
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bacharelado em Ciência da Computação

Stream and Historical Data Integration
using SQL as Standard Language

Jefferson do Nascimento Amará

JUIZ DE FORA

SETEMBRO, 2021

Stream and Historical Data Integration
using SQL as Standard Language

Jefferson do Nascimento Amará

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Bacharelado em Ciência da Computação

Orientador: Victor Stroele de Menezes

JUIZ DE FORA

SETEMBRO, 2021

Stream and Historical Data Integration using

SQL as Standard Language

Jefferson do Nascimento Amará

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIÊNCIAS

EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE INTE-

GRANTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU DE

BACHAREL EM CIÊNCIA DA COMPUTAÇÃO.

Aprovada por:

Victor Stroele de Menezes
Doutor em Engenharia de Sistemas e Computação (UFRJ)

Jairo Francisco de Souza
Doutor em Informática (PUC-RJ)

Regina Maria Maciel Braga
Doutora em Engenharia de Sistemas e Computação (UFRJ)

JUIZ DE FORA

02 DE SETEMBRO, 2021

A Deus.

Resumo

Volume, Velocidade, Variedade, Veracidade e Valor, além de ajudar a definir o signifi-

cado do termo Big Data, passaram a fazer parte da realidade dos sistemas que lidam com

streaming de dados produzidos por dispositivos IoT. Nesse contexto, a heterogeneidade

dos dados se apresenta como um desafio para esses sistemas no que se refere à integração e

monitoramento. A complexidade imposta pela heterogeneidade de dados torna dif́ıcil inte-

grar os tipos de dados ’streaming x streaming’ e ’streaming x histórico’. Para uma análise

prática, o processo de enriquecimento e contextualização com base em dados históricos e

de streaming se beneficiaria de abordagens que facilitem a integração de dados, abstraindo

das análises os detalhes e o formato dessas fontes primárias. Este trabalho apresenta um

framework que permite a integração de dados de streaming e dados históricos em tempo

real, abstraindo dos aspectos sintáticos das consultas do usuário através do uso de SQL

como linguagem padrão para consultar fontes de dados heterogêneas. O framework foi

avaliado por meio de um experimento utilizando bancos de dados relacionais e dados reais

produzidos por sensores. Os resultados apontam para a viabilidade da abordagem.

Palavras-chave: Dados Heterogêneos, Integração de Dados, Streaming de Dados, SQL.

Abstract

Volume, Velocity, Variety, Veracity, and Value of data have, in addition to help define

the meaning of the term Big Data, become part of the reality of systems that deal with

data stream produced by IoT devices. In this context, data heterogeneity presents itself

as a challenge for these systems concerning integrating and monitoring this data. The

complexity imposed by data heterogeneity makes it difficult to integrate ’streaming x

streaming’ and ’streaming x historical’ data types. For practical analysis, the enrichment

and contextualization process based on historical and streaming data would benefit from

approaches that facilitate data integration, abstracting from the analyses the details and

format of these primary sources. This work presents a framework that allows the integra-

tion of streaming data and historical data in real-time, abstracting from the user syntactic

aspects of queries through the use of SQL as a standard language for querying heteroge-

neous data sources. The framework was evaluated through an experiment using relational

databases and real data produced by sensors. The results point to the feasibility of the

approach.

Keywords: Heterogeneous Data, Data Integration, Data Streaming, SQL.

Agradecimentos

Dou graças a Deus por me suster até aqui e por ser a minha força durante as

lutas. Agradeço à minha famı́lia pela educação e pelos valores cultivados, e por às vezes

abrir mão de muitas coisas para me prover o mı́nimo pra eu chegar até aqui. Em espe-

cial, agradeço à minha mãe, a guerreira que nunca mediu esforços pra criar seus filhos, e

mesmo com muita luta, me trouxe até aqui. Agradeço à famı́lia da minha noiva, Jane,

Claudio, Josué e Lucas; por terem me acolhido no seu meio e sempre me apoiado, e a ela,

Luanasarah, por ser uma companheira formidável em todos os momentos, me apoiar sem-

pre, me motivar, minha amiga, um presente de Deus pro resto da minha vida. Agradeço

aos meus amigos por serem os melhores. Por dividirem os momentos de desafios, lutas e

conquistas. Em especial agradeço ao Jurandir, Samuel, Pedro e Wallace, por serem mais

que meus amigos, meus irmãos. Ao Belonir e a Tia Edna, por me adotarem como um

filho mais novo nessa famı́lia, sem eles tudo seria muito mais dif́ıcil. Ao meu professor

e amigo Rafael Bonfim, por dedicar a mim seu tempo para compartilhar conhecimento,

amizade e conselhos em momentos bons e ruins. Agradeço muito ao meu orientador,

professor e amigo Victor Stroele, o qual admiro pela excelência como professor e passei a

admirar ainda mais como pessoa, sempre me aconselhando, tanto sobre a vida acadêmica

profissional e pessoal, e sem o qual este trabalho não seria posśıvel. Agradeço à UFJF,

em especial ao DCC, na pessoa dos seus TAES, por serem sempre cordiais e sempre bus-

car resolver os problemas com um trato bem humanizado e com o mı́nimo de burocracia

posśıveis. Aos professores deste departamento, aos quais tenho respeito e admiração, são

exemplos pra mim, agradeço por terem me proporcionado um ensino diferenciado, por

nunca criar barreiras na comunicação, por motivar e desafiar a ampliar o modo de ver e

analisar tudo, e a buscar fazer diferença por onde passo. Agradeço ao CRITT, por ter

me proporcionado tantas amizades, desafios e aprendizados ao longo da minha trajetória

como bolsista. Agradeço a todos envolvidos nessa vitória, é uma vitória compartilhada

com muitos, cada um que de alguma forma me proporcionou chegar até aqui. Tenho

certeza de que saio desse desafio como um ser humano e um profissional melhor do que

entrei. Obrigado.

5

”In God we trust, all others must bring

data.”

