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Luciana Conceição Dias Campos
Doutora em Engenharia Elétrica

JUIZ DE FORA

11 DE MARÇO, 2021



Resumo

Dial-a-ride (DAR) é um modelo de serviço de transporte que consiste no compartil-

hamento de viagens por um conjunto de usuários que especificam suas origens, destinos e

horários em que desejam ser atendidos. Tal serviço é realizado por uma frota de véıculos

que partem inicialmente de uma garagem de origem e, ao final do expediente, retornam a

uma garagem de destino. O Problema Dial-a-Ride (DARP), que é NP-dif́ıcil, consiste em

obter um conjunto de rotas de custo mı́nimo que satisfaçam restrições operacionais. Este

trabalho propõe, para o DARP, duas abordagens heuŕısticas diferentes (GRASP e ILS)

que realizam a distribuição dos usuários e a programação dos véıculos, visando minimizar

uma função objetivo que consiste na distância total percorrida por todos os véıculos.

Experimentos computacionais foram realizados sobre um conjunto de instâncias da liter-

atura, afim de avaliar a qualidade das abordagens propostas em termos de qualidade da

solução e de tempo de computação.

Palavras-chave: Dial-a-Ride Problem, GRASP, ILS, Metaheuŕıstica.



Abstract

Dial-a-ride (DAR) is a transportation service model that consists of shared-ride trips by

a set of users that specify their origins, destinations and desired times to be served. Such

service is performed by a fleet of vehicles that initially depart from an origin depot and,

at the end of the day, return to a destination depot. The Dial-a-Ride Problem (DARP),

which is NP-hard, consists of stipulating a set of minimum routes that satisfies opera-

tional constraints. This work proposes for the DARP two different heuristic approaches

(GRASP and ILS) that perform users distribution and vehicle scheduling, aiming to min-

imize an objective function that consists on the total distance traveled by all vehicles.

Computational experiments are performed on a set of instances from the literature in

order to evaluate the quality of the proposed approaches in terms of solution quality and

computing time.

Keywords: Dial-a-Ride Problem, GRASP, ILS, Metaheuristic.
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1 Introduction

With the ever growing urbanization process, the advent of efficient public transportation

systems becomes increasingly necessary. In this context, the dial-a-ride problem (DARP)

arises in many different types of applications. It can be seen, e.g., in the transportation

of elderly and disabled who do not have ease in using regular public systems, in the

transportation of patients between hospitals, and in the transportation of rural residents

who need to move frequently to urban centers for work/health reasons. As it is a service

concerned with the transportation of people and not goods, there are some quality of

service criteria (PAQUETTE; CORDEAU; LAPORTE, 2009) that must be taken into

account when formulating models and algorithms.

In short, the DARP consists in designing a set of minimal routes to meet the

transportation demand of a set of users. Every user submits a request, where it is specified

their pickup and delivery location within a time window, which tells the minimum and

maximum hours that service is allowed to begin at each location. Hence, the terms ”user”

and ”request” are used interchangeably. The vehicle(s), departing from an origin depot,

must serve all users while respecting time and capacity constraints, and must return to

the destination depot by the end of the planning horizon (CORDEAU; LAPORTE, 2003).

Figure 1.1 shows a graphical representation of the DARP.

Following (HO et al., 2018) taxonomy, the DARP can be classified according

to two aspects: (i) the manner of making decisions (static or dynamic) and (ii) the

knowledge of information (deterministic or stochastic). In the static case all requests

are known a priori, while in the dynamic case the service operator is allowed to modify

existing route plans in response to updated information concerning users or to unexpected

disturbances such as delays and/or vehicle breakdowns. Regarding item (ii), the DARP is

said deterministic when there is certainty about the information available at the time of

decision making, and is said stochastic otherwise. For instance, in a deterministic DARP,

one would know a priori the time demanded to embark a disabled passenger, while in the

stochastic case such information would be unknown or would have a probability value
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Figure 1.1: The vertex 0 denotes the origin and destination depot, while vertices u+ and
u− denote the pickup and delivery locations of user u, respectively. The label on each edge
represents the vehicle’s occupancy rate, that is, the current load divided by the vehicle’s
capacity.

associated with.

