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Abstract

Knowledge about the uncertainties associated with a computational model is essential to

understand the level of reliability of a prediction, especially in the context of decision

making. The model’s reliability is a central object in the scope of uncertainty quan-

tification (UQ) techniques, which focus on discussing the uncertainty of predictions and

guaranteeing more reliability to the simulations.

In the petroleum engineering field it is no different, the need for reliable simula-

tions is mandatory, especially as the drilling and extraction of new wells becomes more

expensive. In the context of enhanced oil recovery (EOR) processes, the foam injection

technique is used to reduce gas mobility and increase the apparent viscosity, which in turn

increases recovery efficiency. Uncertainty from input parameters may affect the simula-

tors’ reliability, and therefore uncertainty quantification is a key procedure while studying

these physical systems.

This work presents an improved workflow for UQ in mathematical models used

for the simulation of EOR processes. A study case based on experimental data from core

flooding experiment is investigated with the aim of estimating the input parameters and

their uncertainty. In particular, the CMG-STARS implicit texture foam model is adopted

considering the term that describes the presence of water saturation in the foam. Different

strategies for the Bayesian modeling and estimation are studied in order to increase the

level of information available propagated to the whole process of UQ.

Keywords: Uncertainty quantification, Computational modeling, Bayesian modeling,

Enhanced oil recovery.



Resumo

O conhecimento sobre as incertezas associadas a um modelo computacional é essencial

para entender o ńıvel de confiabilidade de suas previsões, principalmente para tomada de

decisão. A confiabilidade do modelo é o foco nas técnicas de quantificação de incerteza

(UQ), que focam em discutir a incerteza das previsões e garantir mais confiabilidade às

simulações.

Na área de engenharia de petróleo essa questão não é diferente, a necessidade

de simulações confiáveis é obrigatória, principalmente porque a perfuração e extração

de novos poços se torna cada vez mais cara. No contexto dos processos de recuperação

avançada de óleo (EOR), a técnica de injeção de espuma é usada para reduzir a mobilidade

do gás e aumentar a viscosidade aparente, o que, por sua vez, aumenta a eficiência da

recuperação. A incerteza dos parâmetros de entrada pode afetar a confiabilidade dos

simuladores e, portanto, a quantificação da incerteza é um procedimento fundamental ao

estudar esses sistemas f́ısicos.

Este trabalho apresenta um aprimoramentos para UQ em modelos matemáticos

usados na simulação de processos de recuperação avançada de petróleo. Um caso de

estudo baseado em dados experimentais do experimento de inundação de testemunhos é

investigado com o objetivo de estimar os parâmetros de entrada e suas incertezas. Em

particular, o modelo de espuma de textura impĺıcita CMG-STARS é adotado considerando

o termo que descreve a presença de saturação de água na espuma. Diferentes estratégias de

modelagem e estimação bayesiana são estudadas a fim de aumentar o ńıvel de informação

dispońıvel propagada para todo o processo de UQ.

Palavras-chave: Quantificação de incertezas, Modelagem computacional, Modelagem

Bayesiana, Recuperação avançada de petróleo.
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“The ears hearing something is not as

good as the eyes seeing it;

The eyes seeing it is not as good as the

foots treading upon it;

The foots treading upon it is not as good

as the hands differentiating it.

When a man first enters an office, it is as

if he has entered a dark room: the longer

he stays, the more clearly he sees.”

attributed to Xunzi, in the Shuo

Yuan.
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1 Introduction

This chapter introduces basic concepts of uncertainty quantification, reservoir simulation

in the context of petroleum engineering and the objectives of this work.

1.1 Uncertainty Quantification

Uncertainty in science can be characterized as the lack of certainty about a phenomenon.

More precisely, it is a notion of limitation of knowledge about some event because of its

physical nature. For the output of a model, it is represented by a confidence level with

respect to the model’s predictions. Uncertainties can be classified into two types:

• Aleatoric: which are uncertainties due to variations in the physical system itself.

They arise naturally from observations (noise), they are stochastic and irreducible;

• Epistemic: which uncertainties due to the lack of knowledge of a physical system.

This form of uncertainty arises from modeling hypothesis (bias) and can be reduced.

Uncertainty Quantification (UQ) is the science of quantitative characterization

and reduction of uncertainties in both computational and real world applications. To deal

with massive datasets in diverse application areas, data-driven uncertainty quantification

requires statistical tools such as Monte Carlo methods, Bayesian inference, and Markov

decision processes.

UQ can be further categorized into Inverse and Forward UQ. The former is the

process of estimating the parameters of a model and their uncertainty from experimental

data. Inverse problems are usually ill-posed, and their solution not unique. Many applica-

tions employ inverse UQ for calibrating models of physical systems, such as computational

fluid dynamics (CFD) (LI et al., 2022; VALDEZ et al., 2020) and computational structural

dynamics (CSD) (ALVIN et al., 1998; BALLESTEROS et al., 2014; SEDEHI; PAPADIM-

ITRIOU; KATAFYGIOTIS, 2020) simulations. Forward UQ estimates the uncertainty in

the model’s output given the uncertainty in the inputs, which are defined as random vari-
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ables. A statistical analysis of the outputs can be carried out to quantify the propagated

uncertainty.

Advances in UQ algorithms in recent years have made it feasible to infer param-

eters and their uncertainties in large-scale complex systems from large datasets, such as

global ocean modeling and oil recovery modeling (COUNCIL et al., 2012; RUDE et al.,

2018; BERG; UNSAL; DIJK, 2021).

Simulations have transformed the petroleum sector, where a wrong drilling de-

cision can take up the entire available budget for a project. The flow of fluids between

injection and production wells can be studied using reservoir simulation tools. Simulating

numerous forward scenarios is necessary to optimize reservoir exploitation while lowering

uncertainty. In fact, the initiatives to enhance reservoir simulators have been funded by

oil companies, which are responsible for some of the most powerful computers (RUDE et

al., 2018).

1.2 Petroleum Engineering

Oil recovery is one of the most critical applications in studying fluid flow in porous media.

Finding more effective ways to extract oil from natural reservoirs is a major concern for

the petroleum sector. The oil recovery process can be seen divided in three main types:

• Primary recovery : Corresponds to the natural oil flow from the reservoir to the

surface. It is the first and most crucial step in the oil recovery process. Generally,

the amount of oil recovered by primary recovery is about 15% to 30% of the original

oil on site (OOIP).

• Secondary recovery : More oil is recovered by injecting water or gas into the reservoir

so that the pressure remains high enough to maintain oil extraction in a production

well. Despite increasing efficiency, this strategy still suffers from instability in the

gas-water interface and gravity segregation that create viscous fingering.

• Tertiary recovery : After the secondary recovery is performed, more oil can be re-

covered by more efficient strategies, such as chemical or thermal injections.
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It is important to remark that Enhanced Oil Recovery (EOR) is a process that

can be used to increase the amount of oil recovered since the primary injection employing

secondary and tertiary techniques.

This work focus in a particular case about the interaction between aqueous and

gaseous phases that creates foam, a dispersion of gas in a liquid stabilized by surfactants.