W. Edwards Deming

Contents

List of Figures 8

List of Tables 9

Lista de Abreviações 10

1 Introduction 11
1.1 Objectives . 13
1.2 Research Questions . 13
1.3 Organization . 13

2 Theoretical Foundation 15
2.1 Introduction . 15

2.1.1 Internet of Things . 15
2.1.2 Data Streaming . 16
2.1.3 Batch vs Stream Data Processing 18

3 Related Work 21

4 Material and Methods 23

5 Feasibility Study 28
5.1 Datasets description . 28
5.2 Joining Stream and Historical Data . 30

6 Final Remarks and Future Works 36

Bibliography 38

Appendices 42

A - JSON Configuration File 43

List of Figures

1.1 Magnitude of change in paper distribution (Kolajo et al. 2019). 12

2.1 Basic lambda architecture for speed and batch processing. Kiran et al. (2015) 20

4.1 Framework Architecture . 24
4.2 Implementation Solution . 25
4.3 Part from JSON file with configuration of two schemas: Relational database

(PostgreSQL) and data streaming (Kafka). 26

5.1 Layouts of home 01 and home 02. 28
5.2 One of the results returned by the Continuous Query Processor compo-

nent.(Query 1) . 32
5.3 Results returned by the Continuous Query Processor component on histor-

ical dataset.(Query 2) . 33
5.4 Results returned by the Continuous Query Processor on simple join on

date.(Query 3) . 34
5.5 Results returned by the Continuous Query Processor on multiple join on

date.(Query 4) . 35

List of Tables

2.1 Comparing Batch and Streaming processing (KOLAJO; DARAMOLA; ADE-
BIYI, 2019) . 19

5.1 Sensors messages of Home 01 . 29

Lista de Abreviações

DCC Departamento de Ciência da Computução

UFJF Universidade Federal de Juiz de Fora

DBMS Data base management System

DSMS Data stream management System

IoT Internet of Things

IIoT Industrial Internet of Things

SQL Structured Query Language

QoS Quality of Service

CEP Complex Event Processing

CQL Categorical Query Language

QODI Query-driven Ontology-based Data Integration

RDF Resource Description Framework

SESQ Semantically Enriched SQL

API Application Programming Interface

JSON JavaScript Object Notation

CSV Comma Separated Value

11

1 Introduction

The world and its relationship with data are migrating from data islands to a global data

space paradigm. If a few years ago the term Big Data was exclusive in the scientific

works and not well known in the daily life of civil society, nowadays it is a reality that

permeates the routines of people (ABU-SALIH et al., 2021; BARROS, 2020). It is now

of paramount importance in decision-making in the most diverse areas of knowledge and

the global economy (GHASEMAGHAEI; CALIC, 2020; WANG et al., 2020).

In recent years, organizations have been dedicating themselves to leveraging the

intelligent use of the vast amount of data produced (MIKALEF et al., 2020; SHAN et

al., 2019). The ability to manipulate efficiently this information and extract knowledge

is now seen as a key factor in gaining a competitive advantage (CAVANILLAS; CURRY;

WAHLSTER, 2016).

In addition to traditional data sources, which are modeled through persistent

relations, applications with transient relations have become increasingly common. Also

known as Data Streams, data originated from sources like IoT, sensor networks, mobile

applications and social networks add, among others features, volume and heterogeneity

to this global space of data (AKANBI; MASINDE, 2020).

These ”new” sources of data are characterized by being open-ended, flowing

at high-speed, and generated by non-stationary distributions in dynamic environments

(GAMA, 2012). Also have become ubiquitous, due to the fact that a number of ap-

plications generate a huge amount of data at a great velocity. This made it difficult,

for example, for existing data mining tools, technologies, methods, and techniques to

be applied directly on big data streams due to the its inherent dynamic characteristics

(KOLAJO; DARAMOLA; ADEBIYI, 2019).

Kolajo, Daramola and Adebiyi (2019) point to the relevance and increasing im-

portance of researches in data stream field and trends of big data stream tools and tech-

nologies, as well as methods and techniques employed in analysing big data streams. They

also point to the Data Integration as a key issue in big data stream analysis.

1 Introduction 12

To highlight the emerging relevance of themes related to the big data stream, the

graph in Figure 1.1 shows the increase in the number of works involving topics such as “big

data stream analysis”, “big data stream technologies”, “big data stream analysis tools” or

“big data stream processing”, which were published in the main scientific dissemination

platforms from 2014 to 2018.

Figure 1.1: Magnitude of change in paper distribution (Kolajo et al. 2019).

Asano et al. (2019), Tatbul (2010)point to the need of integrating data of different

origins, whether historical or stream, structured or not. Several works have been developed

in order to promote query mechanisms capable of integrating streaming data, addressing

aspects of semantic optimization (CAPPUZZO; PAPOTTI; THIRUMURUGANATHAN,

2020; ALKHAMISI; SALEH, 2020), continuous queries with sliding windows (SHEIN;

CHRYSANTHIS, 2020), time alignment of queries (TU et al., 2020) and aspects related

to scalability (STONEBRAKER; ILYAS, 2018).

In the context of Industrial IoT (IIoT) applications for example, Costa et al.

(2020) present a solution for real-time integration of data produced by IoT devices. In

their approach, data from intelligent devices, sensors and robots are extracted, processed,

and stored in diverse, independent, and heterogeneous repositories. In that work, however,

there is no proposal for the integration of data for monitoring in a unified and simplified

way, that is, the complexities and features intrinsic to each data repository have their

treatments delegated to the solution’s consumers. Thus the integration for monitoring

these repositories maintains the complexity at the level of user queries according to the

characteristics of each repository.

It is worth noting that when it comes to data integration, the solutions that have

1.1 Objectives 13

had an impact are those that can be explained and easily comprehended by a human

(MILLER, 2018). Furthermore, the effort involved in querying this data can create barri-

ers for consumers (WANG; HAAS; MELIOU, 2018). A central problem is a semantic gap

between the way users express their queries and the different ways that data is represented

internally (FREITAS; CURRY, 2014).

1.1 Objectives

With this context in mind, the objective of this work is to allow queries that integrate

stream and historical data to be performed more easily, that is, in a more standardized

way, regardless of the origin, format, model or heterogeneity of the data. For this purpose,

this work followed four main steps: (i) review of related literature; (ii) definition of an

architecture for executing SQL queries for data integration, and selection from heteroge-

neous sources; (iii) implementation of abstraction classes for the internal characteristics

of data sources; and (iv) evaluation of results.

1.2 Research Questions

The following research questions were derived: Q1) Can the framework be used as a

tool for joining stream and historical data described by heterogeneous data formats and

models?; Q2) Is the solution extensible, that is, is it possible to add other data sources

(stream or historical) in a simplified way?

1.3 Organization

The literature review includes articles related to streaming data integration. The archi-

tecture was proposed to enable the selection of data from heterogeneous sources and the

execution of queries in standard SQL language. The architecture was developed based on

the Apache Calcite1 technology, and stream sensor and historical weather data were used

to evaluate the proposal.

1https://calcite.apache.org/

1.3 Organization 14

This work is organized as follows: Chapter 2 presents a theoretical foundation

about the related themes. Chapter 3 provides an overview of some related work; Chapter

4 describes the approaches and methods, including an overview of the proposal’s archi-

tecture and infrastructure; In Chapter 5 we present a feasibility study; Finally, Chapter

6 presents conclusion and future directions.

15

2 Theoretical Foundation

2.1 Introduction

2.1.1 Internet of Things

The Internet of Things (IoT) is a well-known paradigm that defines a dynamic environ-

ment of interrelated computing devices with different components for seamless connectiv-

ity and data transfer (STOYANOVA et al., 2020).

