uma abordagem de-
talhada na segmentacao de incéndios. A incorporacao de mascaras de segmentacao de
incéndios facilita uma anélise precisa, fornecendo informacoes valiosas sobre a origem e
propagagao de incéndios para prevenir futuros incidentes de maneira proativa. O método
proposto, aproveitando a segmentagao por cortes de grafo com informacoes abrangentes
de cor, demonstra uma precisao aprimorada e uma deteccao de incéndios detalhada. Os
resultados ilustram uma melhoria notavel na taxa de verdadeiros positivos, mantendo uma
precisao competitiva, estabelecendo assim um framework eficiente e eficaz para detecgao

de incéndios.

Palavras-chave: Detec¢ao de fogo; segmentagao de fogo; classificacao de imagens; corte

de grafo; aprendizagem profunda; limiar de cor.
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1 Introduction

1.1 Problem Overview and Context

Fire detection is a crucial aspect of fire safety in various environments, including homes,
public buildings, industrial facilities, and forests. Traditional fire detection systems rely
on sensors that detect smoke, heat, or flames to alert occupants about a potential fire.
However, these systems can be limited in their accuracy and may produce false alarms.
With the advent of neural networks and other forms of artificial intelligence (AI), there
is a growing interest in developing more effective fire detection systems. This chapter
provides the motivation for the development of new fire detection methods, outlines the
main challenges associated with the problem, highlights the relevance of the work, and
outlines the objectives.

Fire detection and surveillance systems have significantly evolved over time, be-
coming more advanced and efficient in preventing the spread of fires. These systems have
become integral parts of many buildings, factories, and public places, providing early
alerts and protection against potentially deadly fires. Analyzing the spread of fires is a
crucial aspect of fire detection and surveillance systems, as it enables more efficient and
effective fire prevention and control.

In recent years, surveillance systems have become increasingly interconnected
and intelligent, utilizing a variety of technologies such as Al and the Internet of Things
(IoT). These systems use Al algorithms to analyze real-time video data from cameras,
identifying and flagging unusual or suspicious behaviors. On top of that, they can utilize
not only real-time detection but also image analysis of sets of images to identify patterns
of fire propagation, potential sources of fires, and vulnerable areas. By leveraging this
information, necessary measures can be taken to prevent losses.

As a pivotal component of these advancements, Al refers to the simulation of
intelligence in machines that are programmed to perform tasks that typically require

intelligence, such as visual perception, speech recognition, decision-making, and natural



1.1 Problem Overview and Context 10

language processing.

While AT broadly encompasses the simulation of human intelligence in machines,
its subfield, Machine Learning (ML), takes a specific approach. ML allows systems to
learn and improve automatically from experience without being explicitly programmed.
This involves the use of statistical and mathematical algorithms to analyze data, recognize
patterns, and make predictions.

Additionally, a specialized form of ML known as deep learning (DL) has gained
prominence. DL involves the use of deep neural networks (DNNs), composed of multiple
layers of interconnected nodes, to analyze complex data. DL algorithms can be used for
tasks such as image and speech recognition, natural language processing, and autonomous
decision-making. However, these networks require a large amount of data to learn complex
patterns and become robust to a wide variation of new data.

As the demand for efficient and accurate monitoring solutions increases, intelli-
gent models like neural networks are gaining popularity for automating tasks traditionally
carried out by humans. Thus, systems such as traffic monitoring and surveillance have
integrated with these models to better meet the demand, as vast amounts of data come
from security cameras and are difficult to be meticulously monitored by humans.

Intelligent surveillance systems can encompass a variety of features, including
motion detection, facial recognition, object tracking, and automatic alerting. They can
be applied to various applications, from traffic monitoring to detecting potential security
threats in public spaces. One of the main benefits of using intelligent systems is the
ability to quickly and accurately analyze large volumes of video data. Using Al and ML
algorithms, these systems can detect patterns and anomalies that might go unnoticed
by human operators. Additionally, they also enable reducing the workload of human
operators, freeing them to focus on more complex tasks.

Moreover, analyzing how fires propagate is a critical aspect of fire detection and
surveillance systems, as it enables the development of more effective strategies for fire
prevention and control. For instance, understanding how a fire spreads allows for designing
buildings and structures to avoid such accidents. Furthermore, analyzing fire propagation

can aid emergency services in responding more effectively to fire emergencies by rapidly
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identifying the fire’s origin, assessing its severity, and mobilizing appropriate resources to
contain and extinguish it. By gaining a clear understanding of fire spread, it is possible
to minimize the risk to human life and property, as well as reduce the damages caused by
fires.

In the context of emergency management, natural disasters, accidents, and emer-
gencies occur frequently and have severe impacts. To prevent or mitigate these issues,
various sensors, alarms, and security systems are implemented. Fires are incidents that
can spread rapidly and pose a significant threat to lives and properties, thus addressing
them in their early stages is crucial. According to a natural disaster report (RELIEFWEB,
2021), there were 19 forest fires in 2021, resulting in the loss of 128 human lives and 9.2
billion dollars. Additionally, the U.S. Fire Administration (USFA) states that there were
1,291,500 fires, 3,704 deaths, 16,600 injuries, and 14.8 billion in losses in the year 2019 in
the United States (U.S. FIRE ADMINISTRATION, 2022). Festag (2016) investigated the
rate of false alarms from sensitive sensors in Germany, which averages 86.07% per year,
highlighting the inaccuracy of such systems. This underscores the need for autonomous
systems to detect fires more efficiently so that firefighters can be dispatched promptly.

Traditional fire alarms are widely used to prevent significant losses. However,
these solutions are based on optical and infrared sensors, requiring them to be placed
near the fire, which is challenging in open areas. Furthermore, not all fires occur when
someone is nearby, thus human monitoring is recommended to confirm the fire and assess
its severity. Additionally, these systems are expensive to install and maintain and have a
high false alarm rate.

As an alternative, other vision-based sensors can provide more information, such
as the fire’s location and severity. For instance, fire segmentation can offer the fire’s size
and location, enabling the assessment of growth rate through the analysis of a sequence
of images.

A non-real-time fire detection and segmentation method can also be valuable for
analyzing how fire spreads across a set of images. Analyzing a sequence of fire images can
provide valuable insights into fire behavior and the effectiveness of firefighting efforts.

The problem addressed by this work involves not only identifying the presence of
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fires in images but also locating the fire through pixel-level clustering.

Delving into the specifics, image segmentation emerges as a crucial aspect of
the solution. Segmentation is one of the most well-known and longstanding problems in
computer vision (CV), involving grouping pixels that belong to the same class or exhibit
similarity in a given context (SZELISKI, 2011). The result achieved in this problem,
where objects in the image are divided into classes, is commonly referred to as a mask.
Figure 1.1 illustrates an example of an annotated image for semantic segmentation, where

each object class is color-coded.

Figure 1.1: Example of semantic segmentation annotation taken from the Cityscapes
dataset (CORDTS et al., 2016).

Therefore, segmentation techniques can be applied to the fire detection problem,
providing much more information than just image classification with or without fire. The
problem in fire detection can be described as separating fire pixels from non-fire pixels in
a series of images. Once fire pixels are segmented, it is possible to track the progression
of fire over time by analyzing changes in fire pixels from one image to the next. This
approach can be particularly useful for understanding how a fire spreads across a large
area or behaves under different conditions. By analyzing a series of images captured over
time, patterns in fire spread can be identified, and factors like wind, temperature, and
fuel load can be assessed for their impact on fire behavior.

Image processing techniques for segmentation range from classical algorithms like
thresholding and edge detection to deep neural network models for semantic segmentation.
However, as fire is not an easily distinguishable object for algorithms, the task requires

more complex methods that can leverage color and geometry information. Moreover,
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the fact that the color of fire can be present in a vast variety of other objects makes
the problem even more challenging. In essence, across the entire color space, one needs
to identify the most common fire colors while differentiating them from any other object
sharing similar characteristics. As shown in Figure 1.2, the goal is to obtain a fine-grained

mask that precisely segments the fire.