Foam is a very efficient method for oil recovery, because it can reduce the mobility of

the gas phase and increase the sweep efficiency of the reservoir (EFTEKHARI; FARA-

JZADEH, 2017). Figure 1.1 presents an illustrative scheme comparing two techniques:

gas injection and the co-injection of water and gas generating foam.

Figure 1.1: A comparison of gas injection and foam injection as examples of secondary

and tertiary or EOR. Adapted from (CEDRO, 2020).

1.3 Objectives

The main objective of this work is to present the usage of UQ as an essential tool for

estimation of parameters and uncertainties in a computational model for foam flow in

EOR processes. In particular, the parameters of the mathematical model known as

STARS ((CMG)., 2019) and proposed by the Canadian company Computer Modelling

Group (CMG) are estimated using the UQ workflow presented in this work. An evalu-

ation of how to improve the parametric uncertainty estimation using different Bayesian

modeling choices is also carried out.
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1.4 Organization of the text

Chapter 2 presents a detailed overview of the workflow for performing UQ in computa-

tional models, separated into stages to facilitate the understanding of and the role of each

stage. At the end of Chapter 2, an illustrative example for carrying out UQ is presented

to highlight the steps of the UQ workflow. Chapter 3 presents a case study of UQ to

estimate parameters and reduce their uncertainty considering experimental data from a

foam quality-scan experiment. General conclusions about the present work and possible

future works are discussed in Chapter 4.
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2 Uncertainty Quantification Workflow

This chapter presents a detailed overview of the usage of UQ on mathematical models.

Some necessary concepts and theories are given to introduce the methods employed in

this work. First of all, to have an overview of the steps that make up the UQ pipeline, it

is essential to know the primary purpose of employing the UQ on a model: to understand

how the system modeled reacts to uncertain inputs.

2.1 The Workflow

A workflow for uncertainty quantification is presented in Figure 2.1. Equations, drawings,

and symbols in Figure 2.1 are associated with the context of multi-phase flows in porous

media since it is the focus of this work.

3

2 1

4

5

Figure 2.1: Workflow for uncertainty quantification of numerical models for foam-based

EOR presented in Rio Oil and Gas 2022. Adapted from (RIBEIRO et al., 2022).

In the following it is described in well-defined steps the different techniques em-

ployed in the workflow:

1. Probabilistic Modeling the uncertain data, the input parameters and its corre-
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lations, and also the prior knowledge available for the researcher;

2. Bayesian Inference over the evidence (data) and prior beliefs;

3. Diagnostics and Evaluation of the posteriors distributions of parameters values;

4. Uncertainty Propagation of posteriors distributions to the model;

5. Sensitivity Analysis of the output led by changes in input variables.

The task of performing inverse UQ analysis is characterized by steps 1, 2, and

3, whereas forward UQ analysis is characterized by steps 3, 4, and 5 from the workflow.

In the following sections, each of these steps are discussed with more details. At the end

of this chapter, an illustrative example of the application of this workflow to a classical

mathematical model problem is shown to highlight the presented concepts.

2.2 Probabilistic Modeling

Probabilistic modeling characterizes the variability of model parameters (inputs) or even

mathematical expressions that compose it in terms of random variables. It occurs through

randomization processes, employing well-known probability distributions for the parame-

ters or components of the model.

In this section, before presenting how the mathematical model randomization is

done, some concepts of probability theory are briefly reviewed. A more in-depth and

detailed explanation can be found on the literature (CASELLA; BERGER, 2021).

2.2.1 A Brief Review on Probability Theory

A probability P(X = x) ∈ [0, 1] defines the chance of an event x occurring. Here X

is a random variable, a function that maps a probability space to the real numbers.

Random variables are associated with probability distributions. Probability distributions

are mathematical functions that define the probabilities of occurrence of a variable taking

any given value. In the continuous cases, it is defined as probability density functions

(PDF). In the literature, there are many well-known probability distribution families,

such as the Gaussian or normal distribution, detailed next. Considering X follow a
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normal distribution, a common notation used to indicate this fact and to describe its

PDF is:

X ∼ N(µ, σ2) ⇐⇒ fX(x|µ, σ2) =
1

σ
√
2π

exp

(
−(x− µ)2

2σ2

)
,

where µ and σ2 are the parameters of the normal distribution, which are also statistics

of the distribution of population. The parameter µ represents its mean (or expectation),

while σ2 denotes its variance. Statistics are summaries of populations or samples of those

populations, and therefore, being summaries, they are simpler objects to deal with.

Two random variables X1 and X2 are said to be independent if the realization of

one does not affect the probability distribution of the other. If they are not independent,

the probability can be measured by the conditional probability, i.e., the probability of

an event X1 is dependent on the occurrence of another event X2. Formally defined by

P(X1|X2) =
P(X1∩X2)

P(X2)
.

If X1 and X2 are independent, the correlation coefficient represents a measure of

the similarity between these two variables is denoted by Corr(X1, X2) and is a number

[−1, 1]. A positive correlation between two random variables can be interpreted as that as

one variable increases, the other increases. In contrast, with a negative correlation when

one variable increases, the other decreases.

Finally, probabilistic modeling is a branch of the probability and statistics that

deals with developing mathematical models for analyzing data, generally subject to un-

certainty. It is also about dealing with the randomization of constituent parameters of a

deterministic model, i.e., characterizing variables as random variables.

2.2.2 Bayesian Approach

The probabilistic modeling of a physical system with observed data can be carried out

using the Bayesian approach, glimpsed as a Bayesian modeling, which is a powerful tool

for analyzing complex data. The Bayesian modeling is a statistical approach that uses

the Bayes theorem as its foundation to answer how this data could have been generated,

given some data and assumptions.
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The Bayesian model is composed of combining random variables and the data

information via the Bayes’ theorem:

P(θ|D)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
P(D|θ)

prior︷︸︸︷
P(θ)

P(D)︸ ︷︷ ︸
marginal likelihood

, (2.1)

where P(θ) represents the prior knowledge of the input parameters θ; P(D|θ) is the like-

lihood function is how the observed data D is introduced on model; and P(D) is the

marginal likelihood or evidence, a normalization factor for the posterior distribution,

P(θ|D). This equation will be revisited in more detail soon.

In Bayesian theory, the probability reflects the degree of confidence in an event,

which may change when new information is collected, as opposed to a fixed value based on

a frequentist approach. The degree of confidence can be established on prior knowledge

about the event, such as results from previous experiments or personal belief in the event.

2.2.3 Hierarchical Modeling

Bayesian hierarchical modeling is a central topic in modern Bayesian statistics. Its con-

struction occurs by combining submodels into a hierarchical structure and employing

Bayes’ theorem to associate them with the observed data, considering any uncertainties

present (MARTIN; KUMAR; LAO, 2021; MCELREATH, 2020).

The validation of a simulator or a model denoted by M via the Bayesian approach

is based on the assumption that the error of the data against the model, ϵ, follows the

normal distribution centered at origin with a given variance, i.e., ϵ ∼ N(0, σ2). Applying

that error at the model’s output, β, then the random variable representing the model is

M = ϵ+ β =⇒ M ∼ N(µ, σ2). (2.2)

Equation (2.2) presents a Bayesian regression where the regressand is the investigated

model β. In this way, when randomizing the set of parameters of the model, its outputs,

β, will become another random variable because it inherits the randomness when oper-

ating over them. Figure 2.2 illustrates the hierarchical composition for a case with two
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randomized parameters

Figure 2.2: A simplified Kruschke style diagram (KRUSCHKE, 2015) exposing the rela-

tions on a idealized hierarchical modeling that composes model M. To exemplify, in the

illustrated case, for a hypothesis that M follows a normal distribution. Parameters p1 and

p2 are any random variables following a prior PDF that drive randomness on mean µ.