IoT is implemented in most of the areas in day-to-day applications which covers

lifestyle, retail, city, building, transportation, agriculture, healthcare, environment, and

energy (LEE; LEE, 2015). Some of the applications are smart homes, smart cities, smart

energy, and smart industry, etc (SMYS, 2020).

According to Zanella et al. (2014), with so many data sources from such het-

erogeneous fields of application, it becomes a challenge to find solutions that meet the

requirements of all scenarios, from aspects related to the acquisition infrastructure, pass-

ing through storage paradigms and the process of acquiring useful knowledge from this

volume of data.

The IoT scenario is the era of streaming data that are usually represented in

different structures or even semi/non-structures. As such, capturing and/or transferring

those heterogeneous data in different formats (e.g., .csv, .txt, .html, .xml and so on) into

a unified form, which is suitable for analysis, is a challenging task (CHEN et al., 2013).

Another issue revolves around how to integrate IoT streaming data from multiple sources

on the fly in real-time, as big data query and indexing (TU et al., 2020).

In the present work, the context of IoT is justified, since the primary source of

the data used in the research is precisely distributed environmental sensors.

2.1 Introduction 16

2.1.2 Data Streaming

A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly

by timestamp) sequence of items (GOLAB; ÖZSU, 2003). According to Gama and Gaber

(2007) data stream is an ordered sequence of instances that can be read only once or

a small number of times using limited computing and storage capabilities. With these

definitions in mind, Data Streaming can be defined as the process of transmitting a

continuous flow of data (also known as streams), typically fed into stream processing

software to derive valuable insights (TIBCO, 2019).

Data streams are usually generated by external sources or other applications and

are sent to a Data Stream Management System (DSMS). Typically, DSMS do not have

direct access or control over the data sources (JIANG; CHAKRAVARTHY, 2009).

It is a new paradigm useful because of new sources of data generating scenarios

which include ubiquity of location services, mobile devices, and sensor pervasiveness (YI

et al., 2014). Examples of such applications include financial applications, network moni-

toring, security, telecommunications data management, web applications, manufacturing,

sensor networks, and others.

In these applications it is not feasible to load the arriving data into a traditional

data base management system (DBMS) and traditional DBMS are not designed to directly

support the continuous queries required by these applications (BABCOCK et al., 2002).

The fundamental assumption of this paradigm is that the potential value of data

lies in its freshness and with stream computing organisations can analyse and respond in

real-time to rapidly changing data (KOLAJO; DARAMOLA; ADEBIYI, 2019).

Also according to Kolajo, Daramola and Adebiyi (2019), the essence of big data

streaming analytics is the need to analyse and respond to real-time streaming data from

diverse sources, using continuous queries so that it is possible to continuously perform

analysis on the fly within the stream. In this scenario, data are analysed as soon as they

arrive in a stream to produce result as opposed to what obtains in batch computing where

data are first stored before they are analysed.

Jiang and Chakravarthy (2009) also highlight some characteristics about data

stream itself and Data Stream Applications, which is organized as follow:

2.1 Introduction 17

• Continuous processing of newly arrived data is necessary.

• Many applications can tolerate approximate results as long as other critical (e.g.,

response time) requirements are satisfied.

• Many applications have very specific Quality of Service (QoS) requirements.

• Usage of available resources (e.g., cpu cycles, memory) to maximize their impact on

QoS metrics is critical for stream-based applications.

• Finally, Complex Event Processing (CEP), rule processing, and notification are

other important requirements of many stream-based applications that detect events

or conditions and have to fire rules/triggers/actions in a timely manner when ab-

normal or user-defined events are detected.

Golab and Özsu (2003) list the Data Stream characteristics as follow:

• The arriving: The data elements arrive in a continuous way, keeping a relative

order to the sequence itself.

• The notion of time: The idea of time is incorporated, be in the underlying data

model or in the sequence.

• The data origin: The data source is associated with the data stream (e.g. a

temperature sensor), that is to say, the data origin is unmodifiable by any data

processor.

• The input from the data stream: It is unpredictable in terms of rate or volume

of data.

• The Data Model: Each data stream could have its own underlying data model or

not (e.g. it could be semi-structured such as an XML document, or not structured

like a text file).

• Data Reliability: The data inside of the data stream are processed like they are,

they are not free of errors because depend on the data source and the transited

path.

2.1 Introduction 18

2.1.3 Batch vs Stream Data Processing

It is possible to group Big Data Processing into two major groups according to the state

of art of this domain: Batch Data Processing and Stream Data Processing (SAKR et al.,

2015).

Batch processing is a well known paradigm which involves operating over a large,

static dataset and returning the result at a later time when the computation is complete.

Thus, the state of data is maintained for the duration of the calculations during the

processing (GURUSAMY; KANNAN; NANDHINI, 2017). This is typically ideal for non-

time sensitive work.

According to Gurusamy, Kannan and Nandhini (2017) the datasets in batch pro-

cessing are bounded(batch datasets represent a finite collection of data), persistent(data

is almost always backed by some type of permanent storage), large(batch operations are

often the only option for processing extremely large sets of data).

While batch processing is a good fit for certain types of data and computation,

other workloads require more real-time processing (VENKATESH et al., 2019). Stream

Data Processing is required for these needs, most of the data generated in a real-time

data stream need real-time data analysis. In addition, the output must be generated

with low-latency and any incoming data must be reflected in the newly generated output

within seconds (KOLAJO; DARAMOLA; ADEBIYI, 2019).

Stream data processing is characterized by the constant input of new data or

updates thereof, with an infinite amount of data or the size not known in advance, and

with input data processing taking place in a few seconds or milliseconds given the need

for real-time analysis. Historical data processing, on the other hand, is characterized by a

normally known and finite amount of data in which data entry occurs in data chunks. Its

processing takes place in multiple rounds and with a considerably longer processing time,

when compared to streaming processing. Table 2.1 summarizes some of the differences

about the main dimensions considered in between batch and stream data processing.

Also according to Gurusamy, Kannan and Nandhini (2017), the datasets in stream

processing are considered ”unbounded”. This has a few important implications:

• The total dataset is only defined as the amount of data that has entered the system

2.1 Introduction 19

Table 2.1: Comparing Batch and Streaming processing (KOLAJO; DARAMOLA; ADE-
BIYI, 2019)

Dimension Batch Streaming

Input Data chunks Stream of new data or updates
Data Size Known and finite Infinite or unknown in advance
Hardware Multiple CPUs Typical single limited amount of memory
Storage Store Not store or store non-trivial portion in memory
Processing Processed in multiple rounds A single or few passes over data
Time Much longer A few seconds or even milliseconds
Applications Widely adopted in almost every domain Web mining, traffic monitoring, sensor networks

so far.