(a) Input image. (b) Ground truth.

Figure 1.2: Example of binary segmentation for fire taken from our test set (CHINO et
al., 2015).

1.2 Motivation

Fires pose a significant threat to both human lives and properties, and swiftly and accu-
rately detecting and mitigating them is crucial. The state of the art lacks methods with
balanced classification, meaning that achieving good metrics for both the True Positive
Rate (TPR) and the False Positive Rate (FPR) remains a challenge. Furthermore, the
best results are often achieved by identifying what is not fire, the negative and majority
class in the images (CHINO et al., 2015). For the fire detection problem, it is more critical
not to miss fire cases, meaning false alarms are less detrimental than undetected fires. As
a result, there is a pressing need for new fire detection and segmentation methods capable
of better classifying what constitutes fire — the positive and most important class — and
maintaining balanced results.

The benefits of such a system can be immense. In the short term, it can assist first
responders in swiftly and accurately pinpointing the location and extent of fires, enabling
them to respond more effectively and potentially save lives and properties. In the long

term, it can enable better fire prevention strategies, offering more precise data about fire
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patterns and behaviors when utilized to analyze sets of images and make data-driven
decisions.

In addition, accurate fire detection and segmentation can have broader societal
implications. For instance, it can aid in the development of more effective climate models
by providing data about the frequency and intensity of fires in different regions. It can
also assist in identifying high-risk fire areas, allowing relevant authorities to take proactive
measures to mitigate the risk.

Overall, there is a clear need for new and improved fire detection and segmenta-
tion methods, and the potential benefits of such a system are significant. With the power
of DL and CV techniques, it might be possible to develop a more accurate and reliable
system for identifying and tracking fires, with wide-ranging implications for emergency
response, fire prevention, and societal well-being. While this method may not be a real-
time application, it can provide valuable information for analysis and informing future
strategies for dealing with fires. By understanding how fires spread and behave, it is
possible to develop more effective fire prevention and suppression strategies, reducing the

risk of loss of lives and properties due to fire.

1.3 Objectives

The main objective of this work is to develop a novel method for the balanced detection
and segmentation of fire in images. The aim is to create a model capable of discerning
both fire and non-fire areas, while having a higher emphasis to the positive class (fire).
The exclusion of scenes without any detected fire prevents unnecessary processing and
allows a more effective segmentation.

Subsequently, the method will be evaluated using the same dataset and image
segmentation metrics employed in the investigations of related works. The research scope
includes evaluating the use of deep neural networks (DNNs), CV methods, and ML to
generate fire segmentation masks.

Hence, the objectives of this study include the following steps:

e Investigating the use of state-of-the-art neural networks for classification of fire
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images and regions;

Exploring various datasets utilized in related works;

e Developing a method for a patch-based segmentation, identifying fire regions in

images;

e Experimenting with the use of a classification model prior to the segmentation stage,

and assessing its impact on final results;

e Establishing a color range based on color distribution in the training set for con-

structing the color classifier;
e Examining color thresholding in both RGB and HSV color spaces;
e Experimenting with the use of graph cuts and their energy functions;

e Assessing final results by comparison with state-of-the-art methods for the given

problem.

1.4 Contributions

The primary contributions of this study lie in advancing the domain of fire detection
through an innovative methodology harnessing the capabilities of graph cuts for refined
fire segmentation. The outcomes not only showcase the highest TPR when compared to
contemporary state-of-the-art methods but also manifest enhancements in FPR, precision,
and Fi-score in contrast to our prior research. This progress underscores the efficacy and
promise of our approach in precisely detecting fires, reducing false alarms, and elevating
overall performance. The significant improvements achieved resulted in the publication in
two renowned conferences (PEREIRA; VIEIRA; VILLELA, 2022; PEREIRA; VIEIRA;
VILLELA, 2023).
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1.5 Organization

This work is organized as follows: Chapter 2 describes the fundamental concepts applied in
the proposed approach. Chapter 3 summarizes how related works have addressed the fire
detection problem. Chapter 4 details our method, including the integration of deep neural
networks, graph cuts, and color thresholding. Chapter 5 describes the datasets used, the
experimental setup, and presents the results of our experiments. Finally, Chapter 6

concludes the work and outlines future research directions.
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2 Theoretical Framework

This chapter provides the necessary concepts to understand the CV techniques and DL
models used in developing the method proposed in this work. Throughout the research,
the use of each method and combinations among them will be evaluated. Firstly, the
functioning of the k-means algorithm is presented, which is widely used for clustering
tasks and also applicable for identifying clusters in images. Following that, the interpre-
tation of images as graphs and the utilization of the classic graph cut method for object
segmentation based on color and geometry similarity are detailed. Subsequently, the field
of DL is introduced, discussing neural networks, their training, and potential training
issues. Convolutional neural network (CNN) models, specialized neural networks for CV
problems, are then described. Lastly, the emerging architecture in the natural language
processing (NLP) field, also recently employed in CV, the transformers architecture, is
discussed.

All these concepts are of paramount importance for the development of this work.

They are directly related to CV problems, particularly image segmentation.

2.1 K-means

K-means is an unsupervised clustering algorithm used to partition a given dataset into k
clusters, where k is the number of clusters specified by the user. It functions iteratively by
assigning each data point to the cluster whose centroid is closest to it and then updating
the centroid of each cluster based on the assigned data points (SZELISKI, 2011). The
process continues until the centroids no longer move significantly or a maximum number
of iterations is reached.

In the context of image segmentation, k-means can be employed to group similar
pixels in an image into k clusters, where each cluster represents a different region in
the image. Once clustering is complete, the resulting clusters can be used to segment

the image by assigning each pixel to the corresponding cluster. This can be useful in
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applications where regions containing the object of interest in an image can be separated
from the background. However, k-means does not always produce the best segmentation
results, as it assumes well-separated clusters. Figure 2.1 presents an example of color

quantization using k-means.

Original Image

Figure 2.1: K-means quantization example with k varying from 2 to 8. Source: (OPENCV,
n.d.).

2.2 Graph Cut

Graph cut is a widely used technique in computer vision to solve optimization problems
that can be formulated as graph problems. In the context of image segmentation, graph
cuts can partition an image into foreground and background regions, minimizing an energy
function (SZELISKI, 2011).

This energy function represents the cost associated with labeling each node in
a graph. The energy function is typically defined as a combination of two terms: the
term measuring similarity between input data and labels, and the smoothness term that
encourages neighboring nodes in the graph to have similar labels. The goal of graph cuts
is to find the labeling that minimizes the energy function, which can be formulated as
an optimization problem and solved using efficient algorithms such as the maximum flow

and minimum cut algorithms.
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The maximum flow and minimum cut problem is straightforward: it involves
sending the maximum possible flow between two specified nodes in a network (source
and sink) without exceeding edge capacities (AHUJA; MAGNANTI; ORLIN, 1993). Al-
gorithms to solve the problem model the network as a graph, with edges representing
network connection capacities. The algorithm then tries to find the cut in the graph that
minimizes the capacities of the edges crossing the cut, which is equivalent to finding the
maximum flow.

The core idea behind graph cuts is to convert the image segmentation problem
into a graph problem, where nodes represent image pixels and edges represent relationships
between neighboring pixels. The weight of an edge represents the dissimilarity between
the two connected nodes.

The segmentation problem is then formulated as a minimum cut problem in the
graph, where the cut separates nodes into two sets of regions: the object of interest and

the background. Figure 2.2 illustrates the graph cut process.