Also, the standard deviation σ has no influence from other random variables, so a prior

PDF must be assumed.

To support Bayesian hierarchical modeling when dealing with complex systems,

many computational implementations have emerged in recent years with sophisticated

approaches, allowing practitioners to work with this approach focusing on the modeling

only (SALVATIER; WIECKI; FONNESBECK, 2016).

2.2.4 Probabilistic Programming

Modern Bayesian statistics makes use of growing computational power to enable itera-

tive algorithms that were unfeasible decades ago. Thus, with the growth of the use of

computers, computational tools that aim to facilitate these constructions emerged un-

der the umbrella of the name probabilistic programming languages (PPL). The notion

of probabilistic programming is in the sense that probability models are created using

programming random variables as the model’s components. According to (MARTIN;

KUMAR; LAO, 2021) “the purpose of PPLs is help Bayesian practitioners build genera-

tive models to solve problem at hand, for example, perform inference of a Bayesian model
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through estimating the posterior distribution”. In this work the PPL adopted is the PyMC

(SALVATIER; WIECKI; FONNESBECK, 2016), a Python package for Bayesian inference

that employs Markov chain Monte Carlo (MCMC) methods.

2.3 Bayesian Inference

As presented in the previous section, Bayesian inference is about updating beliefs to

incorporate new evidences (GELMAN et al., 2021) using the Bayes’ theorem (2.1), as

illustrated in Figure 2.3. Therefore, it is essential to understand better how to calculate

each Bayes theorems part to put it in computer language.

Figure 2.3: Probabilistic update from a prior beliefs to a posterior beliefs when confronted

with evidences.

The prior distribution, P(θ), translates the notion one have on that event θ, in a

sense that it represents the uncertainty about the parameters before observing the data.

If nothing is known about that event, a flat prior could be used (later, it will be discussed

that this is not necessarily a good choice).

To link the observed dataD to the unknown parameters θ, the likelihood function,

P(D|θ) = L(θ | D) measures plausibility of data given the parameters. For a continuous

case with an observed dataset D, the likelihood is the product of the PDF parameterized

by θ for all data di ∈ D:

L(θ | D) =
n∏

i=1

fθ(di), (2.3)

where fθ(di) is the PDF of θ evaluate in di.
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As D is the observed data, formally P(D) is the probability of observing the data

in all universe of possibilities, for all the possible values the parameter θ can take. In

mathematical terms the marginal likelihood is

P(D) =

∫
Θ

P(D | θ)P(θ)dθ, (2.4)

where Θ means an integration over all the possible values of θ. This expression is hard

to be calculated even with numeric approaches. But notice as it is a definite integral on

the parameter space, P(D) is constant for the parameters and, as pointed before, only a

normalization factor for the posterior distribution.

So, in practice the Bayes’ theorem is presented using a proportionality relation

P(θ|D)︸ ︷︷ ︸
posterior

∝
likelihood︷ ︸︸ ︷
P(D|θ)

prior︷︸︸︷
P(θ) (2.5)

By multiplying the prior distribution and likelihood, the posterior distribution is obtained

to less than a normalization; the result of the Bayesian inference reflects the knowledge

achieved over the problem given the data and the modeling.1 In practice, when working

with datasets, this approximation is the more feasible way to construct the Bayesian

model.

2.3.1 Inference Engines

As seen so far, computing Bayesian methods can be mathematically challenging while

conceptually simple. The posterior is usually estimated numerically using iterative ap-

proaches such as the Markov Chain Monte Carlo (MCMC), well-known in literature as

an introductory algorithm for the universe of inference engines. An inference engine (also

called Universal Inference Engines) is so named because it is designed to be capable of

approximating any probabilistic model. (MARTIN; WIECKI, 2018) lists some of these

methods separated into two convenient groups:

1The Bayesian uncertainty formulation makes no distinction between epistemic and aleatoric uncer-
tainties. Instead, this distinction is interpretive and can be analyzed more carefully by methods that
employ the result of this step.



2.3 Bayesian Inference 18

• Non-Markovian methods:

– Grid computing,

– Quadratic approximation,

– Variational methods;

• Markovian methods:

– Metropolis-Hastings,

– Hamiltonian Monte Carlo (HMC),

– Sequential Monte Carlo (SMC).

More details about these inference engines and others can be found on the literature (MAR-

TIN; WIECKI, 2018).

When a PPL is adopted, the possibilities of methods to be employed are reduced

to the group inference engines a PPL provides. In this work we used the PyMC engine

for Bayesian inference, which employs the No-U-Turn Sampler (NUTS) (HOFFMAN;

GELMAN et al., 2014) based on the HMC (DUANE et al., 1987; BROOKS et al., 2011),

a type of MCMC method that makes use of gradients to generate new proposed states.

To cover the core concepts of Markovian methods, the idea behind the classic

MCMC sampling is discussed: The main goal of MCMC is to obtain a sufficient size of

sample from a target distribution (in this case, the posterior distribution), to capture the

essence of the true population distribution as the sample size increases. Thus, MCMC

is a stochastic process that repeatedly draws random samples seeking to characterize the

distribution of the parameter of interest. The Monte Carlo (MC) random walk method -

to be discussed later - creates a Markov chain to have a balanced distribution proportional

to a given function. This combination of methods, allows building a Markov chain that

spans Monte Carlo samples, where probability dependencies between samples are taken

into account.

In order to exemplify the execution of the method, listed below and illustrated

in Figure 2.4 is the core of the execution of the first MCMC, the Metropolis algorithm

(METROPOLIS et al., 1953; HASTINGS, 1970)
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Figure 2.4: Example of the MCMC iterative process considering a flat prior. Adapted

from (LEE; SUNG; CHOI, 2015)

1. Choose a starting point θ0 of, usually arbitrarily;

2. Generates a candidate θi;

3. Sample a new parameter θi+1 sampling from a simpler distribution q(θi+1|θi);

4. Accepts or rejects this new point;

5. Repeat from step 2 until sufficient sample size is reached.

In general, more sophisticated MCMC-based strategies focus on the process of improving

walking through population space, described in steps 2, 3 and 4. The term ”sufficient”

in step 5 refers to the quality of the model, this quality can be evaluated diagnosing the

posterior samples. In the following section it will be discussed.

2.4 Diagnostics and Evaluation

This section covers the analysis and treatment of inverse UQ outputs and how to make

them available as inputs to carry out forward UQ. An important first step is diagnosing

inference results to understand if the chain has converged. In practice these diagnoses

usually occur through graphical analyses and empirical tests which in turn are facilitated

by the Python package ArviZ (KUMAR et al., 2019) and its interface with PyMC.