• The working dataset is perhaps more relevant and is limited to a single item at a

time.

• Processing is event-based and does not ”end” until explicitly stopped. Results are

immediately available and will be continually updated as new data arrives.

For dealing with them both, stream and batch processing, one of the most com-

mon system architecture is called Lambda Architecture (KIRAN et al., 2015). It combines

two different processing layers namely batch and speed layers, each providing specific

views of data while ensuring robustness, fast and scalable data processing (YOUSFI;

RHANOUI; CHIADMI, 2021).

Figure 2.1 shows a Lambda Architecture’s schema. It caters as three layers (1)

Batch processing for pre-computing large amounts of data sets (2) Speed or real-time

computing to minimize latency by doing real time calculations as the data arrives and

(3) a layer to respond to queries, interfacing to query and provide the results of the

calculations (KIRAN et al., 2015).

2.1 Introduction 20

Figure 2.1: Basic lambda architecture for speed and batch processing. Kiran et al. (2015)

In the present proposal this architecture is adopted once is designed to process

large volume of historical data, as well as rapid incoming data streams.

21

3 Related Work

Considering the research areas on which this paper draws, we have selected articles ad-

dressing data integration in streaming applications and historical data, and query mech-

anisms for real-time monitoring, to understand important aspects of the theme and limi-

tations of existing solutions.

Asano et al. (2019) introduce Dejima, a framework focused on system aspects for

data integration and control of update propagation of multiple databases. According to

the authors, their solution combines two previous approaches to data integration; the first

based on the global data schema, in which the data is integrated among a few databases

using a single global schema, and the other based on the concept of ’peer’ where the

propagation of updates is cascaded through the peer networks. The authors do not

present structural aspects of the queries.

In the research of Brown, Spivak and Wisnesky (2019), the focus is on ensuring

data integrity during the data migration process, presenting CQL (Categorical Query

Language) as an intuitive language to allow the movement and integration of data with

complex schemas. They also point to the need for tools to combine heterogeneous datasets.

Tian, Sequeda and Miranker (2013) present QODI (Query-driven Ontology-based

Data Integration), an algorithm for dynamic mapping and query reformulation. They

demonstrate QODI as a solution for data integration in heterogeneous distributed database

systems. The queries are performed by ontology users through queries in the SPARQL

language and translated to their destination databases. Although QODI is designed to

integrate RDF (Resource Description Framework) data, its main motivation is the inte-

gration of relational data.

To support the query process with context enrichment, Cavallo et al. (2018)

present a semantic labeling module for performing queries in RDF statements with a

query engine that combines SPARQL and SQL queries. They introduce the syntax of the

query language with context enrichment SESQL (Semantically Enriched SQL).

Considering the works mentioned above, their gaps and limitations, as well as the

3 Related Work 22

problems identified by the authors themselves, the approach proposed in this present work

presents itself as a feasible solution to the highlighted points. The main contributions of

this work are:

1. Allow the integration of data from distributed repositories;

2. Allow the integration of data between heterogeneous data sets, structured or not,

relational or not;

3. Promote the execution of real-time queries in streaming and historical data;

4. Provide the abstraction of syntactic aspects of the queries at the model level of the

datasets, providing the possibility of queries through the use of the SQL standard.

23

4 Material and Methods

This work proposes a framework to facilitate the integration of streaming data produced

by sensors with historical data. In this framework, the SQL language is used as the

standard language, since it is the most used language for database queries (TOMAN,

2017). We assume some sensors produce a stream of data that needs to be ingested and

analyzed together with historical data. This integration allows for a better understanding

of the data and the detection of new knowledge (TOMIC et al., 2015; COLLARANA et

al., 2017; LI et al., 2020), since the value of data increases when it can be linked and fused

with other data (ANALYTICS, 2016).

Structured, semi-structured, and unstructured data, such as sensor data and any

type of logs, business events, and user activities, are produced in large volume and must

be processed by data streaming tools. We assume that these tools are configured in such

a way as to have enough computational power to process and capture data streams.

Upon receiving data from the streaming tools, data are analyzed and stored for

future analysis. Data that may not be attractive for analysis today may be important

further, so it is necessary not to discard data that could generate relevant information in

the future. Once ingested and stored, data needs to be analyzed continuously. Monitor-

ing tools are used to gain insights at a very high speed through near real-time analytic

dashboards.

We believe that the use of the SQL language allows users to access data from dif-

ferent sources, transparently, regardless of the data model of that source (files, relational or

non-relational databases, etc.). Thus, monitoring tools, external APIs (Application Pro-

gramming Interfaces), and users, can have easier access to different data sources through

the use of this framework.

Figure 4.1 provides an overview of the framework components, defined to sup-

port continuous monitoring of data streaming, enabling integration with historical data

repositories. The components are described below.

The Data sources component is responsible for monitoring the data produced by

4 Material and Methods 24

Figure 4.1: Framework Architecture

different devices, which can be sensors, IoT devices, logs, social networks, among others.

In this component, two types of applications are expected: applications dedicated to

ingesting raw stream data, focusing on high throughput and low latency; and applications

aimed at scheduled data ingestion, in which data extraction and processing routines are

performed periodically.

In the Stream Ingestion component, streaming data processing tools are con-

figured to support applications such as Flink, Kafka, Spark, Storm, etc. These tools

have several operators, such as varied windowing, join of streams, and pattern detec-

tion, being able to process and manipulate streaming data in repositories with diversified

data models, respecting the defined windows for streaming processing (GAROFALAKIS;

GEHRKE; RASTOGI, 2016). Windowing is the technique of executing aggregates over

streams, being classified as Tumbling windows (no overlap) and Sliding windows (with

overlap). Data processed in the windows are stored for further analysis.

The data processed by the Stream Ingestion component and the data ingested by

schedule are stored in the Batch component. Dedicated repositories for storing historical

data are also defined in this component. We designed these components based on the

Lambda Architecture, which, in general, has three layers, represented in our framework

by the components: Stream Ingestion (Speed), Batch, and Continuous Query Processor

(Serving) (KIRAN et al., 2015).

In the component Continuous Query Processor the core of the solution is

defined. SQL queries submitted to these components are pre-processed to identify the

data repositories involved in the query. If it is identified that the query must be executed

4 Material and Methods 25

in more than one repository with different data models, a set of subqueries is generated.

The Mapper receives these subqueries, transforms them to the target repository’s query

language, and submits them for execution. Subqueries run in parallel to optimize data

fetching. The combination of the subqueries’ results is done considering the criteria for

creating the subqueries, respecting the filters originally defined in the main query.

In the Application Interface component, a set of applications can be used to

consume both historical and stream data. These applications submit SQL queries and

receive the query result in a tabular format, standard SQL.