Background
terminal

Background
terminal

terminal
(@) (b)

Figure 2.2: Graph cut applied in image segmentation (BOYKOV; JOLLY, 2001): (a)
the graph is constructed from image pixels; (b) the image is partitioned based on the
minimum cut. Source: Szeliski (2011).

terminal

2.3 Deep Learning

DL is a subfield of ML that involves the utilization of deep neural networks to learn

complex and nonlinear mappings between inputs and outputs. Neural networks are com-
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putational models inspired by the human brain and consist of multiple layers of inter-
connected processing units called neurons (AGGARWAL, 2018). These models are par-
ticularly well-suited for handling complex and high-dimensional data, where traditional
algorithms might struggle to identify patterns or make accurate predictions. They are
also employed in tasks that require learning from large datasets, as they can automatically
extract features and learn representations that enhance their performance.

Neural networks function by taking an input vector and passing it through a
series of nonlinear transformations, with the output of each layer serving as the input
to the next layer. The final output of the neural network is generated by the output
layer, which typically employs a nonlinear activation function that maps the output of
the final hidden layer to the desired output space. Such networks are commonly known
as feedforward neural networks or multilayer perceptrons (MLPs), as data flows in only
one direction, from the input layer through the hidden layers to the output layer. The
term “feedforward” indicates that input data is fed into the network in a single pass
without any feedback connections. Therefore, the goal of a feedforward network is to
approximate a function f that maps an input x to an output value (GOODFELLOW;
BENGIO; COURVILLE, 2016). Figure 2.3 depicts the architecture of a basic single-
hidden-layer neural network. The operations illustrated in the output neuron, including
weighted sum, bias addition, and activation, are likewise performed in all neurons a;
within the hidden layer.

Bias is a scalar value added to the weighted sum of a neuron’s inputs. It is an
additional parameter in the neural network that enables the model to shift its output in
a specific direction. The bias term assists in shifting the activation function of a neuron
in either the negative or positive direction. Thus, the following equation describes the

computation performed in each neuron:

y = Zwixi + b, (2.1)
i=1

where w; represents the weight associated with the i-th input z;, and b is the bias. A
subsequent activation function is applied, such as the sigmoid or Rectified Linear Unit

(ReLU), to capture the data’s nonlinearity. Unlike sigmoid and other slower computing



2.3 Deep Learning 21

Layer 1 Layer 2 Layer 3

Figure 2.3: Architecture of a single-hidden-layer neural network.

functions, the ReLLU activation function is simple and has proven effective in training deep

neural networks (LECUN; BENGIO; HINTON, 2015). The ReL.U function is defined as:

f(z) = max(0, x), (2.2)

where x is the input to the function. This function returns zero for negative inputs and
the input value itself for non-negative inputs. One of the main advantages of the ReLLU
function is its computational efficiency.

The process of training a neural network involves feeding it with a dataset com-
prising inputs and expected labels for each entry, and adjusting the neuron weights to
minimize the difference between the predicted and actual output. Learning occurs by
adapting the network weights according to a loss function, which is achieved using a
technique called backpropagation (RUMELHART; HINTON; WILLIAMS, 1986). Back-
propagation utilizes gradient descent to minimize the loss in its classical version. The al-
gorithm calculates the gradient of the loss function with respect to the network’s weights
and biases and uses it to update the parameters. The learning rate is a hyperparameter
used in backpropagation, controlling the extent to which weights are updated in the gra-

dient direction. A very high learning rate can cause the optimization process to diverge,
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while a very low learning rate can lead to slow optimization and being trapped in a local
minimum. Therefore, finding the ideal learning rate is crucial for effectively training a
neural network. The use of adaptive learning rates is a popular practice to adjust the
learning rate during training.

The primary challenge in ML is to create models that generalize well, meaning
they perform well on new datasets (GOODFELLOW; BENGIO; COURVILLE, 2016).
However, during the training process, it is important to be aware of the possibility of
overfitting or underfitting the data. Overfitting occurs when the neural network is too
complex for the provided data or is trained too well to the point that it starts memorizing
training examples instead of learning patterns in the data, leading to poor generalization
to new data. On the other hand, underfitting occurs when the neural network is not
complex enough or has not been trained sufficiently to capture patterns in the data,
resulting in low performance on both training and test data.

To address overfitting, regularization techniques such as L; and Ly regularization,
dropout (SRIVASTAVA et al., 2014), and data augmentation can be used to constrain
the network weights and prevent it from memorizing noise in the training data. Dropout,
for example, randomly selects and drops some neurons in a network layer during each
training iteration. This forces the remaining neurons to learn more robust and generalized
representations.

Conversely, the neural network can be made more complex by increasing the
number of layers or neurons in the network or changing activation functions to capture
more complex patterns in the data to combat underfitting. However, it is important to
avoid making the network overly complex, as it may lead to overfitting. Appropriate
validation techniques, such as cross-validation, can help identify and address overfitting
and underfitting.

A widely applied function at the output of neural networks is the softmax, often
used in classification tasks to convert output values from the previous layer into proba-
bilities for multiple possible classes (AGGARWAL, 2018). This probability distribution

can be used to determine the most likely class for a given input. The softmax function is
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defined as follows:

Ty

(&

K
j=1

softmax(x;) = (2.3)

evs’
where x; is the input to the i-th neuron in the output layer, K is the number of classes,
and e is the base of the natural logarithm. The denominator of the softmax function is the
sum of the exponential values of all inputs, ensuring that the output is a valid probability
distribution with values between 0 and 1 that sum to 1. The fact that the output of
the softmax function is a probability is valuable, as it allows understanding the neural
network certainty level in its decisions (NIELSEN, 2015). Consequently, this probability
can be utilized to evaluate the network using different thresholds to determine its output,
i.e., defining from which probability the model’s response for a specific class is accepted.
This is useful for enhancing a model’s predictions when it excels for a specific class and

has not captured the pattern of others as effectively.

2.4 Convolutional Neural Networks

DL has become a popular technique for CV tasks such as image classification, object de-
tection, and segmentation due to its ability to automatically learn complex visual features
and patterns from vast amounts of data (LECUN; BENGIO; HINTON, 2015). Convolu-
tional Neural Networks (CNNs) are a type of neural network designed specifically for CV
tasks (GOODFELLOW; BENGIO; COURVILLE, 2016) and are increasingly prominent
in the state of the art. These networks have revolutionized the field of CV, enabling accu-
rate and efficient image classification, object detection, and segmentation. The distinctive
component of CNNs is the convolutional layers, which perform the convolution operation
on input data to extract features.

Convolution is a mathematical operation involving sliding a small window (re-
ferred to as a kernel or filter) over the input data, multiplying the values in the window
by corresponding values in the filter, and summing the results (SZELISKI, 2011). The
output of this operation is a single value representing the degree of similarity between
the input data and the filter. By applying this operation to different regions of the input

data, a feature map that captures various aspects of the input image can be generated.
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Figure 2.4 demonstrates the convolution operation, with the blue pixels indicating the

neighborhood in which the filter is applied in this step, generating the green pixel.
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Figure 2.4: The image on the right is obtained by performing convolution of the filter
over the image on the left.

Convolutive layers in CNNs apply these filters to input data throughout the
network (GOODFELLOW; BENGIO; COURVILLE, 2016), generating feature maps that
capture different types of features. These feature maps are passed through activation
functions and optionally through pooling layers to reduce sample and data dimensionality.
The values filling the filters in the convolution operations are learned by the network
during training, allowing it to decide on the best values for certain features across its
layers. Figure 2.5 presents the architecture of LeNet-5 (LECUN et al., 1998), the first
proposed CNN.

Input

feature maps
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feature maps
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Convolution Pooling Convolution Pooling

Figure 2.5: General architecture example of a CNN.

Pooling in CNNs is an operation for downsampling that reduces the spatial di-
mensions (height and width) of feature maps produced by convolutional layers and is a
technique used in most CNNs (GOODFELLOW; BENGIO; COURVILLE, 2016). It is
typically applied after the convolutional layer and the activation function. The pooling

operation works by dividing each feature map into non-overlapping regions, referred to as
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pooling regions or windows. Then, for each region, it calculates a single value representing
the maximum (max pooling) or the average (average pooling) of the values in that region.
This value is used to replace the entire window in the output feature map.