A usual analysis is the autocorrelation of the chains. This analysis is common in

the context of time series forecasting to assess how related a series is to itself. Briefly,
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given a correlation between two series T and S denoted Corr(T, S), the autocorrelation

function (ACF), R(k) ∈ [0, 1] measures the correlation of a series/chain with itself within

a lag of size k,

R(k) = Corr(T, Tk). (2.6)

If the series is autocorrelated, it indicates a possible non-convergence. To frame a better

understanding of the several values assumed by the lag k, a choice is to use the ACF plot,

Figure 2.5. It is expected that will be no autocorrelation for a chain in convergence as k

increases.
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Figure 2.5: The Autocorrelation Function (ACF) plot for the trace of the distribution.

Generally is defined an expected range R(k) < 0.1 for all k > 1 to evaluate the conver-

gence.

Another useful analysis, that can also visually express the autocorrelation, is in

the variable trace, if a behavior is observed where the points indicates oscillation of the

moving average, can be an indication of non-convergence of the sample. In comparison the

behavior will present a lean trace, which indicates a solid and constant moving average and

consequently the convergence. These behavior of bad and good quality of the inference

results by the trace plot are exemplified respectively in Figure 2.6.
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Figure 2.6: Trace plot examples that indicates bad quality, on the left, and good quality,

on the right.

For now, one can already obtain relevant information about the model, mainly

about the history matching on the parametrization with information about the uncertainty

of this data assimilation. Furthermore, it is possible to observe how these parameters are

correlated through the sampled chains, which provides an intuition about which param-

eters most influence the output uncertainty, or even how the proposed modeling for the

phenomenon of interest can be reassessed. But this analysis will be saved for the end of

the workflow.

To prepare the data to the forward UQ and avoid possible noise without interpre-

tation when propagating inference results, the highest density interval (HDI) is employed.

It is a way of summarizing a distribution by the shortest interval containing a fraction

of a probability density (MARTIN; KUMAR; LAO, 2021). The HDI, seeks the region

where is most likely to have an observation, but differs from confidence interval (CI) that

removes the tails symmetrically in relation of probability. The Figure 2.7 illustrates these

differences.
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Figure 2.7: HDI has the same density value on its boundaries, different from a symmetrical

interval.

Having the converging inference results diagnosed and curated to a meaningful

credible interval, they are ready to be used as input artifacts for the forwarding UQ.

2.5 Sampling Methods

In this section will be discussed how to bring the uncertainties observed on the input

parameters to the model output. As usual in the field of Statistics, this can be presented

in a much more explanatory way through statistics, i.e., data reductions over a larger

volume of information.

In order to obtain a probabilistic representation of the system’s output, a large

number of possible input parameters sets have to be analyzed. The uncertainty defined

by the probability distribution of the input parameters simulates these scenarios when

sampling from the input PDFs, systematically varying all the input parameters (scenario

approach). The choice of the input parameters’ probability distributions is problem-

dependent and it is usually based on the expert’s knowledge and data availability. One

of first methods on random sampling is the Monte Carlo (MC) method (METROPOLIS;

ULAM, 1949) that have inspired a class of other methods and will be presented in the

following.

2.5.1 Monte Carlo Methods

Methods based on MC rely on the idea of random sampling to achieve a numerical re-

sult. In the context of UQ, MC methods can be employed to sample from posteriors
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distributions and achieve a prediction interval (PI) for a quantity of interest (QoI). With

sufficient independent samples from a distribution, it is possible to summarize the data

with statistics such as mean and percentiles.

A classic example of MC usage is π constant estimation: Suppose a circle of

diameter d enclosed by square of same side length. Knowing that the area of a circle is

Acircle = πr2, for this circle Acircle = πd2/4. To approximate this value an identically dis-

tributed random variable over the range [0, d] - the uniform distribution - is independently

sampled for the axes x and y enough times. For each point that presents a Euclidean

distance from the center of circle smaller than the radius r = d/2, it is flagged that this

point is inside the circle. At the end of the sampling, the proportion of points flagged is

an estimate for

Acircle

Asquare

=
πd2/4

d2
=

π

4
=⇒ π = 4

Acircle

Asquare

.

Notice that the probability for a given point in [0, d]× [0, d] being inside the circle is also

π/4. Figure 2.8 illustrates this computation. The quality of this approximation depends

on the number of samples.

Figure 2.8: Random samples from a [0, d]×[0, d] interval, where the observations identified

within the circle are highlighted in blue.

MC method has a very simple computational implementation as it relies on the

same idea of pseudo random numbers generation. So its usage in Python can be done via

several famous Python packages, as for example NumPy (HARRIS et al., 2020) and Pandas

(TEAM, 2020). As said before, there is much more to explore on this topic, where some
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popular strategies are based on the idea of the MC method. To go further into this topic,

see (LOHR, 2021).

In the same way, sampling on the inference results and propagating it to our

QoI makes possible to evaluate statistics. A usual choice of reductions for sampled data

is the median value, which can be extracted directly from the posterior distributions of

parameters, that will be defined as bet fitting parameters for the model. Also, to better

understand the significance of the prediction, upper and lower boundaries defined via

percentiles, [ℓ, u], can represent a prediction interval (PI) of a given confidence level γ,

such as P(ℓ < X < u) = γ.

2.5.2 Emulators

In some cases it is very expensive evaluating some QoIs, strategies to make a smarter

sampling from the inference results are some of the tools in the literature. Another com-

mon option is to use emulators, statistical models that seeks to mimic the output of

a complex physical systems at a much lower computational cost (GRAMACY, 2020).

Some examples of emulators are the polynomial chaos expansion (PCE) (XIU; KARNI-

ADAKIS, 2002; GHANEM; SPANOS, 1991; WIENER, 1938) and the Gaussian process

(GP) emulators (GRAMACY, 2020).

2.6 Sensitivity Analysis

Sensitivity analysis (SA) is the study of how the variation (uncertainty) in the output

of a mathematical model, quantitatively or descriptively, is divided into different sources

of variation in the model input. In more general terms, UQ and SA investigate the

robustness of a study when the study includes some form of mathematical modeling.

While UQ examine the complete uncertainty of the study’s conclusions, SA attempts to

determine which source of uncertainty weighs more in the study’s conclusions. Sensitivity

analysis in uncertainty quantification context is a powerful tool to assess the impact of

the model parameters’ uncertainty on the model output and achieve interpretability.

There are different strategies to analyze the sensitivity of a model, as for exemple
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via its derivative or via its variance. In this work will be focused on the second one.

2.6.1 Sobol Indices

Sobol indices, or variance-based sensitivity analysis, are metrics from the family of sta-

tistical methods for analysis of variance (ANOVA). It is used to quantify the relative

importance of the input parameters on the output via a decomposition of the model out-

put’s variance into fractions which can be attributed to inputs or sets of inputs (SOBOL’,

1990; SOBOL, 2001; SALTELLI et al., 2008). More specifically, the first-order Sobol

index (or main Sobol index) evaluates the influence of a given input parameter θi ∈ Θ

independently in the output. The total Sobol index evaluates the direct contribution and

interactions among parameters to the variance of the output Y. The following expressions

describe these Sobol indices respectively:

S1i =
V[E[Y|θi]]

V[Y]
, and STi

= 1− V[E[Y|θ−i]]

V[Y]
, (2.7)

where V[·] is the variance and E[·] the expected value. θ−i denotes the set of all input

parameters except the θi parameter.