In this paper, we focus on the development of the Continuous Query Processor

component. This component was developed using the Java language and is an extension of

Apache Calcite. The component has three main functions: monitor the user’s interaction

with the system; query validation considering the data sources configuration; and orches-

trate the services communication, considering the multiple threads approach. Figure 4.2

presents a view of this component, as well as the technologies used in its development.

Figure 4.2: Implementation Solution

We use JSON files to configure the data sources, following the model defined in

Apache Calcite, which was used as a query solve in Mapper. In JSON, a schema was

configured for each of the three repositories used in this study: PostgreSQL, CSV, and

Kafka. Thus, it was possible to identify the data sources involved in SQL queries. Part of

this file can be seen in Figure 4.3, and the file used in this work is presented at Appendix

4 Material and Methods 26

A. As we are using Apache Calcite, our framework is restricted to implemented adapters

by it2.

The SQL query submitted by the user is processed and, based on JSON, the

subqueries are created in order to guarantee that all filters and relations refer to the same

schema. Filters were characterized between specific filters and intersection filters. Specific

filters are those with single-schema relations (eg, H1.region = ’London’). Intersection

Filters, on the other hand, are those that have relations from more than one schema

and, therefore, they can only be applied after executing the subqueries. In Figure 4.2 two

subqueries are created, and the intersection filter S1.sensor = H1.sensor is not considered

in this first step. A Thread is created for each subquery so that execution occurs in

parallel in the component process. The mapping of each subquery is the responsibility

of the Mapper, which was implemented using the conversion models defined in Apache

Calcite.

Based on the same JSON files used to identify the schemas, Apache Calcite

identifies the subquery’s language, makes the necessary conversions, and executes the

query in the appropriate repositories. The STREAM schema subqueries’ are executed on

the data contained in the stream window.

Figure 4.3: Part from JSON file with configuration of two schemas: Relational database
(PostgreSQL) and data streaming (Kafka).

2https://calcite.apache.org/docs/adapter.html

4 Material and Methods 27

Upon receiving the result of the execution of each subquery, the Continuous

Query Processor component joins the results and applies the intersection filters, which

were not applied due to the separation of the query in its subqueries. In the current stage

of implementation, the framework does not have implementations of all join operators,

only the ”inner join” operator was implemented.

As it is a Continuous Query Processor, the query’s result is delivered to the

user/application/monitoring tool and the same query is executed again considering the

execution cycle length defined in the submission of the query. In Figure 4.2, the user

has defined an SQL query ”select STREAM * ... CYCLE 30”. This query is executed every

30 minutes. As data stream are limitless, this cycle remains until the user stops the

execution.

28

5 Feasibility Study

In this section, we conduct a feasibility study, presenting real use case scenarios in which

the architecture can be used to join streaming data produced by sensors in a Home

Environment with historical temperature data.

A feasibility study attempts to characterize a technology to ensure that it actually

does what it claims to do and is worth developing (SANTOS, 2016). As this is the first

effort to implement the solution and no interface has been implemented, it has become

prohibitive to apply more traditional assessment methods, such as case studies. Instead,

we use the Goal-Question-Metric (GQM) methodology (CALDIERA; ROMBACH, 1994).

5.1 Datasets description

One of the datasets used in this evaluation is a sensor dataset with data collected from

three residences. The layout plan of two of them is presented in Figure 5.1, with the

location of each sensor identified in the floor plan.

Figure 5.1: Layouts of home 01 and home 02.

The sensor data has the following features: resident number, sensor number,

message, day, month, year, hour, minute and milli-seconds. Data were collected from

5.1 Datasets description 29

these three homes over a year. Home 01 has 7 sensors and the data were monitored from

05/15/2018 to 05/31/2019, representing 381 days of data collection. Home 02 has 10

sensors and monitoring occurred from 08/09/2018 to 08/31/2019, a total of 352 days.

Home 03 has 8 sensors whose data were received from 10/23/2017 to 9/30/2018, or 342

days. Note that each sensor message has an associated timestamp and that there are

time gaps between consecutive sensor messages, sometimes on the order of minutes or

even hours. While we could process sensor messages in actual time, the processing would

require over a year of actual time. To evaluate our framework, we processed the sensor

data as a continuous stream using Kafka.

Table 5.1 shows the messages sent by sensors during the monitoring period from

Home 01; the other houses follow the same message pattern. We can see that it is

possible to detect the action taken by the person who activated or deactivated the sensor.

In general, the sensors are activated or deactivated and send messages related to these

two actions.

Table 5.1: Sensors messages of Home 01
Sensor Number Message

1
Front Door Contact Opened
Front Door Contact Closed

2
Back Door Contact Opened
Back Door Contact Closed

3
Bedroom Motion Activated
Bedroom Motion Idle

4
Bathroom Motion Activated
Bathroom Motion Idle

5
Kitchen Motion Activated
Kitchen Motion Idle

6
Living Rm Motion Activated
Living Rm Motion Idle

7
ABS Bed Sensor Occupied
ABS Bed Sensor Briefly Vacated
ABS Bed Sensor Vacated

The second dataset is about Historical Climate Data. Data made available by the

Canadian government were used3. In this repository are available weather data for the

period 2004-present. Using this service, collecting historical data about weather, climate

data, and related information for numerous locations across Canada is possible. Some

3https://climate.weather.gc.ca/index e.html

5.2 Joining Stream and Historical Data 30

available data are temperature, precipitation, degree days, relative humidity, wind speed

and direction, monthly summaries, averages, extremes, and climate norms.

We collected data for the household monitoring period (2017-2019) to enable

integrating these data using their dates as a filter. A total of 3 years of data for the

region of London (Ontario) were collected and stored in a PostgreSQL relational database.

Based on these data, we used the framework to join the two datasets and evaluate our

solution.

5.2 Joining Stream and Historical Data

Based on the data described above, we want to make queries capable of enriching the data

produced by the sensors with historical data. The purpose of this scenario is: analyze

the framework with the purpose of evaluating with respect to its usefulness and

extensibility from the point of view of a researcher in the context of joining stream

and historical data. We thereby derive the following questions:

Q1) Can the framework be used as a tool for joining stream and historical data

described by heterogeneous data formats and models?

Q2) Is the solution extensible, that is, is it possible to add other data sources

(stream or historical) in a simplified way?

In many cases, users need to correlate persistent historical data and reference data

with a real-time data stream to make smarter system decisions. This type of join requires

an input source for the reference/historical data to be defined. Some tools (Flink, Spark)

allow the user to implement the join between Stream and Tables. However, each tool

works on a language, making the integrated use of the data produced by them difficult.

Following the architectural proposal defined in Section 3, the user configures the

JSON file with the schemas referring to each data source, one for the sensor stream and

another for the relational database with the weather data. With this configuration, the

Continuous Query Processor component is able to identify the data sources involved in the

submitted query, create the sub-queries, execute them using Apache Calcite as a mapper,

and present the consolidated results, providing users with a SQL-based solution.