In general, due to the difficulty of stipulating feasible routing and schedules to

serve all users, and aiming at an improvement in the quality of dial-a-ride services, com-

puterized planning and scheduling are higly necessary for systems of large demand. It

was proven by (JR; KAKIVAYA; STONE, 1998) that the DARP is a NP-hard problem,

making it especially challenging of being solved for larger instances. Thus, the main ob-

jective of the work is to propose two heuristic approaches based on the GRASP and ILS

metaheuristics, to the static-deterministic DARP. These techniques have been showing

great success for combinatorial optimization problems in general, and the opportunity to

extend them to the problem at hand makes it possible to measure their effectiveness and

efficiency.

The rest of this work is organized as follows: Chapter 2 provides a review on the

models and algorithms proposed for the DARP, as well as recent advances and contri-

butions; Chapter 3 addresses the templates of the algorithms that will be used to solve

the DARP; Chapter 4 introduces the formal definition and the mathematical model for

the DARP; Chapter 5 presents the development of the proposed methodology; Chapter 6

addresses the computational experiments, as well as the details of the instances used and

the execution environment. The conclusions of the study are discussed in Chapter 7.
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2 Literature review

Dial-a-ride services are application oriented, that is, different types of applications may

have different constraints and optimization goals. Thus, no standardized problem defini-

tion exists (PARRAGH; DOERNER; HARTL, 2010). However, (CORDEAU; LAPORTE,

2003) introduced a rather general problem description, taking in account time windows,

maximum ride times and maximum route duration, while aiming to minimize the total

routing costs. They also provided a set of benchmark instances that is widely adopted in

the literature. Before that happened, different models and algorithms had been proposed

for problems involving dial-a-ride services. In fact, the first occurrence refers to (WILSON

et al., 1971). Notwithstanding, (PSARAFTIS, 1980; PSARAFTIS, 1983) analyzed and

solved the single-vehicle DARP using dynamic programming, where the objective was to

minimize the time needed to service all users, while (JAW et al., 1986) proposed one of

the first heuristic approaches to the multi-vehicle DARP.

Anyway, it is possible to observe in the literature that there is much interest

in focusing on the development of efficient and effective heuristic techniques rather than

exact methods, due to the NP-hardness character of the DARP (HO et al., 2018). Let

us give some examples. (CORDEAU; LAPORTE, 2003) proposed a Tabu Search (TS)

algorithm that was able to solve a set of 20 artificially generated instances ranging from

24 to 144 requests, along with a set of 6 real-life instances consisting of 200 or 295 re-

quests and 15 or 20 vehicles, provided by a danish transporter. (JORGENSEN; LARSEN;

BERGVINSDOTTIR, 2007) developed a Genetic Algorithm (GA) based in a cluster-first,

route-second approach, for a slightly modified version of the DARP that consisted in a

multi-criteria objective function which aimed to minimize the total routing costs and users

inconvenience. (PARRAGH; DOERNER; HARTL, 2010) introduced a Variable Neighbor-

hood Search (VNS) heuristic that applied a total of thirteen neighborhood structures, and

was tested against the previously mentioned algorithms. Although they did not overcome

the results of (CORDEAU; LAPORTE, 2003) in terms of average values, 16 new best

solutions were identified, and they improved the results of the GA by 71.79%, on average.
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In general, the DARP has been gaining increasing attention from researchers

due to its broad range of variations. For instance, the heterogeneous dial-a-ride problem

(HDARP) was introduced by (PARRAGH, 2011) after observations made at the Austrian

Red Cross (ARC) in the field of patient and disabled people transportation. In this

scenario, passengers may have a debilitating condition that requires the presence of some

type of specific resource in the vehicle, such as stretchers and wheelchairs. As a result,

each instance has a heterogeneous configuration of passengers and vehicles. The author

proposes an exact branch-and-cut method and a heuristic technique based in the VNS

algorithm. Moreover, (BRAEKERS; CARIS; JANSSENS, 2014) incorporated multiple

depots (MD-H-DARP) and presented both a three-index and two-index formulation for

the problem, while designing a branch-and-cut algorithm to solve small-sized instances and

a Deterministic Annealing (DA) algorithm that outperformed the state-of-the-art method

for both the DARP and HDARP. To the MD-H-DARP, (MALHEIROS et al., 2021) came

up with a math-heuristic, combining the Iterated Local Search (ILS) metaheuristic with

an exact technique based on a set partitioning approach. In addition to improving several

best-known solutions and outperforming the DA algorithm, the authors provided 24 new,

challenging instances ranging from 72 to 192 requests, and from 9 to 16 vehicles. A

more recent research field that has been arising consists in the development of models

and algorithms for the DARP that consider a fleet of electric vehicles, within the context

of green logistics (PIMENTA et al., 2017; MASMOUDI et al., 2018; BONGIOVANNI;

KASPI; GEROLIMINIS, 2019).