2.7 An illustrative example

A simple mathematical model is considered here to illustrate how the UQ workflow can

be used. The logistic growth model, given by the following ordinary differential equation

(ODE),

dP

dt
= rP

(
1− P

K

)
, t ∈ [0, T ] (2.8)

where P is the variable of interest that represents the size of a given population; t is the

independent variable for the time; r is the growth rate of the population and K is the

population’s carrying capacity. For a given initial population P (0) = P0, the ODE has

an unique solution.

We considered a synthetica case to evaluate the UQ workflow for parameter in-

ference. The ground truth parameter values are set to K = 10, r = 0.1, and P0 = 0.1.
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Synthetic data are generated through an approximate solution over a discretized interval

t ∈ [0, 120]. Then, noise is added using a normal distribution, where each point generated

without noise, P gen
i , is computed as a random sample from

P obs
i ∼ N (P gen

i , 0.05P gen
i ) .

The generated (synthetic) data is presented is shown in Figure 2.9.
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Figure 2.9: Synthetic data generated with ground truth parameters.

In this example, r and K are the parameters to be randomized. Seeking to make

a conservative choice and keep the Bayesian modeling simple, a uniform distribution is

adopted in a convenient interval for both parameters:

K ∼ U[0.8 · PK , 2 · PK ] and r ∼ U[0.01, 10], (2.9)

where, PK = max(P obs).

The Bayesian model is completed assuming the output follows a normal distri-

bution with its scale parameter referring to the error on the simulator,

P ∼ N
(
PDM, σP |P obs

)
, (2.10)

where PDM is the output of the deterministic model and, again seeking a conservative ap-
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proach, the variance σP prior distribution is set to Half-Normal distribution (the modulus

of an ordinary normal distribution with mean zero) with a high value for scale parameter

σP ∼ HN
(
102
)
. (2.11)

The following sections detail each step of the UQ workflow.

2.7.1 Inverse Uncertainty Quantification

Once the Bayesian model is defined, the execution of the inference is configured through

the adopted PPL, the PyMC.

with pm.Model() as model_pm:

K_rv = pm.Uniform(’K’, lower=0.8*max(P_obs), upper=2*max(P_obs) )

r_rv = pm.Uniform(’r’, lower=0.05 , upper=1.5 )

pop_rv = rand_pop(P_obs[0], K_rv , r_rv , t_obs)

sigma = pm.HalfNormal(’sigma ’, sd=error)

P = pm.Normal(’P’, mu=pop_rv , sd=sigma , observed=P_obs)

With the NUTS sampler defined to draw 104 samples, the inference results is achieved

and presented on Figure 2.10 with its sampled values to be diagnosed.
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Figure 2.10: KDE of sampled PDFs and rank plot for the model input parameters.

PyMC as default iterates over 4 independent chains, the first column from Fig-

ure 2.10 presents these 4 chains via a kernel density estimates (KDE) almost at the same
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shape. The chain KDE distribution together with the trace, at the right, indicates that

the algorithm has converged with no difficulty.

In this example, the HDI of 99% is taken from the sample, as the approximate

distributions have a high density around very specific values, i.e., with a low uncertainty.

Once done, the results are ready to be carried to the uncertainty propagation.

2.7.2 Forward Uncertainty Quantification

Given the low computational cost to solve the problem (2.8), the classic MC method is

employed to sample the approximate joint distributions of K and r and create a sample

of the population growth along the time, P (t), t ∈ [0, 120]. First, the median of each

sample is evaluated to get the best curve fit. Then 1024 observations are drawn via MC

and evaluated with the simulator. Figure 2.11 presents some of the sampled curves.
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Figure 2.11: Propagated results via sampling from the posterior distributions approxima-

tions. Notice that as the posterior PDFs of model parameters are estimated, the uncer-

tainty propagation can be evaluated outside the data range.

A prediction interval of confidence γ = 90% is evaluated taking the 5th percentile

and the 95th percentile. The best fit and the PI are presented in Figure 2.12. Notice that

as the posterior PDFs of model parameters are estimated, the uncertainty propagation

can be evaluated outside the data range.
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Figure 2.12: Propagation of uncertainties in the logistic growth model.

Notice that as the synthetic data was generated artificially with the noise re-

specting the adopted hypothesis of the error following a normal distribution, the PI is

very restrained when compared to data. In other words, the proposed model accurately

captures the phenomenon observed by the data (an obvious result, but one that implies

in the correctness of the method).

2.7.3 Sensitivity Analysis

Finally, the main and total Sobol indices are evaluated over the observed time and pre-

sented in Figure 2.13. Some criticism of the model can be done now. The main and

total indices for each parameter are almost exactly the same, which indicates that there

is no interaction between the parameters affecting the sensitivity of the model. Also, it is

possible to observe that the growth rate parameter, r, rules the sensitivity when popula-

tion is growing, what makes sense as this parameter is designed to control this behavior.

As greater the population size gets, lower is the growth rate influence and greater the

influence of the carrying capacity, K. And when the population size reaches a stability,

the carrying capacity becomes the responsible for all the variance of the model.



2.7 An illustrative example 30

0 20 40 60 80 100 120
Time

0.0

0.2

0.4

0.6

0.8

1.0

Se
ns

iti
vi

ty
 [f

ra
c.]

K - 1

K - T

r - 1

r - T

Figure 2.13: Main and total Sobol indices for K and r in respect to the population size

along the time.

2.7.4 Concluding Remarks

The inverse UQ retrieved both parameters, K and r, with a good accuracy and low

uncertainty. The uncertainty propagated to the model respected the distribution of the

generated synthetic data, as expected. Around t = 100 it is possible to notice in Figure

2.12 that the model and its uncertainty reached a stable behavior even in a region where

there is no data, t > 120. The behaviors observed in SA reaffirm the expected pattern of

the model parameterization.
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3 Foam Assisted Enhanced Oil Recovery

This chapter presents a case study (de Miranda et al., 2022) on the application of the

presented UQ workflow for the parametric uncertainty estimation of a mathematical model

used for EOR simulation using foam injection technique.

3.1 Background

In enhanced oil recovery (EOR) processes, foam injection reduces gas mobility and in-

creases apparent viscosity, thus improving recovery efficiency. The reliability of simulators

in the oil industry depends on the sensitivity of the outputs when subjected to input un-

certainty. In this context, UQ is a key procedure while studying these physical systems.

A series of recent works done by Valdez et al. (VALDEZ et al., 2020; VALDEZ et

al., 2021; VALDEZ et al., 2022) focused on UQ and SA using experimental steady-state

data of foam quality in porous media. In particular, (VALDEZ et al., 2020) presented

inverse and forward UQ analyses for different relative permeability models, together with

a detailed SA. In the context of foam injection, (VALDEZ et al., 2021) presented the

calibration of foam model parameters for a foam quality-scan experiment. Forward UQ

and SA were carried out for the mathematical model used to characterize the effects of

foam flow. Finally, in (VALDEZ et al., 2022) an improved procedure for foam parameter

estimation was proposed when the non-Newtonian effects of foam flow are considered. In

the context of Bayesian parameter inference, as is the case of these previous works, one

has to provide prior knowledge not only about the parameters of interest but also for

the variance of the experimental data. In these previous works, a conservative and direct

choice for the prior of the variance was performed to estimate parametric uncertainty.