Queries to different types of data sources, schemas and representations were sub-

5.2 Joining Stream and Historical Data 31

mitted to the framework, involving schemas as follow:

• Historical

• Streaming

• Streaming x Streaming

• Streaming x Historical (relational data source)

• Streaming x Historical (csv file)

• Streaming x Historical (document)

For example, let’s assume the user is interested in monitoring sensor readings for

the Back Door Contact. Also, he wants to check weather information when the sensor

detects that the door is open. In other words, he wants to execute an SQL query that

brings up information that is distributed in two repositories with different data models.

The following query can be submitted to the Continuous Query Processor component to

consolidate this information.

Query 1:

1 SELECT STREAM Station_Name , time_lst , temp_c ,

2 Wind Spd_km_h , weather , dates ,

3 res , sensor , message

4 FROM historical.historical_climate AS h,

5 kafka.ambient_sensor AS s

6 WHERE h.dates = s.dates

7 AND s."sensor" = ‘Sensor 2‘

8 AND s."message" LIKE ’%Opened%’;

The subqueries below are generated and submitted to Apache Calcite. The spe-

cific filters are applied in Subquery 1.1 to reduce the volume of data capture in the stream.

On the other hand, the intersection filter (h.date = s.date) and the projections defined in

the select clause are applied just when the component joins the historical and the stream

results.

Subquery 1.1:

5.2 Joining Stream and Historical Data 32

1 SELECT STREAM *

2 FROM kafka.ambient_sensor AS s

3 WHERE s."sensor" = ‘Sensor 2‘

4 AND s."message" LIKE ’%Opened%’;

Subquery 1.2:

1 SELECT *

2 FROM historical.historical_climate AS h;

Figure 5.2 presents the result of the query returned by the component. In this

figure only part of the results is presented. As it is a stream query, the component presents

the results separately, considering the data being ingested by Kafka.

Figure 5.2: One of the results returned by the Continuous Query Processor compo-
nent.(Query 1)

In addition, other schemas can be configured, allowing users to monitor data

(history and stream) from heterogeneous repositories without the need for knowledge

of specific languages. This reinforces the utility appeal of the solution since users can

consume the data without directly interfacing with storage solutions.

In order to test the above, two relational datasets were added, being one syn-

thetic source data and another containing data from beaches sensors, also in Canada.

Some of the avaiable data are temperature, beach name, turbidity and wave height. An-

other streaming dataset was also added to the context, containing data from sensors with

informations about air quality.

The Query 2 presents a simple query on historical dataset only.

Query 2:

1 SELECT name , date , temperature ,

2 turbidity , transdeep , waveheight , battery

3 FROM historical.historical_beach AS hb

4 WHERE hb.historical_beach = ’Rainbow Beach ’;

5.2 Joining Stream and Historical Data 33

Once the main query only involves a historical dataset, there is no subqueries

generated. The Figure 5.3 shows part of the results.

Figure 5.3: Results returned by the Continuous Query Processor component on historical
dataset.(Query 2)

The Query 3 presents a join between an historical(historical beach) and a stream(stream air)

datasets. Also includes a filter by date in the historical dataset.

Query 3:

1 SELECT STREAM *

2 FROM historical.historical_beach AS hb,

3 kafka.stream_air AS sa

4 WHERE hb.DATE = sa.DATE

5 AND hb.DATE = ’05 -28 -2014’;

The following subqueries are generated.

Subquery 3.1:

1 SELECT *

2 FROM historical.historical_beach AS hb

3 WHERE hb.DATE = ’05 -28 -2014’;

Subquery 3.2:

1 SELECT STREAM*

2 FROM kafka.stream_air AS sa;

The Figure 5.4 shows part of the results.

The Query 4 involves joins beetween two historical datasets(historical beach and

historical climate) and one stream dataset (stream air) and a filter in the stream dataset.

5.2 Joining Stream and Historical Data 34

Figure 5.4: Results returned by the Continuous Query Processor on simple join on
date.(Query 3)

Query 4:

1 SELECT STREAM *

2 FROM historical.historical_beach AS hb,

3 historical.historical_climate AS hc

4 kafka.stream_air AS ka ,

5 WHERE hb.DATE = sa.DATE

6 AND hc.DATE = sa.DATE

7 AND ka."DATE" = ’05 -28 -2014’;

And the following subqueries are generated.

Subquery 4.1:

1 SELECT *

2 FROM historical.historical_beach AS hb;

Subquery 4.2:

1 SELECT STREAM *

2 FROM historical.historical_climate AS hc;

Subquery 4.3:

1 SELECT STREAM *

2 FROM kafka.stream_air AS ka

3 WHERE ka."DATE" = ’05 -28 -2014’;

5.2 Joining Stream and Historical Data 35

Figure 5.5: Results returned by the Continuous Query Processor on multiple join on
date.(Query 4)

Finally, although not all SQL operations are implemented in this version, it can

be used in scenarios where it is necessary to join data by equality criteria, that is, using

an inner join.

With this project, both location and access transparency are provided (COULOURIS

et al., 2005), freeing users from the need to understand the underlying storage solution

and how data is organized in this distributed environment. In addition, this conceptual

design also offers the option of using the SQL language for queries, enabling its use by

most database users and by most of the tools used for data monitoring (e.g., dashboards).

This way, given the scenario at hand the elements that compose it, we can answer

the questions previously outlined. (Q1) Can the framework be used as a tool for

joining stream and historical data described by heterogeneous data formats

and models? Partly. We demonstrate in this scenario that we can query stream and

historical data. By automating the process of split the main query and execute the sub-

queries in parallel using Apache Calcite as mapper. Via the query endpoints, users can

interface with the solution in a transparent manner, leaving to the Continuous Query Pro-

cessor component the interpretation and proper redirection of incoming queries. However,

the current implementation does not support all SQL operations, because of that we are

answering this question partly.

(Q2) Is the solution extensible, that is, is it possible to add other data

sources (stream or historical) in a simplified way? Yes. In the analyzed scenario,

we show that by using the Apache Calcite and JSON configuration files, new storage

solutions (schemas) can be added, exempting the need to restructure the solution. This

way, we show the framework’s viability for this scenario, since it can contemplate the

goals previously outlined.

36

6 Final Remarks and Future Works

This work proposed a framework that enables the monitoring of data produced by IoT

devices and sensors and its integration with historical data. The proposed solution is

based on the SQL language and seeks to facilitate access to and the use of distributed

data repositories with different data models. Furthermore, users can use the framework

to enrich data produced by IoT devices and sensors by integrating them with historical

databases.

The framework was developed as an Apache Calcite extension, using JSON files

to configure the data sources. With this, the framework can detect which data sources

are involved in the query, create the subqueries and execute them in parallel, with Apache

Calcite working as a mapper. Finally, the results of the subqueries are joined, respecting

the intersection filters (inter-queries filters).