Returning to the more standardized DARP, (MASMOUDI et al., 2017) developed

a hybrid GA that proved to be highly competitive, with an average deviation of 0.47% from

the best-known solution on the average results, against 0.85% from the DA and 0.97% from

the Evolutionary Local Search (ELS) of (CHASSAING; DUHAMEL; LACOMME, 2016).

This represents the current state-of-the-art along with the Adaptive Large Neighborhood

Search (ALNS) of (GSCHWIND; DREXL, 2019). The latter applied a strategy similar to

the one described by (ROPKE; PISINGER, 2006) for the Pickup and Delivery Problem

with Time Windows (PDPTW), but supplemented with additional removal procedures.

Additionally, the authors designed a constant-time feasibility check for the DARP, but



2 Literature review 9

that requires a preprocessing step that runs in O(r3), where r is the number of stops in

the route. On the 20 instances tested, the ALNS provided 8 new best-known solutions,

and confirmed the other remaining 12, with an average deviation of 0.55% on the average

results.

Finally, it is worth mentioning that study cases of real world DARPs are also a

relevant topic in the literature. For example, (TOTH; VIGO, 1997) developed a com-

putational approach to the shared transportation service in Bologna, Italy, which had

far superior results than the previously handmade approach; (MUELAS; LATORRE;

PEÑA, 2013) solved real instances provided by the San Francisco Municipal Transporta-

tion Agency, in the United States, through the application of the VNS metaheuristic,

and (RODRIGUES et al., 2014) solved instances for the shared transportation service in

Vitória, Brazil, using the Clustering Search (CS) metaheuristic.

For a complete review on models and algorithms for the DARP and its variants,

the reader is referred to (HO et al., 2018) and (CORDEAU; LAPORTE, 2007).
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3 Theoretical basis

This Chapter addresses the general characteristics of the algorithms that will be used to

solve the DARP. Their application and the incorporation of problem-specific issues are

discussed in Chapter 5.

3.1 Metaheuristic

Optimizing is the act of making the best or most effective use of a resource. This scenario

occurs relatively often in many different real world applications, whether it is related to

maximizing profit in a business model or minimizing routing costs in a network.

While exact algorithms do not usually supply a solution for that class of problems

in a reasonable amount of time, one can think of developing different approaches for

providing a relatively good and acceptable solution to the problem at hand. This led to

the development of the so called metaheuristics, which (TALBI, 2009) defined as ”upper

level general methodologies (templates) that can be used as guiding strategies in designing

underlying heuristics to solve specific optimization problems.”

But what is a heuristic? According to (FEIGENBAUM; FELDMAN, 1963) ”a

heuristic (heuristic rule, heuristic method) is a rule of thumb, strategy, trick, simplifi-

cation, or any other kind of device which drastically limits search for solutions in large

problem spaces. Heuristics do not guarantee optimal solutions; in fact, they do not guar-

antee any solution at all; all that can be said for a useful heuristic is that it offers solutions

which are good enough most of the time.”

Hence, metaheuristics can be seen as frameworks that allow the design of algo-

rithms for optimization problems that are computationally intractable in practice. Al-

though metaheuristics do not guarantee an optimal solution, they usually present solutions

that are satisfactory in practice, and their performance outweighs the possibility of not

obtaining a proven optimal solution. For an extensive review on metaheuristics, the reader

is referred to (TALBI, 2009) and (GLOVER; KOCHENBERGER, 2006).
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3.2 GRASP

The Greedy Randomized Adaptive Search Procedure (GRASP) metaheuristic (FEO; RE-

SENDE, 1989) consists in a stochastic and iterative process in which each iteration if

made up of two phases: (i) construction phase, where an initial solution is generated

in a greedy-randomized fashion and (ii) local search phase, where the initial solution

is refined through a local search procedure in order to establish a local optimum. The

best overall solution is kept as the final result. The pseudocode for GRASP is shown in

Algorithm 1.