In this chapter will be presented a study to evaluate the effects of different prior

distributions for the variance parameter of a Normal distribution assumed for experimen-

tal data. Assessing how the choice of the variance prior affects the estimated parameter

distributions and how they affect the propagation of uncertainties to the outputs of the
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model.

3.2 Mathematical Modeling

Consider the two-phase flow of water and gas in a porous medium subjected to the effects

of foam to reduce the gas mobility and improve sweep efficiency. The general mathematical

model for this problem is based on the principle of mass conservation for each phase,

α = {w, g}, which is given by

∂

∂t
(ϕSα) +

∂

∂x
uα = 0, in Ω× [0, T ], (3.1)

where Sα and uα are the saturation and volumetric flux of phase α. Writing uα as the

Darcy velocity for the phase α:

uα = −λα
∂

∂x
pα, with λα =

Kkr,α
µα

, and λT =
∑
α

λα, (3.2)

where λα, kr,α, µα and pα are respectively, the mobility, the relative permeability, the

viscosity and the pressure of phase α. Here, K is the absolute permeability of the porous

medium and λT is the total mobility of the system.

3.2.1 Fractional Flow Theory

The fractional flow theory is a valuable tool for the understanding of the complex mech-

anisms involved in foam flow in porous media (DHOLKAWALA; SARMA; KAM, 2007;

ROSSEN et al., 1999; ZHOU; ROSSEN, 1995). The fractional flow of a phase, fα, is

the volumetric fraction of displacement in a direction composed by phase α and can be

defined as the ratio between the λα-phase mobility and the total mobility, that is

fα =
λα

λT

=⇒
∑
α

fα = 1. (3.3)
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3.2.2 Relative Permeabilities

The Brooks-Corey model is used to describe the relative permeabilities of two-phase flow

of water and gas (BROOKS; COREY, 1965). In the absence of foam, the relative perme-

abilities of water kr,w and gas kr,g, are given by:

kr,w = k0
r,w

(
Sw − Swc

1− Swc − Sgr

)nw

, and kr,g = k0
r,g

(
Sg − Sgr

1− Swc − Sgr

)ng

, (3.4)

where nw and ng are the Corey exponents for water and gas, respectively, k0
r,w and k0

r,g are

the end-point relative permeabilities for water and gas, respectively, Swc is the connate

water saturation, and Sgr is the residual gas saturation.

In the absence of foam, it is possible to obtain these values from experimental

data in terms of apparent viscosity and fractional flow

kr,w =
(1− fg)µw

µapp

, and kr,g =
fgµg

µapp

. (3.5)

For a two-phase flow in the presence of foam, the relation for water permeability is still

the same, but the gas mobility is affected by its presence (EFTEKHARI; FARAJZADEH,

2017). In this work, an implicit-texture model given by the CMG-STARS model is used

to represent the effects of foam on the two-phase flow.

3.2.3 Foam Modeling

The CMG-STARS model describes the foam effects in two-phase flow using the mobility

reduction factor (MRF ) term. This term can describe the effects of surfactant concentra-

tion, water and oil saturations, shear-thinning, and other effects on the flow. This term

is introduced in the apparent viscosity, or the inverse of total relative mobility, as follows

µapp = λ−1
T =

(
λw +

λg

MRF

)−1

, (3.6)
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to take into account that the mobility of the gas phase is affected by the foam via the

MRF term. The fractional gas flow is also redefined as follows:

fg =
λg

MRF
(
λw + λg

MRF

) =
λg

MRF
µapp. (3.7)

Finally, the mobility reduction factor MRF is defined as

MRF = 1 + fmmob
∏
i

Fi. (3.8)

A wide range of effects can be included in the MRF through the Fi terms of the CMG-

STARS model. This work only considers the F2 term that describes the effects of water

saturation on foam given by

F2 =
1

2
+

1

π
arctan(sfbet(Sw − SF )), (3.9)

where Θ = {fmmob, sfbet, SF} are STARS model parameters, which describe, respec-

tively, the maximum gas mobility reduction, the sharpness of the transition between

high-quality and low-quality regime, and the critical water saturation around which foam

collapses.

3.2.4 Experimental Data

To carry out the studies of this work, the experimental dataset of foam quality-scan

reported in (VALDEZ et al., 2021) will be investigated using the Corey parameters fitted

by (MOHAMED; NASR-EL-DIN et al., 2012) to a high permeability Indiana Limestone.

The parameters obtained are given in Table 3.1.

Parameters Swc Sgr nw nw k0
r,w k0

r,g

Values 0.4 0.293 2.98 0.96 0.302 0.04

Table 3.1: Relative permeability parameters for datasets.

(TAO; WATSON, 1984) studied errors in relative permeabilities estimated from

displacement experiments under different operating conditions. The results showed that
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the error ranged from 0.2% to 15%. In most cases, the error is less than 5%, except

for higher errors near residual water saturation. The fitting of the permeability model

parameters in a reliable way and uncertainty estimation is also a challenging problem

that will not be tackled in this work since the main focus is on the CMG-STARS model

parameters.

Figure 3.1 presents the experimental data for pressure drop at different foam

quality rates (fg) as a function of time. At the end of each foam quality stage, it is

assumed the pressure drop reached the steady-state, and this is verified in almost all

foam quality ranges. However, for fg = 0.5 it is difficult to identify this behavior. This

observation is reflected in the stationary data presented in Figure 3.2 in terms of apparent

viscosity obtained from experimental data using the following relation µapp =
K
v

∆p
L
, where

v is the superficial velocity and L the core sample length. Figure 3.2 also presents an

example of the CMG-STARS model, defined by equations (3.4) - (3.9), fitted (solid line)

to experimental data.
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Figure 3.1: Unsteady-State (USS) experimental dataset for pressure drop in a Indiana
Limestone for each foam quality.

3.2.5 Hierarchical Modeling and Noninformative Priors

In Bayesian statistics, some practitioners support if there is no prior knowledge of the

ways an event can occur, the event will occur equally likely in any way. This is known

as the Principle of Insufficient Reason (PIR) enunciated by Jakob Bernoulli (JAYNES,

2003). (BOX; TIAO, 1992) define a noninformative prior as a prior that provides little

information about the studied variable. (GELMAN et al., 1995) advocates that there is

no truly noninformative prior, in the sense that any prior includes some information. But
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Figure 3.2: Steady-State (SS) experimental dataset for foam quality scans, fitted via an
optimization algorithm to illustrate the composed by equations (3.4) - (3.9).

adopting the name coined by the pioneers, in mathematical terms, following the PIR and

defining a noninformative prior can be done through the uniform distribution over the

feasible interval.

For the CMG-STARS foam parameters, the choice is based on previous works

from (VALDEZ et al., 2022; VALDEZ et al., 2021), that is:

fmmob ∼ U[0.0, 1000], SF ∼ U[Swc, 1− Sgr], and sfbet ∼ U[10, 1000].