Real data produced by sensors in assisted home environments and time data

were used in the feasibility study conducted to evaluate the proposed solution. The

framework integrated this heterogeneous data in a non-intrusive way and allowed the user

to access the data by submitting a single query, thus enabling a comprehensive analysis of

historical and stream data in a unified system. The results obtained with the evaluation

and the answers to the proposed research questions allow us to conclude that the developed

framework achieved the objectives of this work.

As future work, once so far the framework does not allow all join operations to be

applied on the integrated results from different repositories, we plan to continue with the

development of other SQL operations and also incorporate elements for manipulating data

stream windows. Although Apache Calcite adapters limit our solution, many initiatives

are underway to expand the range of data models supported by Apache Calcite4. Given

the complexity of streaming processing, we intend to evaluate real-time requirements (i.e.,

low latency, high throughput, scalability, and fault tolerance). Finally, we plan to measure

the overhead generated by the framework for executing the queries since the monitoring

4https://calcite.apache.org/docs/powered by.html

6 Final Remarks and Future Works 37

tools are almost real-time.

BIBLIOGRAPHY 38

Bibliography

ABU-SALIH, B. et al. Social big data: An overview and applications. Social Big Data
Analytics: Practices, Techniques, and Applications, Springer, p. 1–14, 2021.

AKANBI, A.; MASINDE, M. A distributed stream processing middleware framework for
real-time analysis of heterogeneous data on big data platform: Case of environmental
monitoring. Sensors, Multidisciplinary Digital Publishing Institute, v. 20, n. 11, p. 3166,
2020.

ALKHAMISI, A. O.; SALEH, M. Ontology opportunities and challenges: Discussions
from semantic data integration perspectives. In: IEEE. 2020 6th Conference on Data
Science and Machine Learning Applications (CDMA). [S.l.], 2020. p. 134–140.

ANALYTICS, M. The age of analytics: competing in a data-driven world. McKinsey
Global Institute Research, 2016.

ASANO, Y. et al. Flexible framework for data integration and update propagation: Sys-
tem aspect. In: 2019 IEEE International Conference on Big Data and Smart Computing
(BigComp). [S.l.: s.n.], 2019. p. 1–5.

BABCOCK, B. et al. Models and issues in data stream systems. In: Proceedings of the
twenty-first ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-
tems. [S.l.: s.n.], 2002. p. 1–16.

BARROS, M. Book Review: Digital Objects, Digital Subjects: Interdisciplinary perspec-
tives on capitalism, labour and politics in the age of big data. [S.l.]: SAGE Publications
Sage UK: London, England, 2020.

BROWN, K. S.; SPIVAK, D. I.; WISNESKY, R. Categorical data integration for com-
putational science. Computational Materials Science, Elsevier, v. 164, p. 127–132, 2019.

CALDIERA, V. R. B.-G.; ROMBACH, H. D. Goal question metric paradigm. Encyclo-
pedia of software engineering, v. 1, p. 528–532, 1994.

CAPPUZZO, R.; PAPOTTI, P.; THIRUMURUGANATHAN, S. Creating embeddings of
heterogeneous relational datasets for data integration tasks. In: Proceedings of the 2020
ACM SIGMOD International Conference on Management of Data. [S.l.: s.n.], 2020. p.
1335–1349.

CAVALLO, G. et al. Contextually-enriched querying of integrated data sources. In: IEEE.
2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW).
[S.l.], 2018. p. 9–16.

CAVANILLAS, J. M.; CURRY, E.; WAHLSTER, W. New horizons for a data-driven
economy: a roadmap for usage and exploitation of big data in Europe. [S.l.]: Springer
Nature, 2016.

CHEN, J. et al. Big data challenge: a data management perspective. Frontiers of computer
Science, Springer, v. 7, n. 2, p. 157–164, 2013.

BIBLIOGRAPHY 39

COLLARANA, D. et al. Semantic data integration for knowledge graph construction at
query time. In: IEEE. 2017 IEEE 11th International Conference on Semantic Computing
(ICSC). [S.l.], 2017. p. 109–116.

COSTA, F. S. et al. Fasten iiot: An open real-time platform for vertical, horizontal
and end-to-end integration. Sensors, Multidisciplinary Digital Publishing Institute, v. 20,
n. 19, p. 5499, 2020.

COULOURIS, G. et al. Distributed Systems: Concepts and Design. 5th. ed. [S.l.]: Pearson
Education, 2005.

FREITAS, A.; CURRY, E. Natural language queries over heterogeneous linked data
graphs: A distributional-compositional semantics approach. In: Proceedings of the 19th
international conference on Intelligent User Interfaces. [S.l.: s.n.], 2014. p. 279–288.

GAMA, J. A survey on learning from data streams: current and future trends. Progress
in Artificial Intelligence, Springer, v. 1, n. 1, p. 45–55, 2012.

GAMA, J.; GABER, M. M. Learning from data streams: processing techniques in sensor
networks. [S.l.]: Springer, 2007.

GAROFALAKIS, M.; GEHRKE, J.; RASTOGI, R. (Ed.). Data Stream Manage-
ment. Springer Berlin Heidelberg, 2016. Dispońıvel em: 〈https://doi.org/10.1007/
978-3-540-28608-0〉.

GHASEMAGHAEI, M.; CALIC, G. Assessing the impact of big data on firm innovation
performance: Big data is not always better data. Journal of Business Research, Elsevier,
v. 108, p. 147–162, 2020.

GOLAB, L.; ÖZSU, M. T. Issues in data stream management. ACM Sigmod Record, ACM
New York, NY, USA, v. 32, n. 2, p. 5–14, 2003.

GURUSAMY, V.; KANNAN, S.; NANDHINI, K. The real time big data processing frame-
work: Advantages and limitations. International Journal of Computer Sciences and En-
gineering, v. 5, n. 12, p. 305–312, 2017.

JIANG, Q.; CHAKRAVARTHY, S. Stream data processing: a quality of service perspec-
tive. [S.l.: s.n.], 2009.

KIRAN, M. et al. Lambda architecture for cost-effective batch and speed big data pro-
cessing. In: IEEE. 2015 IEEE International Conference on Big Data (Big Data). [S.l.],
2015. p. 2785–2792.

KOLAJO, T.; DARAMOLA, O.; ADEBIYI, A. Big data stream analysis: a systematic
literature review. Journal of Big Data, Springer, v. 6, n. 1, p. 1–30, 2019.

LEE, I.; LEE, K. The internet of things (iot): Applications, investments, and challenges
for enterprises. Business Horizons, Elsevier, v. 58, n. 4, p. 431–440, 2015.

LI, R. et al. Ontologies-based domain knowledge modeling and heterogeneous sensor data
integration for bridge health monitoring systems. IEEE Transactions on Industrial Infor-
matics, IEEE, v. 17, n. 1, p. 321–332, 2020.