This operation is employed to reduce computational cost by decreasing the num-
ber of parameters and input data size, aiding in preventing overfitting. Furthermore, it
helps to extract the most relevant features from the data. Figure 2.6 illustrates the max

pooling operation.
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Figure 2.6: Max pooling operation applied with a 2x2 filter (window) and 2-pixel strides.

In a CNN, the initial layers learn low-level features such as edges and corners,
while deeper layers learn more complex features composed of these low-level features, such

as geometric shapes (AGGARWAL, 2018). This hierarchical structure allows CNNs to

effectively model complex relationships in input data and achieve high accuracy.

2.5 Transformers

Transformers (VASWANI et al., 2017) are a type of neural network architecture that
has revolutionized Natural Language Processing (NLP) tasks. At the heart of the trans-
former architecture lies the self-attention mechanism, which enables the model to attend
to different parts of the input sequence when generating an output. Self-attention cal-
culates a weighted sum of the input sequence at each position, with weights determined
by the similarity between the current position and all other positions in the sequence.
The self-attention mechanism is used in both the encoder and decoder components of the

transformer architecture. The encoder takes an input sequence of tokens (e.g., words)
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and generates a sequence of embeddings, each representing a different position in the in-
put. The decoder takes as input the encoder’s output and its own previous decoder block
outputs, producing an attention vector as output.

Each layer in the transformer consists of a multi-head self-attention mechanism
followed by a feedforward neural network. The multi-head attention mechanism allows
the model to attend to the input sequence in multiple ways, with each head learning a
different attention distribution over the sequence.

In addition to self-attention, the transformer also includes positional encoding,
used to provide the model with information about the position of each token in the
input sequence. This is crucial because the self-attention mechanism only considers token
similarity and not their positions.

This architecture has demonstrated remarkable performance across a wide range
of NLP tasks, including machine translation, text summarization, and language modeling.
Its success is largely attributed to its ability to capture intricate patterns within data.

Figure 2.7 illustrates the architecture of a transformer.
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Figure 2.7: Architecture of a transformer model. Source: Vaswani et al. (2017).



2.5 Transformers 27

Transformer networks have excelled in NLP tasks and have sparked significant
interest in the field of computer vision. However, visual data demands specific network
architectures and training methods. Therefore, various authors have implemented their
versions of transformer models for vision tasks. Recently, the paper proposing the Vision
Transformer (ViT) model (DOSOVITSKIY et al., 2020) experimented with using a stan-
dard transformer with minimal modifications. To achieve this, they treated small patches
of the image as input tokens, flattened these patches, and added learned positional em-
beddings. Although ViT achieves remarkable results on recognition benchmarks when
pre-trained on the JET-300M dataset (SUN et al., 2017), it still struggles with limited
data, falling behind CNNs in such cases. To overcome this issue, CoAtNet proposes a
combination of deep convolution and self-attention in an attempt to merge CNN’s gener-
alization with the Transformer model’s capabilities, as Transformers have shown a higher
ceiling. To this end, their architecture is divided into 5 stages, 1 Convolution block, 2
Mobile Inverted Residual Bottleneck Convolution (MBConv) blocks, and 2 transformer

blocks, as shown in Figure 2.8.
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Figure 2.8: CoAtNet architecture overview. Source: Dai et al. (2021).

Unlike convolutional blocks, MBConv blocks (SANDLER et al., 2018) are based
on the idea of inverted residuals, involving the use of 1x1 convolutions to expand the
number of channels, followed by 3x3 depthwise convolutions, and then another 1x1
convolution to compress the output. This approach reduces the number of parameters
and computational complexity while maintaining high accuracy. Additionally, a residual
connection adds the input’s feature maps to the block’s output.

The idea of residual blocks (HE et al., 2015) stems from the difficulty of training
deep neural networks due to the vanishing gradient problem, where gradients can become
too small as they propagate through the network. Residual blocks were introduced to

address this by introducing shortcut connections that allow gradients to flow directly to
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earlier layers.

These shortcut connections enable residual blocks to learn a residual mapping,
or the difference between the input and the block’s output. This approach has proven
to ease the training of very deep neural networks, allowing them to learn more complex

functions without succumbing to the vanishing gradient problem.
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3 Related Work

Fire detection can be achieved in numerous ways, depending on design decisions that
define the main objectives. For instance, if the goal is simply to identify and report fires,
the problem may boil down to image classification or object detection. There is a wide
range of studies addressing the fire detection problem, and thus, the solutions proposed
by the authors also vary.

Researchers who began exploring the use of vision for fire detection focused their
studies on using motion and temporal features in videos (KIM; KIM; JEONG, 2014) or
investigated using color information through different color spaces (CELIK; DEMIREL,
2009; CHEN; WU; CHIOU, 2004).

More recent works have implemented Convolutional Neural Networks (CNNs)
in their approaches, utilizing them for image classification and fire localization. These
have shown promising results by combining the power of CNNs with superpixel cluster-
ing (THOMSON; BHOWMIK; BRECKON, 2020) or by extracting feature maps from
models to generate a mask (MUHAMMAD et al., 2019).

In this chapter, different methods used by state-of-the-art studies will be pre-
sented, as well as the proposed approaches that have served as baselines for various arti-

cles.

3.1 Video-Based Fire and Smoke Detection

Chen, Wu and Chiou (2004) propose a video-based approach. The algorithm begins by
segmenting moving regions from captured image sequences, which are considered candi-
dates for fire and smoke detection. Chromatic features are employed to extract fire pixels
and smoke pixels from these moving regions.

To differentiate fire and smoke pixels from corresponding false positive pixels,
dynamic features like growth and clutter are employed. These features validate the ex-

tracted fire and smoke pixels. It is important to note that if both fire and smoke pixels
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satisfy dynamic features, it indicates the presence of a real fire. However, if only fire pixels
satisfy these dynamic features, it may suggest the burning of certain fuels that generate
nearly transparent smoke, which is not captured by the video camera.

This method combines moving region segmentation, extraction of fire and smoke
pixels based on chromatic features, validation through dynamic features, and evalua-
tion of fire alarm trigger conditions to achieve early fire detection. Experimental results
demonstrate the effectiveness of the proposed algorithm.

Chino et al. (2015) constructed a dataset and conducted evaluations, comparing
various methods. When assessed using the dataset introduced by Chino et al. (2015), the
proposed method showed satisfactory results in terms of FPR. Nevertheless, it is crucial
to emphasize that the effectiveness of the method in detecting fires was limited.

One of the advantages of the method is its video-based approach, allowing the
detection of moving regions and identifying candidates for fire and smoke presence. Addi-
tionally, the use of chromatic features for extracting fire and smoke pixels is an interesting
strategy. The validation of these pixels through dynamic features such as growth and clut-
ter also contributes to real fire detection.

However, the method has a significant limitation. It is not effective for fire de-
tection, being more efficient in smoke detection. This could be attributed to the lack of
consideration for other relevant aspects of fire detection, such as temperature variation
and flame patterns. Additionally, the incapacity to capture nearly transparent smoke
generated by certain fuels is a drawback, as it can lead to false negatives and compromise
detection accuracy.

Despite these limitations, the method showed good results in terms of FPR when
evaluated on a specific dataset. This indicates that the algorithm might be useful in
specific contexts or scenarios where smoke detection is the primary concern. However, for
comprehensive fire detection, it is necessary to consider other approaches or supplement

the proposed method with other techniques that address the identified limitations.
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3.2 Stereo Vision-Based Fire Segmentation

Rossi, Akhloufi and Tison (2011) introduce in their paper a novel stereo vision-based
instrumentation system for fire segmentation in outdoor conditions. In the proposed ap-
proach, images are captured and processed using specialized algorithms. These algorithms
enable the modeling of fires in 3D and the extraction of geometric features such as vol-
ume, surface area, motion direction, and length. Experiments were conducted in outdoor
scenarios, and the obtained results showcase the effectiveness of the proposed system.