(3.10)

Having the parameters priors defined in Eq. (3.10), the model is completed assuming

the data follows a Normal distribution around the output of the deterministic model

of apparent viscosity, with an associated error/variance. In statistical notation, this is

written as

µapp ∼ N
(
µDM
app , σµapp

∣∣µobs
app

)
, (3.11)

with

µDM
app = µDM

app

(
fmmob, SF, sfbet

∣∣f obs
g

)
, (3.12)

as defined by equations (3.4) to (3.9) that composes our deterministic model (DM) to

be randomized by the Probability Density Functions (PDF) of fmmob, SF and sfbet.

Here σµapp is the error committed in the approximation, which comprehends aleatoric and

epistemic uncertainties, and can also be modeled as a random variable.
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In the following subsections, different choices for the standard deviation of the

apparent viscosity are presented in detail, considering the data of standard deviations for

the apparent viscosity σobs
µapp

(as represented by the bars in Figure 3.2).

3.2.6 On the choice of prior distributions for variance parameter

Three different experiments were carried out to evaluate how a more informative prior for

the scale parameter of the data distribution contributes to the inference process. A more

conservative family of distributions is employed to ensure that bias in prior knowledge does

not compromise the extraction of information from observed data. Finally, a proposal for

weighting the deviations using the property of the scale family of probability distributions

is used to bring more flexibility to the Bayesian model.

Experiment I (Maximum Variance) A common choice of prior for variance parame-

ters expecting a conservative approach is the default half-normal with its scale parameter

set to a high value. So, the first approach studied employs a prior parameterized by the

maximum observed value, which in probabilistic notation is defined as

σµapp ∼ HN
(
max

(
σobs

µapp

))
. (3.13)

In particular, note that the maximum error observed, denoted by max(σobs
µapp

), occurs at

fg = 0.5, as shown in Figure 3.2. Its value is significantly higher than the other errors, as

can be seen, which guarantees that the sample deviation will not be underestimated.

Experiment II (Maximum Likelihood Estimation (MLE) of Variance) In the

second Experiment, a stronger prior choice is sought to test the influence of top-level

parameter σ in the inference of the parameters of interest. (GELMAN, 2006) suggests

that if a more informative prior for variance is desired, the half-Student-t (or just half-t)

distribution might be recommended.

Following (GELMAN, 2006), the present experiment uses a maximum likelihood

estimation (MLE) for the scale parameter σ̂app over the standard deviation of the exper-

imental data, i.e., the parameter value that maximizes the probability of the observed
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data. Thus, the MLE is set as the half-t scale parameter. The half-t prior also requires

another parameter, the degrees of freedom parameter ν, which concerns the number of

observations n, by the relation ν = n − 1. The degrees of freedom are the number of

available observations n minus one, as shown in Figure 3.2 by the number of data points.

To summarize, in this experiment the following prior is used:

σµapp ∼ HT (n− 1, σ̂app) . (3.14)

Figure 3.3 compares a half-normal and a half-t using the same value for the scale

parameter. Notice that, due to the fatter tail, the half-t has more probability of extreme

values than the half-normal distribution.

(
)

Figure 3.3: Comparison of a half-normal and a half-t distribution with a same scale
parameter, and degrees of freedom, ν = n − 1. The first zoom shows the point where
the half-t PDF becomes superior than the half-normal PDF. The second zoom shows the
fatter tail preserved.

Experiment III (Weighting Variance) In parameter estimation, when the informa-

tion about the error made in the measurement is available, that is, the deviation from the

observation, it is possible to weight each point according to its variance: the greater the

observed variance, the less weight it will receive in the fitting process. In the context of

parameter estimation for foam flow models, weighting the data points has been applied

with least-squares methods (MA et al., 2014). However, in Bayesian inference packages,

such as in the PyMC3, such weighting strategy is not trivial as when using non-linear

least-squares methods.

In the present experiment, a weighting strategy is proposed that relies on the no-



3.2 Mathematical Modeling 39

tion of distributions within the scale family, such as half-Normal and half-t. The strategy

proposed uses the structure provided by PyMC3 and rewrites the distribution of the data,

equation (3.11), using a random vector of size n for the random variable σµapp according

to its observed deviations at each fg. This choice can be described as

µapp ∼ N
(
µDM
app , σobs

µapp
· σµapp

)
. (3.15)

Now the prior adopted for σµapp is a standard PDF, since it will be scaled for each observed

deviation (as reported in Figure 3.2). The family of distribution will be the same from

Experiment II, expecting to be more conservative.

The degrees of freedom parameter is selected considering how the sampling stan-

dard deviations at each fg point are calculated. Figure 3.1 shows the pressure drop as a

function of time for different observed ranges of fg. The calculation for the steady-state

dataset (Figure 3.2) is done by taking the last m experimental points for each foam qual-

ity fg level, where m is chosen properly to capture the reached steady-state behavior.

Therefore, the following choice is considered:

σµapp ∼ HT (m− 1) . (3.16)

Figure 3.4 presents a graphical representation of the random vector of PDFs with its

components associated with each point in Figure 3.2. It is interesting to observe that the

PDF associated with the data at fg = 0.5 shows more probability for extreme values due

to its larger standard deviation (see Figure 3.2), as defined by equation (3.15).

(
)

fg = 0.50
fg = 0.60
fg = 0.75
fg = 0.80
fg = 0.85
fg = 0.90

Figure 3.4: Prior distributions set for the observed errors associated with each fg point
presented in Figure 3.2. Note that larger observed deviation correspond to flatter associ-
ated prior distribution.
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Computational Experiments Setting With the experimental data (Figure 3.2) and

the model composed by equations (3.10), (3.11), and one choice for the prior distribution

of variance given by (3.13) or (3.14) or (3.16), again the PyMC with the NUTS sampler is

employed for Bayesian inference process. 5×104 samples were drawn for each randomized

parameter, and 104 samples were discarded from each of the final chains. The joint of

these four chains describes a sample of the posterior distribution for each parameter.

3.3 Results

3.3.1 Experiment I - Maximum Variance

Figure 3.5 illustrates the posterior distribution of each parameter obtained with the choice

of prior distribution for variance as described for the first experiment. The KDE for the

PDFs of foam parameters looks similar to the ones achieved by (VALDEZ et al., 2021).

The parameter sfbet shows more asymmetry and less kurtosis than the other ones exactly

as happened in Valdez experiment with only STARS foam parameters.
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Figure 3.5: Kernel Density Estimate (KDE) plot for the posterior distributions for each
parameter at Experiment I.

Once the posterior distributions are reached, the study proceeds to propagate the

uncertainty of the samples obtained using the MC method. Figure 3.6 shows the average

value sampled for the curves and a prediction interval with 90% uncertainty (represented

by the shaded region). The uncertainty propagated from the posteriors is similar to the

results presented by (VALDEZ et al., 2021), where uncertainty in the high-quality regime

is more evident, and the point for fg = 0.5 is out of the prediction interval.
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Figure 3.6: Uncertainty propagation with 90% prediction interval for Experiment 1.