MIKALEF, P. et al. Big data and business analytics: A research agenda for realizing
business value. [S.l.]: Elsevier, 2020.

https://doi.org/10.1007/978-3-540-28608-0
https://doi.org/10.1007/978-3-540-28608-0

BIBLIOGRAPHY 40

MILLER, R. J. Open data integration. Proceedings of the VLDB Endowment, VLDB
Endowment, v. 11, n. 12, p. 2130–2139, 2018.

SAKR, S. et al. Big data processing systems: state-of-the-art and open challenges. In:
IEEE. 2015 International Conference on Cloud Computing (ICCC). [S.l.], 2015. p. 1–8.

SANTOS, R. P. dos. Managing and monitoring software ecosystem to support demand
and solution analysis. Tese (Doutorado) — Universidade Federal do Rio de Janeiro, 2016.

SHAN, S. et al. Big data analysis adaptation and enterprises’ competitive advantages:
the perspective of dynamic capability and resource-based theories. Technology Analysis
& Strategic Management, Taylor & Francis, v. 31, n. 4, p. 406–420, 2019.

SHEIN, A.; CHRYSANTHIS, P. K. Multi-query optimization of incrementally evaluated
sliding-window aggregations. IEEE Transactions on Knowledge and Data Engineering,
IEEE, 2020.

SMYS, S. A survey on internet of things (iot) based smart systems. Journal of ISMAC,
v. 2, n. 04, p. 181–189, 2020.

STONEBRAKER, M.; ILYAS, I. F. Data integration: The current status and the way
forward. IEEE Data Eng. Bull., v. 41, n. 2, p. 3–9, 2018.

STOYANOVA, M. et al. A survey on the internet of things (iot) forensics: challenges,
approaches, and open issues. IEEE Communications Surveys & Tutorials, IEEE, v. 22,
n. 2, p. 1191–1221, 2020.

TATBUL, N. Streaming data integration: Challenges and opportunities. In: IEEE. 2010
IEEE 26th International Conference on Data Engineering Workshops (ICDEW 2010).
[S.l.], 2010. p. 155–158.

TIAN, A.; SEQUEDA, J. F.; MIRANKER, D. P. Qodi: Query as context in automatic
data integration. In: SPRINGER. International Semantic Web Conference. [S.l.], 2013.
p. 624–639.

TIBCO. What is Data Streaming? 2019. Acesso em 19 de agosto de 2021. Dispońıvel em:
〈https://www.tibco.com/reference-center/what-is-data-streaming〉.

TOMAN, S. H. The design of a templating language to embed database queries into
documents. Journal of Education College Wasit University, v. 1, n. 29, p. 512–534, 2017.

TOMIC, D. et al. Experiences with creating a precision dairy farming ontology
(dfo) and a knowledge graph for the data integration platform in agriopenlink.
Agrárinformatika/Journal of Agricultural Informatics, Hungarian Association of Agri-
cultural Informatics, v. 6, n. 4, p. 115–126, 2015.

TU, D. Q. et al. Iot streaming data integration from multiple sources. Computing,
Springer, v. 102, n. 10, p. 2299–2329, 2020.

VENKATESH, K. et al. Challenges and research disputes and tools in big data analytics.
International Journal of Engineering and Advanced Technology, v. 6, p. 1949–1952, 2019.

WANG, J. et al. Big data service architecture: a survey. Journal of Internet Technology,
v. 21, n. 2, p. 393–405, 2020.

https://www.tibco.com/reference-center/what-is-data-streaming

BIBLIOGRAPHY 41

WANG, X.; HAAS, L.; MELIOU, A. Explaining data integration. Data Engineering Bul-
letin, v. 41, n. 2, 2018.

YI, X. et al. Building a network highway for big data: architecture and challenges. Ieee
Network, IEEE, v. 28, n. 4, p. 5–13, 2014.

YOUSFI, S.; RHANOUI, M.; CHIADMI, D. Towards a generic multimodal architecture
for batch and streaming big data integration. arXiv preprint arXiv:2108.04343, 2021.

ZANELLA, A. et al. Internet of things for smart cities. IEEE Internet of Things journal,
IEEE, v. 1, n. 1, p. 22–32, 2014.

Appendices

42

43

A - JSON Configuration File

1 {

2 "version": "1.0",

3 "schemas": [

4 {

5 "name": "historical",

6 "type": "jdbc",

7 "jdbcUser": "x",

8 "jdbcPassword": "y",

9 "jdbcUrl":

↪→ "jdbc:postgresql :// server :5432/ historical?user=x7password=y",

10 "jdbcCatalog": "historical_climate",

11 "jdbcSchema": "public",

12 "jdbcDriver": "org.postgresql.Driver",

13 "materializations": [

14 {

15 "view": "historical_climate",

16 "table": "historical_climate"

17 }

18]

19 },

20 {

21 "name": "historical2",

22 "type": "jdbc",

23 "jdbcUser": "x",

24 "jdbcPassword": "y",

25 "jdbcUrl":

↪→ "jdbc:postgresql :// server :5432/ historical?user=x7password=y",

26 "jdbcCatalog": "historical_beach",

A - JSON Configuration File 44

27 "jdbcSchema": "public",

28 "jdbcDriver": "org.postgresql.Driver",

29 "materializations": [

30 {

31 "view": "historical_beach",

32 "table": "historical_beach"

33 }

34]

35 },

36 {

37 "name": "KAFKA",

38 "tables": [

39 {

40 "name": "KAFKA",

41 "type": "custom",

42 "factory":

↪→ "org.apache.calcite.adapter.kafka.KafkaTableFactory",

43 "stream": {

44 "stream": true

45 },

46 "operand": {

47 "bootstrap.servers": "server :9092",

48 "topic.name": "kafka.ambient_sensor",

49 }

50]

51 },

52 {

53 "name": "KAFKA2",

54 "tables": [

55 {

56 "name": "stream_air",

57 "type": "custom",

A - JSON Configuration File 45

58 "factory":

↪→ "org.apache.calcite.adapter.kafka.KafkaTableFactory",

59 "stream": {

60 "stream": true

61 },

62 "operand": {

63 "bootstrap.servers": "server :9092",

64 "topic.name": "kafka.stream_air",

65 }

66]

67 }

68]

69 }

	List of Figures
	List of Tables
	Lista de Abreviações
	Introduction
	Objectives
	Research Questions
	Organization

	Theoretical Foundation
	Introduction
	Internet of Things
	Data Streaming
	Batch vs Stream Data Processing

	Related Work
	Material and Methods
	Feasibility Study
	Datasets description
	Joining Stream and Historical Data

	Final Remarks and Future Works
	Bibliography
	Appendices
	- JSON Configuration File