Algorithm 1: GRASP

Input: Stopping criterion c and randomness parameter 0 ≤ α ≤ 1.
Output: The best solution found for the optimization problem.

1 begin
2 s∗ ← ∅, f ∗ ← +∞;
3 while not c do
4 s0 ← ConstructGreedyRandomizedSolution(α);
5 s′ ← LocalSearch(s0);
6 if f(s′) < f ∗ then
7 s∗ ← s′;
8 f ∗ ← f(s′);

9 end if

10 end while
11 return s∗;

12 end

Besides requiring little programming effort to implement, GRASP has only a few

parameters to be set and tuned, which makes it simple yet efficient. The stopping criterion

c is usually set to a maximum number of iterations, although it is possible to adopt it

as, e.g., maximum number of consecutive iterations without improvement or maximum

running time.

3.2.1 Construction phase

The construction phase aims to generate a feasible solution. This is done iteratively in a

greedy-randomized fashion, one element at a time. Elements are ranked according to a

greedy function that measures the benefit of their insertion in the solution, and placed in

a candidate list (CL). In each iteration a restricted candidate list (RCL) is built based in
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the α parameter. Then, an element is taken from RCL at random to join the solution and

removed from CL thereafter. The adaptive nature of the algorithm comes from the fact

that, at the end of each iteration, the remaining elements of CL are updated according

to the newly modified solution. The pseudocode for the construction phase is shown in

Algorithm 2.

Algorithm 2: Constructive algorithm for the GRASP

Input: Randomness parameter 0 ≤ α ≤ 1.
Output: A solution for the optimization problem.

1 begin
2 s← ∅;
3 Initialize candidate list CL;
4 while CL 6= ∅ do
5 RCL← ConstructRCL(CL, α);
6 Randomly take an element e ∈ RCL;
7 s← s ∪ {e};
8 CL← CL− {e};
9 Update CL;

10 end while
11 return s;

12 end

Regarding the construction of the RCL (line 5), the two most common approaches

are either based in the quality of each element or in the cardinality of the candidate

list. For the former, let g(e) be the value of the greedy function applied to element

e ∈ CL. Then, RCL = {e ∈ CL : gmin ≤ g(e) ≤ gmin + α(gmax − gmin)}, where

gmin = min{g(e) : e ∈ CL} and gmax = max{g(e) : e ∈ CL}. For the latter, one can

simply limit the size of RCL to 1 + α(|CL| − 1).

It is important to note that α = 0 yields a purely greedy procedure, as RCL will

contain only the element with the highest value of greedy function, while α = 1 results in

a completely random procedure, since RCL will be equal to CL.

3.2.2 Local search phase

A local search algorithm works by continuously searching the neighborhood of current

solution and replacing it whenever a better solution is found. This process is repeated

until a locally optimal solution has been reached. The neighborhood of a solution s is

defined as a finite set of solutions N(s) = {s1, . . . , sn} and s is said to be locally optimal
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if f(s) < f(s′), ∀s′ ∈ N(s). Neighborhoods are generated by arbitrary operators, e.g.,

by swapping positions of distinct elements. Algorithm 3 states a generic local search

procedure for GRASP.

Algorithm 3: Generic local search procedure for GRASP

Input: Solution s.
Output: s as local optimal.

1 begin
2 while ∃ s′ ∈ N(s) : f(s′) < f(s) do
3 Find a better solution s′ ∈ N(s);
4 s← s′;

5 end while
6 return s;

7 end

When selecting a better solution (line 3), one may adopt a first improvement

strategy, in which the first improving solution in the neighborhood is selected, or a best

improvement strategy, where the entire neighborhood is investigated and the selected

solution is the one with the best cost with respect to the objective function. It is no-

ticeable that the main difference between the two approaches lies in the computational

performance.

As described by (FEO; RESENDE, 1995), ”the key to success for a local search

algorithm consists of the suitable choice of a neighborhood structure, efficient neighbor-

hood search techniques, and the starting solution.”

3.3 ILS

The Iterated Local Search (ILS) metaheuristic (LOURENÇO; MARTIN; STÜTZLE, 2003)

is an iterative procedure that aims to escape from locally optimal solutions by sequentially

applying a change (perturbation) in the current solution s∗, leading to an intermediate

solution s′. Then, a local search step is performed in s′, yielding a new solution s∗′. If s∗′

is accepted by means of a predefined acceptance criterion, the search continues from the

new starting point s∗′; otherwise, one returns to s∗.