3.3.2 Experiment II - Maximum Likelihood Estimation (MLE)

of Variance

With the model given by (3.10), (3.11) and (3.14), the Bayesian inference in the same

setup as the Experiment 1 is executed. Figure 3.7 shows the KDE for each posterior

distribution achieved.
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Figure 3.7: Kernel Density Estimate (KDE) plot for the posterior distributions for each
parameter at Experiment II.

Figure 3.7 shows the propagated uncertainties to the apparent viscosity. The

results of this experiment present some reduction of the uncertainties in the high-quality

regime.

3.3.3 Experiment III - Weighting the Variance

The posterior distributions obtained after the Bayesian inference in the third experiment,

where the model is described by (3.10), (3.11) and (3.16), are reported in Figure 3.9.

One can clearly observe that the posterior distributions obtained in this case provide

estimates with higher fidelity and lower uncertainties. This fact is more evident for the
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Figure 3.8: Uncertainty propagation with 90% prediction interval for Experiment II.

sfbet parameter whose PDF indicates a median value around 300 and which tails out to

zero, in contrast with the previous two cases.
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Figure 3.9: Kernel Density Estimate (KDE) plot for the posterior distributions for each
parameter at Experiment III.

The uncertainty propagation in this experiment is far more controlled as shown in

Figure 3.10. This is due to the better defined and less wide posterior distribution achieved

for sfbet parameter, which controls the transition between low- and high-quality regimes.
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Figure 3.10: Uncertainty propagation with 90% prediction interval for Experiment III.
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3.3.4 Experiments Comparison

Table 3.2 presents the median and standard deviation from the PDFs of each parameter

in order to compare the results among the three experiments. The results show a good

agreement in the median values of the parameters, and also show through the standard

deviation that the Experiment III delivers less uncertainty in the parametric range.

Median ± Standard Deviation
fmmob (×102) SF (×10−1) sfbet (×102)

Experiment I 3.041± 0.733 4.359± 0.107 4.615± 2.43
Experiment II 2.876± 0.470 4.391± 0.0892 4.698± 2.56
Experiment III 3.049± 0.222 4.367± 0.0753 3.038± 0.894

Table 3.2: Median and standard deviation of the estimated PDFs for each parameter in
each experiment conduced.

Figure 3.11 presents a comparison of the PDFs of each parameter obtained in the

three experiments. One can clearly observe the fact that Experiment III delivers better

defined PDFs with less uncertainty, especially for the sfbet parameter.
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Figure 3.11: Comparison of KDEs for each parameter obtained by the different experi-
ments conducted.

A further comparison of the experiments’ results considers the error between

experimental data and the data simulated with median estimated parameters presented

in Table 3.2. The error is measured using the mean absolute percentage error (MAPE) and

median absolute percentage error (MDAPE). It is shown in Table 3.3, that unweighted

estimators (Exp. I and II), present almost the same performance as the weighted ones

(Exp. III) when MAPE is used. However, with the MDAPE it is possible to see the

improvements of the proposed strategy.
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MAPE MDAPE
Experiment I 3.94× 10−2 1.34× 10−2

Experiment II 3.87× 10−2 1.21× 10−2

Experiment III 3.85× 10−2 6.71× 10−3

Table 3.3: Comparison of the results among the three experiments using MAPE and
MDAPE.

3.3.5 Sensitivity Analysis

The main and total Sobol indices with respect to apparent viscosity (µapp) are observed

using a 90% HDI of the posterior distribution obtained in Experiment III, to understand

the influence of each parameter. The results presented in Figures 3.12 and 3.13 show

that the variance of apparent viscosity strongly influences fmmob in the low-quality

regime. Around the low- and high-quality transition region, the sfbet parameter presents

a significant impact, followed by a brief interval where SF impacts the apparent viscosity.

This result agrees with those presented by (VALDEZ et al., 2021). However, it captures

in a more precise way the influences near the transition region, where SF has a brief

interval of significant contribution followed by the dominance of sfbet in the high-quality

regime.

It is also possible to modify the QoI, keeping the apparent viscosity output but

now in terms of the water saturation, µapp(Sw). Notice that the transition region respects

exactly the point Sw = SF . Going further, when comparing the figures, there are indica-

tions that lower water saturations typically appear in the high-quality region (dominated

by sfbet). After the foam abrupts, Sw > SF , fmmob rules the sensitivity of the apparent

viscosity.

3.4 Experiment Conclusion

The usage of standard deviation information at each foam quality point as a weight-

ing factor in Bayesian inference improved foam model reliability. It was shown that it

significantly improved the estimation of the sfbet parameter, and as a consequence, it

substantially reduced the uncertainty propagated to the high-quality foam regime. In

addition, the sensitivity analysis results are consistent with the physics of the model for
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Figure 3.12: Sobol Indices for the apparent viscosity employing the 90% HDI of PDFs
from Experiments I and III. As presented in Eq. (2.7), S1 denotes the first-order Sobol
index, and ST the total Sobol index.

the underlying phenomenon. The fmmob parameter remains one of the key parameters

impacting the apparent viscosity. The improved estimation of the sfbet parameter with a

better defined posterior distribution contributed to highlighting its role in the sensitivity

analysis carried out.
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Figure 3.13: Sobol Indices for the apparent viscosity employing the 90% HDI of PDFs
from Experiment I and III.
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4 Conclusions

This work presented a general approach to quantify uncertainties in simulators seeking

to detail each step of the workflow. Techniques commonly used in each workflow step

have been presented and remarked. A simple illustrative case was briefly investigated to

prepare the reader with the concepts and possibilities of the techniques employed in this

work.

Inverse and Forward UQ analyses were performed for a foam-assisted EOR model

considering the parameters of the CMG-STARS foam model with different choices for

variance parameter of the hierarchical model’s top-level distribution, i.e., the hypothesis

for data distribution. The proposed approach worked with statistics over the unsteady-

state dataset and improved the parameter estimation obtaining estimates with reduced

uncertainty, sensitivity analysis and model reliability.

4.1 Limitations and Future Works

As the number of parameters grows, the computational cost in the inverse UQ step grows

dramatically. Inverse UQ usually deals with ill-posed problems; thus, delicate issues,

such as strong non-uniqueness, arise in estimating parameters and uncertainties. A more

informative prior distribution in these cases is desired, but this can’t be an arbitrary

choice, as presented in this work. Transfer learning strategies can bring information from

other computational studies when dealing with more complex models drive a the inference

to a better result (PAN; YANG, 2009).

In the context of EOR, when considering more factors that influence the foam,

such as non-Newtonian effects or even the presence of oil (a natural next step in the

problem), the difficulty of finding the median of a set of parameters that describe the

observed data.

As mentioned in the previous section, a natural next step is considering the oil

phase in the mathematical model. To that end, three-phase flow data must be used within
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the pipeline to include another term in the CMG-STARS model function describing the

effects of oil saturation. In particular, this term is given by

F3 =

(
(fmoil − So)

(fmoil − floil)

)epoil

,

where fmoil, f loil ∈ [0, 1] are the critical oil saturation and the lower oil saturation values,

respectively.

In addition, one may desire computational expensive QoIs. For this purpose,

emulators should be used to reduce the computational cost in the propagation of uncer-

tainties and sensitivity analysis. It is also an author’s interest to explore new techniques

of sensitivity analysis, such as the one already mentioned in this text, the Shapley effects.
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