The method proposed extracts geometric features of fire from videos using stereo
vision. The method involves a clustering approach to locate the fire region. Initially, the
image is divided into two clusters based on the V channel of the YUV color space. The
cluster with the highest V value is identified as the fire cluster.

To classify pixels more accurately, a 3D Gaussian model is employed. This model
assigns a probability to each pixel based on its color and spatial position information.
Based on these probabilities, the method can differentiate between fire pixels and non-fire
pixels. It is important to note that this method was specifically developed for fires in
controlled environments and might have limitations in outdoor fire emergency situations,
as discussed by Chino et al. (2015).

When analyzing the results of Rossi, Akhloufi and Tison (2011) on the dataset
proposed by Chino et al. (2015), a slight improvement in TPR can be observed with the
application of the proposed method. However, it is crucial to emphasize that the results
still do not reach levels considered satisfactory.

A benefit of this method is the use of stereo vision, which enables the extraction
of geometric features of fire such as volume, surface area, motion direction, and length.
Furthermore, the method employs a 3D Gaussian model to classify pixels more accurately,
taking into account color and spatial position information. The results obtained from
experiments demonstrate the effectiveness of the proposed system.

Nevertheless, it is important to consider some limitations of the method. It
was specifically developed for fires in controlled environments, which means it might
not be as effective in outdoor fire emergency situations. Additionally, despite showing

an improvement in the detection rate compared to other methods, the results still fall
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short of levels considered satisfactory, as discussed by Chino et al. (2015). Therefore,
while the proposed method has its advantages, improvements are necessary to enhance

its robustness and applicability in different fire scenarios.

3.3 Clustering-Based Fire Detection

Rudz et al. (2013) proposed another clustering-based method. They calculate four clusters
using the Cb channel of the YCbCr color space. The one with the lowest Cb value
is classified as the fire region. Subsequently, false positive pixels are discarded using a
reference dataset. The method handles small and large regions differently: small regions
are compared with the average of a reference region, and large regions are compared with
the reference histogram. They execute this process for each color channel.

The results on the dataset from Chino et al. (2015) demonstrated an improvement
of over 20% in TPR. However, they still have not reached a significant level of TPR.

An upside to this strategy is that the method utilizes the Cb channel of the
YCbCr color space to identify fire regions, which can be effective in detecting fires under
specific lighting conditions. Additionally, the method handles small and large regions
differently, allowing for a more precise analysis of fire characteristics.

Even so, the method also has some problems. For instance, classifying the fire
region based on the lowest Cb value can lead to false positives in situations where other
elements in the scene possess similar Cb values. Furthermore, the discarding of false
positive pixels relies on the availability of a reference dataset, which may restrict its
applicability to specific scenarios where such data is available.

Another consideration is that the method performs the detection process for each
color channel separately, which can increase computational complexity and processing
time. Therefore, while the method presents interesting approaches for fire detection,
it is necessary to evaluate its effectiveness under different conditions and consider its

limitations for proper application.
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3.4 BoWPFire: A Color and Texture-Based Fire De-

tection Method

The method proposed by Chino et al. (2015) consists of three steps: generating a seg-
mentation mask through a color classifier, generating a second mask through a texture
classifier, and finally, performing an intersection between the two produced masks.

The color classification step aims to differentiate fire regions from non-fire regions
based on color information. Color classification is performed in the YCbCr color space, as
it provides better discrimination for fire colors (CHINO et al., 2015). The process begins
by converting each pixel of the input image to the YCbCr color space. The pixel values
are represented as (Y;, Cb;, Cr;), where Y; represents the luminance component and Cb;
and C'r; represent the chrominance components.

A pixel color classification is then applied to each converted pixel using a training
set of colors and a Naive Bayes classifier. The color training set consists of labeled
examples of “fire” and “non-fire” pixels, which are used to train the color classifier.

If the color classifier categorizes a pixel as fire, the pixel is considered part of the
fire region and is used to construct the output mask. Otherwise, the pixel is discarded.
The use of a color classification step in the BoWFire method avoids the need for a large
number of parameters. By classifying each pixel individually, the method achieves a finer
granularity in its segmentation mask. However, this also results in false positives due to
the lack of consideration of neighborhood information.

The texture classification step aims to improve the accuracy of fire detection by
considering local image characteristics. Since different emergency situations can result in
various types of fire images, global features might not efficiently capture small fire regions.
Using the Simple Linear Iterative Clustering (SLIC) algorithm, the authors divide the
image into superpixels. Superpixels are image regions obtained by grouping pixels based
on their similarity in color, texture, or other image attributes. The goal of superpixel
segmentation is to divide an image into visually coherent and meaningful regions, reducing
the complexity of subsequent image processing tasks. For each superpixel, a feature

extraction process is applied to extract a feature vector, and finally, the k-NN algorithm
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with Manhattan distance classifies the found features, determining whether the superpixel
is a fire region or not.

If the feature classifier categorizes the superpixel as a fire region, all pixels be-
longing to the superpixel are considered part of the fire region and are used to construct
the output mask. Conversely, if the feature classifier does not categorize the superpixel
as a fire region, the pixels of that superpixel are discarded.

By considering local texture features, the BoWFire method efficiently captures
specific patterns related to fire regions, enhancing the accuracy of fire detection.

A positive aspect of this method is the color classification step, which uses the
YCbCr color space to discriminate fire regions from non-fire regions based on color infor-
mation. This allows for more accurate detection, as fire colors are better discriminated
in this color space. Furthermore, color classification is carried out individually on each
pixel, providing a finer granularity in the segmentation mask.

Another positive aspect is the texture classification step, which aims to improve
fire detection by considering local image characteristics. The use of superpixels, obtained
through the SLIC algorithm, allows for pixel grouping based on color and texture simi-
larity, capturing specific patterns related to fire regions. This increases the accuracy of
fire detection, especially in situations where global image features would not be effective.

Nonetheless, it is important to highlight that the BoWFire method also relies
on accurate superpixel segmentation and correct texture feature extraction. If there are
inaccuracies in these steps, fire detection can be compromised.

The results obtained in this study demonstrated a significant improvement com-
pared to previous works. Both the isolated color classification approach and the combi-
nation of texture and color showed superior performance. These results underscore the

effectiveness of the proposed method compared to previous approaches.
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3.5 Deep Learning-Based Fire Detection and Local-

ization with CNNs

In more recent works, with the advent of the field of DL, new approaches have emerged
proposing the use of Convolutional Neural Networks (CNNs) for fire detection. Muham-
mad et al. (2019) explore in their work the detection and localization of fires through
networks based on SqueezeNet (IANDOLA et al., 2016) and AlexNet (KRIZHEVSKY;
SUTSKEVER; HINTON, 2012). The model is trained to detect fires in various scenar-
ios, including indoor and outdoor environments, without the need for pre-processing or
selecting more relevant features in the images. The trained model assigns a label to input
images based on probability scores calculated by the network.

If the network does not detect a fire in the image, the image is simply discarded.
Otherwise, the fire localization step is carried out, and the segmentation mask is produced.
To locate the fire in an image, the process involves additional processing. The feature maps
from different layers in the CNN are analyzed to identify maps sensitive to fire regions.
These maps are combined and binarized to segment the fire, resulting in a binary mask
that indicates the fire region.

The segmented fire region is then used for two purposes. Firstly, the severity
level or degree of burning of the fire is determined based on the number of pixels in the
segmented region. Secondly, the Zone of Influence (ZOI) is found by subtracting the
segmented fire regions from the original input image. The resulting ZOI image is passed
through the original SqueezeNet model, which predicts its label from 1000 objects. This
information helps identify the situation associated with the fire, such as a fire in a house,
forest, or vehicle. The severity of the fire and situational information can be reported to
the fire department for appropriate actions.