As depicted by the authors, the perturbation mechanism should not be neither

too small nor too large. In case a small change is performed, s′ may quickly degenerate
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to s∗ during the local search step. On the other hand, if the perturbation is too large,

s′ will be random and the characteristics of s∗ will be lost, resulting in a random restart

type algorithm. A graphical representation of the ILS procedure is shown in Figure 3.1

Figure 3.1: The ILS procedure (LOURENÇO; MARTIN; STÜTZLE, 2003).

The algorithmic structure of the ILS is presented in Algorithm 4. First, an ini-

tial solution is generated and a local optimum is established (lines 2-3). Then, while the

stopping criterion c is not met (lines 5-7), solution s∗ is perturbed and a local search

procedure is applied in the hope of finding promising neighboring solutions. The Accep-

tanceCriterion procedure determines a new starting point for the search, based in the

quality of the new obtained solution s∗′. At the end of the algorithm, s∗ is returned as

the final solution to the problem.

Algorithm 4: ILS

Input: Stopping criterion c.
Output: A solution to the optimization problem.

1 begin
2 s0 ← GenerateInitialSolution();
3 s∗ ← LocalSearch(s0);
4 while not c do
5 s′ ← Perturb(s∗);
6 s∗′ ← LocalSearch(s′);
7 s∗ ← AcceptanceCriterion(s∗, s∗′);

8 end while
9 return s∗;

10 end

In spite of being simple and easy to implement, the effectiveness of ILS depends
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mainly on the choice of the local search, the perturbation mechanism and the acceptance

criterion.

3.4 VND

Variable Neighborhood Descent (VND) (MLADENOVIĆ; HANSEN, 1997) is a search

heuristic used to diversify the exploration of neighborhoods for a solution. The procedure

begins by defining a list of k neighborhood structures NL = {N1, . . . , Nk} to be used

during the search. Then, the general ideia of VND is to find a better solution in the

first neighborhood. If such solution was found, the search is restarted using the first

neighborhood; otherwise the search is performed in the next neighborhood (in this case

N2, if k ≥ 2). The procedure ends when the k-th neighborhood is unable to improve the

current solution, which will be a local optimum with respect to all other neighborhood

structures. The order of the neighborhoods can be imposed by means of predefined

criteria, e.g., through an increasing order of cardinality. The pseudocode for the VND is

shown in Algorithm 5.

Algorithm 5: VND

Input: Solution s.
Output: s as local optimal.

1 begin
2 NL← {N1, . . . , Nk};
3 i← 1;
4 while i 6 k do
5 Find a better solution s′ in Ni ∈ NL;
6 if f(s′) < f(s) then
7 s← s′;
8 i← 1;

9 end if
10 else
11 i← i+ 1;
12 end if

13 end while
14 return s ;

15 end

In line 2, the list NL containing the k neighborhood structures is initialized.

Variable i keeps track of the current neighborhood being used. As long as i points to
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a valid neighborhood, the search is performed (line 5). As discussed in Section 3.2.2,

this step may follow a first improvement or a best improvement strategy. The resulting

solution is evaluated and in case it is better than the current solution, s is updated

accordingly and i is set to the first neighborhood (lines 6-8); otherwise the search moves

to the next neighborhood (line 11). At the end of the procedure, s is returned as a local

optimal.

The ideia behind VND is to provide means of exploring neighborhoods that are

distant from each other, but without losing the favorable characteristics of the incumbent

solution, in the hope of finding promising neighboring solutions.
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4 The dial-a-ride problem

Consider n users to be served. The DARP can be modelled in a complete directed graph

G = (V,A), where V = P ∪D∪{0, 2n+1} and where P = {1, . . . , n} are pickup locations

and D = {n+ 1, . . . , 2n} delivery locations, while vertices 0 and 2n+ 1 denote the origin

and destination depots, respectively. A request submited by a user i ∈ P is made up

by the pair of vertices (i, n + i). Let K be the fleet of vehicles responsible for servicing

the users. Every vehicle k ∈ K has a capacity Qk and the total duration of its route

must not exceed Tk. Every vertex i ∈ V is associated to (i) a time window [ei, li], which

determines the minimum and maximum time that the vertex can be visited, (ii) a load

qi, which is always positive for origins, negative for destinations and zero for every other

vertex and (iii) a service time di, which represents the time needed for the vehicle to

embark/disembark the user. Each arc (i, j) ∈ A is associated a with travel cost cij and a

travel time tij for which the triangle inequality holds. The maximum ride time for each

user is L.