Overall, the proposed method employs a deep CNN to detect and localize fires in
images, eliminating the need for manual pre-processing or feature engineering. It provides
fire detection and localization, as well as additional information about the severity and
situation of the fire. The method outperformed the state of the art at the time, showing

better precision and recall results while maintaining low computational cost.
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On one hand, the use of Convolutional Neural Networks (CNNs) allows the model
to automatically learn relevant features for fire detection. This facilitates the application
of the method in different scenarios, both indoors and outdoors.

On the other hand, the fire localization step involves additional processing. An-
alyzing the feature maps from different CNN layers is necessary to identify fire-sensitive
regions. While this process can provide accurate fire segmentation, it adds computational

complexity to the method.

3.6 Compact CNNs and SLIC-Based Clustering for
Fire Detection and Localization in Video Frames

Similarly, Thomson, Bhowmik and Breckon (2020) investigate the use of more compact
versions of NasNet-A-Mobile (ZOPH et al., 2018) and ShuffleNetV2 (MA et al., 2018)
for detecting and localizing fires in images extracted from video frames. The proposed
CNNSs are applied to find frames containing fires. From the frames classified as containing
fires, an iterative clustering is performed using the SLIC algorithm. Similar to the work
of Chino et al. (2015), the superpixels generated by SLIC are also classified by Thomson,
Bhowmik and Breckon (2020) to identify fire regions, but they propose this classification
through their CNN models. Good results were obtained on their image dataset with
these simplified networks. However, the work only evaluated the networks’ performance
for image classification and did not produce segmentation masks.

One of the main advantages of the proposed method is the investigation of using
compact versions of CNNs, such as NasNet-A-Mobile and ShuffleNetV2, to detect and
localize fires in images from video frames. These more compact networks might be more
efficient in terms of computational resource utilization, allowing for faster fire detection
and localization.

Another positive aspect is the application of CNNs to find frames containing fires.
This helps reduce processing in areas of the image that are not relevant to the specific
problem, saving time and computational resources.

However, despite the promising nature of employing the SLIC algorithm for itera-
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tive clustering of frames identified as fire-containing, there is potential for further analysis.
Evaluating the effectiveness of this segmentation method across diverse datasets could pro-
vide valuable insights into its segmentation capabilities. A more thorough assessment of
the segmentation accuracy achieved by SLIC, especially in comparison to alternative fire

segmentation methods, would be crucial.

3.7 Fire Detection with DeepLabV3 Semantic Seg-
mentation

Mlich et al. (2020) compiled a dataset with polygon annotations and examined the per-
formance of the DeepLabV3 semantic segmentation architecture (CHEN et al., 2017) to
address the presented problem. In creating the dataset, the authors focused on including
a substantial number of challenging images from the negative class (“non-fire”) to ensure
the network’s robustness across diverse situations. This method demonstrated impressive
enhancements in the FPR metric compared to other state-of-the-art works.

On a positive note, the authors curated a comprehensive dataset with polygon
annotations, enabling a precise and detailed evaluation of the DeepLabV3 semantic seg-
mentation model’s performance (CHEN et al., 2017). Furthermore, their emphasis on
incorporating a substantial number of challenging negative class images into the dataset
aims to bolster the model’s resilience in various and demanding scenarios.

Conversely, it is crucial to consider certain limitations. While the model achieved
remarkable improvements in the FPR metric, its performance needs assessment across
other relevant metrics such as the TPR.

Despite the mentioned limitations, the proposed method represents a substantial
advancement in the field of fire detection, leveraging a well-established semantic seg-
mentation architecture and constructing a comprehensive and challenging dataset. With
improved FPR and a robust approach, this method holds the potential to contribute to en-
hancing the safety and efficiency of fire detection systems. However, further research and
comprehensive evaluations are required to assess its overall performance and applicability

in real-world scenarios.
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4 Proposed Method

We introduce the proposed architecture depicted in Figure 4.1, where boxes with a blue
marker share the same architecture. This method encompasses a prior classifier, a patch
classifier dedicated to locating fire regions within an image, and employs graph cuts and a

color thresholding process to enhance the precision of the fire shape in the segmentation.
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Figure 4.1: General architecture of the proposed model for fire detection and segmenta-
tion.

The prior classifier’s role is to classify images as containing fire or not, thereby by-
passing negative images in the segmentation stage. The performance of the prior classifier
is crucial to the pipeline, as accurately identifying and excluding non-fire images signifi-
cantly impacts overall results. If fire is detected in an image by this model, it proceeds
to the segmentation stage. Here, a segmentation mask is produced by both the patch
classifier and the graph cuts and color thresholding. The mask generated by the patch
classifier is derived by classifying regions, or patches, of 50 pixels with a 25-pixel step
increment, where the positive classification prevails in overlapping areas. Consequently,
this mask provides a coarser segmentation. On the other hand, the color thresholding
generates a more refined mask by classifying the color of each pixel in the image as fire or
not based on a color range. Since fire colors are not limited to fire itself and are present
in various other objects, the final step of the method narrows down the color-based mask
to the regions identified as fire by the network through an intersection. The graph cuts

technique further enhances the granularity of the masks by integrating both geometric
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and color information, providing a more comprehensive segmentation.

The architectural framework for the networks aligns with our previous strat-
egy (PEREIRA; VIEIRA; VILLELA, 2022), employing the CoAtNet-4 (DAI et al., 2021).
Both the prior classifier and the patch classifier share the same CoAtNet-4 architecture
but are trained on distinct datasets due to their specific purposes.

The patch classifier is primarily involved in region classification, producing an
initial mask that may suffer from imprecision and a high FPR. To refine this mask and
address these issues, it is combined with a mask generated through a process involving
graph cuts and color thresholding. This process commences with the construction of a
graph G = (V, &) for each image. In this graph, pixels are represented as nodes and are
connected to their four neighboring nodes, along with a source node and a sink node. The
source node symbolizes the background, while the sink node represents the foreground.
The objective is to assign a label z; to each node ¢ € V, indicating whether it belongs
to the foreground (z; = 1) or the background (z; = 0). This binary labeling problem is
tackled using graph cuts, minimizing energy functions that factor in pixel similarity with
the terminal nodes (source and sink) and their neighborhood.

Many methods require manual selection of seed pixels for foreground and back-
ground in the graph cuts labeling step (LI et al., 2004; AGRAWALA et al., 2004), with
these labels remaining fixed throughout the min-cut optimization. An illustration of such

user input and the resulting outcome is depicted in Figure 4.2.

Figure 4.2: Example of graph cut result with user input. Source: Li et al. (2004).

However, our approach automates this process by determining which pixels belong
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to fire regions and which belong to the background region. Importantly, these labels are
not static during the min-cut optimization but instead serve as initial conditions (S4 et
al., 2005).

This approach relies on a reference to calculate pixel similarity with the terminal
nodes, making use of the color distribution from the training set to define the seeds. This
is achieved by determining the distance to the nearest fire and non-fire colors for each
pixel. Given the extensive number of colors in the dataset, as depicted in Figure 4.3, the
use of every possible color would be impractical. Interestingly, the fire color distribution
in this dataset features a larger number of unique colors, encompassing numerous distinct

hues reminiscent of fire.

152953 unique colors in 180 images from the patch training set 119750 unique colors in 180 images from the patch training set

(a) Fire color distribution. (b) Non-fire color distribution.

Figure 4.3: Color distribution in the patch training set in the RGB space.

To streamline this process, the k-means algorithm is employed to cluster the
colors, reducing the search space to 1024 colors. Resembling the approach used by Li (LI

et al., 2004), we define energy functions, denoted as E; and E,. E is defined as follows:

df dy .

where df = |C(i) — K7(i)|, which is the distance between the color of pixel i and its
closest color from the foreground clusters. Following the same logic for the background

distance, we have d? = |C(i) — K®(i)|.
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Similarly, E5 is defined as follows:

EQ(?L’Z‘,ZL‘]') = )\|ZL‘Z — 37j|, (42)

where the color difference between pixels z; and x; is multiplied by a A value to balance
the energy sum.

These energies are computed for each node in V. The term FE; determines the
inherent inclination of each pixel to belong to either fire or background, while F5 estab-
lishes the suitability of neighboring pixels to have the same label. To illustrate the graph
construction, Figure 4.4 showcases a few connections between pixels of a fire image and

the terminal nodes.

Background terminal

Object terminal

Figure 4.4: Tllustration of initial graph connections between pixels of a fire image and the
terminal nodes.

To minimize the energy functions, the Boykov-Kolmogorov algorithm (BOYKOV;
KOLMOGOROV, 2004) is employed, a method that has demonstrated superior perfor-
mance compared to previous methods in the context of CV problems, making it an ideal
choice for this approach.

Finally, in constructing the color thresholding process to further enhance seg-
mentation granularity, we leverage the color distribution of fire from the training set of
patches. This approach facilitates the acquisition of a color range that optimally repre-
sents potential fire colors. The performance of color thresholding in fire segmentation also

necessitates evaluation for potential refinements.
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5 Experiments and Results

5.1 Datasets

As the proposed method involves a combination of neural networks and other CV tech-
niques, working with different datasets is essential, as each network serves a specific
purpose.

The creation of the initial classifier involves the compilation of a dataset from
5416 images originating from Li, Yan and Liu (2020), complemented by an additional
905 images sourced from Research (2017) and Saied (2020). This dataset maintains a
distribution of 2605 images within the “fire” class and 3716 images within the “non-fire”

class. Figure 5.1 shows a set of sample images used to train the prior classifier.

Figure 5.1: Sample images from the training set of the prior classifier.

In addition to neural network training, the dataset is also used for validation.
Hence, this dataset was split into a training set and a validation set. The data division
was performed in such a way that 85% of the images are used for training, and 15% are
allocated for validation. The image distribution per class and dataset split is depicted in
Figure 5.2.

The training of the patch classifier involved using datasets from two sources: the
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Figure 5.2: Prior classifier dataset distribution.

compilation by Chino et al. (2015) and the collection of images assembled by Cazzolato et
al. (2017), which comprises emergency situation images for fire and smoke analysis. The
dataset constructed by Chino et al. (2015) contains images of size 50x 50 pixels (patches).
By training the network on this dataset, the desired classifier for fire region identification
can be obtained. Figure 5.3 shows images used to train the patch classifier, being 5.3a,
5.3b, 5.3e and 5.3f from the training set used by Chino et al. (2015), and 5.3¢, 5.3d, 5.3g

and 5.3h from Cazzolato et al. (2017).

Figure 5.3: Sample images from the training set of the patch classifier.

This dataset used for the patch classifier consists of 240 images, with 80 belonging
to the “fire” class and 160 to the “non-fire” class. In order to expand and balance

the dataset further, an additional 240 images were added from the dataset created by
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Cazzolato et al. (2017). This results in a dataset of 240 labeled “fire” patches and 240
labeled “non-fire” patches. The image distribution per class and dataset split is depicted
in Figure 5.4.

Patch Dataset Distribution by Class and Split
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Figure 5.4: Patch classifier dataset distribution.

Ultimately, an additional dataset is employed to evaluate our methodology. This
segmentation dataset, curated by Chino et al. (2015), encompasses a total of 226 images.
Despite its size, the dataset presents a set of challenging images for a comprehensive as-
sessment. Out of these, 119 images depict instances of fire, while the remaining 107 images
do not feature any fire. The segmentation performance of our approach is benchmarked
against other methodologies using this dataset. Figure 5.5 displays a selection of images

from the test set assembled by Chino et al. (2015).

Figure 5.5: Sample images from the test set.
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5.2 Experiment Setting

The complete architecture is implemented using the PyTorch framework (PASZKE et
al., 2019) and is obtained from a publicly available repository!. In the experiments, the
model is initialized with random weights. For the training of the patch classifier network,
the Adaptive Moment Estimation (Adam) optimizer is employed, along with a cross-
entropy loss function, a learning rate of 0.001, a batch size of 8, and training over 40
epochs. Similarly, the training of the prior classifier also uses the Adam optimizer and
cross-entropy loss function, spanning 40 epochs. However, the prior classifier training
incorporates a lower learning rate of 0.0001, a batch size of 12, and a learning rate decay
by a factor of 0.1 at the 12th, 24th, and 36th epochs to facilitate learning.

In order to enhance the performance of the initial model and achieve a more
balanced classification, adjustments have been made to the class threshold. Rather than
classifying images with an output probability of 0.5 or greater as non-fire, the criterion
is now set at 0.7. This modification ensures that an image is discarded only if the model
is highly confident that it does not contain any fire. Consequently, even if some non-fire
images proceed to the next step, the patch classifier can correct this error by not detecting
fire regions within the image. This refinement significantly improves the overall accuracy
and reliability of the classification process.

Similarly, the class threshold for the patch classifier undergoes modification to
offer increased flexibility to the graph cuts in making the final determination regarding
pixel classification as fire or non-fire. The non-fire threshold for the patch classifier is
adjusted to 0.9, indicating that only predictions with a probability exceeding 90% are
classified as non-fire. This adaptation empowers the graph cuts to exert their influence,
given the high confidence of the patch classifier in identifying non-fire regions.

During the construction of graphs from images, instances may arise where the
difference between dy and d? is relatively small, potentially causing confusion in the graph
cut algorithm. To mitigate this, a criterion is introduced: if the difference in distance is
less than a quarter of the maximum possible distance, the energy function Ej(z; = 0) is

increased by a factor of 1.5. Through experimentation, it was determined that a value

L(https://github.com/chinhsuanwu/coatnet-pytorch)
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of 0.0005 for A in Eq. (4.2) yields the best results. This adjustment contributes to a
clearer distinction between fire and non-fire regions, thereby enhancing the accuracy of
the segmentation process. The graph cut algorithm is implemented using the PyMaxflow

library?.

5.3 Evaluation Criteria

This section introduces the main objective comparison criteria to evaluate fire detection
methods. The most common are recall (also known as TPR), precision, accuracy, Fj-score
and Fjg-score. With C being the confusion matrix of a binary problem, C; ; refers to the
number of samples known to be in class ¢ and predicted to be in class j, with ¢, 5 = 1, 2.
Hence, the overall accuracy is defined as the number of correctly predicted pixels divided

by the total number of pixels:

PEED LT
S Gy

(5.1)

The Fj-score is the harmonic mean of the precision (P) and recall (R) and is

defined as follows:

P xR TP TP

P=— - -
P+ R’ TP+ FP’ 1 TP+ FN’

Fj-score = 2 X (5.2)

where T'P is the number of true positive pixels correctly predicted as positive (fire), F'P
is the number of true negative pixels predicted as positive and F'N is is the number of
true positive pixels predicted as negative (non-fire).

The Fj-score serves as a versatile metric, extending the F-score to allow control
over the balance between precision and recall through the 5 coefficient. This parameter
plays a crucial role in adjusting the emphasis on either precision or recall. Specifically, a
[ < 1 accentuates the importance of precision and proves beneficial for scenarios where

minimizing false positive predictions is of particular interest. Conversely, a # > 1 dimin-

2 (https://github.com/pmneila/PyMaxflow)
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ishes the significance of precision, prioritizing the reduction of false negative predictions.

P xR

FB—SCOI‘G = (]. + /82) X m

(5.3)

5.4 Results

An extensive series of experiments was conducted to find the best parameters for the
graph cuts. Table 5.1 shows a sample of the combinations tested and their respective
results. In this table, the column labeled k represents the number of clusters employed
for k-means clustering during the calculation of color distances for the graph cut energies,
as elucidated in Chapter 4. Importantly, no substantial improvements were observed for
higher values of k, and such increments would likely introduce unnecessary complexity

without proportional benefits.

Table 5.1: Sample of parameter combinations tested and their respective results.

k A TPR FPR

5 0.1 0.90 0.21
15 0.05 093 021
25 0.03 096 0.24
50 0.01 096 0.23
128 0.01 096 0.21
256  0.003 096 0.19
512 0.001 0.96 0.18
1024 0.0001 0.97 0.17

To evaluate the efficacy of the method, its performance is assessed on the dataset
compiled by Chino et al. (2015), juxtaposing the results with those achieved by alternative
approaches. A comprehensive summary of the experimental outcomes for each step of the
proposed method, as well as their combinations, is presented in Table 5.2. Notably, the
color classifier and graph cuts demonstrate an exceptionally high TPR. However, they
also exhibit a notable tendency to overlook a substantial number of true negative pixels.
As indicated in the ablation study, the prior classifier effectively reduces the FPR at a
small cost to TPR.

Table 5.3 displays the best results for TPR and FPR values obtained from the

experiments, comparing them with the results reported by state-of-the-art works. Our
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Table 5.2: Results of each step and their combinations.

Phase TPR FPR

Color classifier 0.99 0.59

. . : Graph cut 0.99 0.36
Without prior classifier Patch classifier 0.97 0.17
Intersection 096 0.11

Color classifier 0.91 0.20

. . . Graph cut 0.97 0.23
With prior classifier Patch classifier 0.94 0.07
Intersection 0.92 0.03

method achieves the highest TPR among all the approaches, preserving a competitive

FPR. It is important to note that, in the case of the method proposed by Mlich et al.

(2020), while it achieves the lowest FPR for the problem, it comes with the cost of a 0.87

TPR.

Table 5.3: Comparison of TPR and FPR reported by various approaches.

Method TPR FPR
Color Classification (CHINO et al., 2015) 0.77 0.13
BoWFire et al. (CHINO et al., 2015) 0.65 0.03
CNNFire T=0.40 (MUHAMMAD et al., 2019) 0.82 0.02
CNNFire T=0.45 (MUHAMMAD et al., 2019) 0.85 0.04
CNNFire T=0.50 (MUHAMMAD et al., 2019) 0.89 0.07
Mlich et al. (MLICH et al., 2020) 0.87 0.01
Previous method (PEREIRA; VIEIRA; VILLELA, 2022) 0.91 0.04
Novel method (PEREIRA; VIEIRA; VILLELA, 2023) 0.92 0.03

Table 5.4 reveals a significant improvement in precision and Fi-score compared to

the previous proposal. As noted by Pereira, Vieira and Villela (2022), it is crucial to high-

light the considerable class imbalance within the dataset, contributing to the challenges

with these criteria. Despite a similar number of fire and non-fire images, the dataset

contains around 21 times more non-fire pixels than fire pixels. In response to this, the

Fy-score was computed, resulting in a value of 0.80. Given the critical importance of not

missing fire cases in fire detection, where false alarms are less harmful than undetected

fires, the method demonstrates superior fire classification (TPR) compared to the cited

methods. Furthermore, the latest method achieves an accuracy of 0.96, surpassing the

0.95 accuracy reported by Pereira, Vieira and Villela (2022). Although some works, like



5.4 Results 49

those by Rudz et al. (2013), Chen, Wu and Chiou (2004), Muhammad et al. (2019), and
Mlich et al. (2020), achieve good precision and Fj-score values, they still fall behind in
terms of TPR.

Table 5.4: Comparison of Precision and Fi-score reported by different works.

Method Precision Fj-score
Chino et al. (CHINO et al., 2015) 0.50 0.57
Rudz et al. (RUDZ et al., 2013) 0.63 0.52
Rossi et al. (ROSSI; AKHLOUFT; TISON, 2011) 0.39 0.28
Celik et al. (CELIK; DEMIREL, 2009) 0.55 0.54
Chen et al. (CHEN; WU; CHIOU, 2004) 0.75 0.25
Muhammad et al. (MUHAMMAD et al., 2019) 0.86 0.91
Mlich et al. (MLfCH et al., 2020) 0.73 0.79
Previous method (PEREIRA; VIEIRA; VILLELA, 2022) 0.50 0.65
Novel method (PEREIRA; VIEIRA; VILLELA, 2023) 0.54 0.68

In Figure 5.6, the superiority our novel method is evident as it outperforms state-
of-the-art results in terms of TPR, while maintaining a very low FPR comparable to
the best-reported results in the literature. It is noticeable how more recent methods,
harnessing the advent of deep learning, improved the state of the art. Despite consistently

low FPR results, some methods struggle to achieve a balance between TPR and FPR.
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X Chen
og A o Celik
+ © BoWFire
4 Color classification
. A CNNFire T = 0.40
M CNNFireT = 0.45
0.6 V¥ CNNFire T = 0.50
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& Our previous method
Our novel method
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Figure 5.6: Comparison of results in the ROC space.

Figure 5.7 visually presents the results of the method applied to a fire image,
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displaying the input image (5.7a), the corresponding ground truth (5.7b), and the resulting
output achieved by several approaches. The masks obtained by Chen, Wu and Chiou
(2004) and Rossi, Akhloufi and Tison (2011) are evidently unable to identify the fire in
this particular sample. In contrast, while other approaches achieve fine-grained masks,
our method successfully identifies the entire extent of the fire by prioritizing the positive

class.

(a) Input image (b) Ground truth (c) Celik

(d) Chen (e) Rossi (f) Rudz

(g) Color Classification (h) BoWFire (i) CNNFire

(j) Previous method (k) Novel method

Figure 5.7: Result of various approaches for a fire image.

Figure 5.8 visually highlights the enhancements achieved through the integration
of graph cuts into our methodology. Upon combining graph cuts with the other steps,

a notable reduction in the FPR is observed. This reduction is attributed to the focused
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predictions on regions identified as actual fire by the patch classifier, showcasing the

efficacy of our refined approach.

" Original Ground truth

Final result

Figure 5.8: Visual demonstration of improvements over our previous method.
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6 Conclusion

In today’s world, characterized by the exponential growth of data and the increasing
demand for time efficiency and accuracy, the role of Al is becoming increasingly crucial.
AT algorithms have the potential to automate complex processes, enabling faster and more
precise analysis of large volumes of data.

In the context of fire detection, the ability to segment fire regions in images is
of great significance. Fire segmentation not only allows for the identification and local-
ization of fire incidents but also provides a comprehensive understanding of the affected
area, aiding in the planning of effective responses and mitigation strategies. A promising
approach to addressing the fire detection problem is the combination of neural networks
with graph cuts. By harnessing the power of DL and extracting meaningful features from
input data, neural networks can learn to distinguish fire patterns from normal background
elements.

The integration of graph cuts and color thresholding further enhances the accu-
racy of fire detection, capturing distinct colors associated with fire. This combined ap-
proach shows significant potential in detecting fires with greater efficiency and reliability,
contributing to data-driven decision-making to prevent future incidents and minimizing
the devastating consequences of fires.

In summary, this approach excels in advancing TPR while simultaneously re-
ducing the FPR, a pivotal achievement given the criticality of accurately identifying fire
instances. The application of graph cuts and the color thresholding algorithm following
the patch classification step ensures that the resultant segmentation accurately outlines
fire-related regions within an image. This synergistic combination of methods allows for a
fine-grained understanding of the spatial extent and boundaries of fire instances, thereby
contributing to a more precise analysis of fire occurrences.

While our approach excels in critical aspects, there is still room for improvement
in refining the generated masks to adequately capture fire shapes. The inherent difficulty

of the problem is illustrated in Figure 4.3, as the majority of fire colors are also present
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in non-fire images, posing a significant challenge. Consequently, future research efforts
will concentrate on conducting extensive experiments with the proposed combination of
methods and refining associated parameters.

Achieving a remarkable TPR of 0.96 and a low FPR of 0.04 in the final seg-
mentation results is possible with a perfect prior classifier. Therefore, enhancements
to the models should be considered, experimenting with transfer learning methods and
pre-trained models. Moreover, strategies such as augmenting the training dataset with
synthetic data and applying data augmentation techniques are viable options to enhance

the robustness and effectiveness of the models.
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