The DARP is also a scheduling problem, since one needs to know the schedules

for each vehicle in order to check if a given solution to the problem is reasonable. To

this purpose, we define a set of decision variables. The arrival time of vehicle k ∈ K in

vertex i ∈ V can be calculated as Ak
i = Dk

i−1 + ti−1,i. Service at i can not begin before ei,

therefore the service beginning time is defined as Bk
i = max{ei, Ak

i }. The vehicle departs

from vertex i once the service has been completed, which results in the departure time

Dk
i = Bk

i + di. Time spent waiting by the vehicle in i is equal to W k
i = Bk

i − Ak
i and

its load imediately after visiting i is calculated as Qk
i = Qk

i−1 + qi. The ride time of user

i ∈ P can be computed as Lk
i = Bk

n+i −Dk
i . The goal of the problem is to find a solution

s that minimizes total routing costs c(s) =
∑
∀(i,j)∈s cij while respecting all constraints.

Figure 4.1, adapted from (BREVET et al., 2019), provides a graphical under-

standing of time-related decision variables, where the possibilities of arriving before and

after the time window of a vertex are shown. Table 4.1 gives a summary of the notations

used throughout the work.
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Notation Description

Sets
P = {1, . . . , n} Pickup vertices
D = {n+ 1, . . . , 2n} Delivery vertices
V = P ∪D ∪ {0, 2n+ 1} All vertices
K Vehicles

Parameters
Qk Capacity of vehicle k ∈ K
Tk Maximum route duration of vehicle k ∈ K
ei Beginning of time window at vertex i ∈ V
li End of time window at vertex i ∈ V
qi Required capacity by vertex i ∈ V
di Service time at vertex i ∈ V
L Maximum user ride time
cij Travel cost between vertices i, j ∈ V
tij Travel time between vertices i, j ∈ V

Variables
Ak

i Arrival time of vehicle k ∈ K at vertex i ∈ V
Bk

i Service beginning time of vehicle k ∈ K at vertex i ∈ V
Dk

i Departure time of vehicle k ∈ K at vertex i ∈ V
W k

i Waiting time of vehicle k ∈ K at vertex i ∈ V
Qk

i Load of vehicle k ∈ K at vertex i ∈ V
Lk
i Ride time of user i ∈ P in vehicle k ∈ K

Table 4.1: Notations.

4.1 Formulation

This Section presents the mathematical formulation for the DARP based in the definition

of (CORDEAU; LAPORTE, 2003). Although the proposed approach in this work does

not use the model explicitly, it is important for understanding the restrictive aspects of

the problem.

In addition to the data provided in Table 4.1, let xkij = 1 if vehicle k travels

from vertex i to vertex j; xkij = 0 otherwise. The formulation can then be constructed as

follows:

Minimize
∑
k∈K

∑
i∈V

∑
j∈V

cijx
k
ij (4.1a)
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Figure 4.1: Visualization of time-related decision variables.

subject to

∑
k∈K

∑
j∈V

xkij = 1 ∀i ∈ P (4.1b)

∑
j∈V

xkij −
∑
j∈V

xkn+i,j = 0 ∀i ∈ P, k ∈ K (4.1c)

∑
j∈V

xk0j = 1 ∀k ∈ K (4.1d)

∑
j∈V

xkji −
∑
j∈V

xkij = 0 ∀i ∈ P ∪D, k ∈ K (4.1e)

∑
i∈V

xki,2n+1 = 1 ∀k ∈ K (4.1f)

Bk
j > (Bk

i + di + tij)x
k
ij ∀i, j ∈ V, k ∈ K (4.1g)

Qk
j > (Qk

i + qj)x
k
ij ∀i, j ∈ V, k ∈ K (4.1h)

Lk
i = Bk

n+i − (Bk
i + di) ∀i ∈ P, k ∈ K (4.1i)

Bk
2n+1 −Bk

0 6 Tk ∀k ∈ K (4.1j)

ei 6 Bk
i 6 li ∀i ∈ V, k ∈ K (4.1k)

ti,n+i 6 Lk
i 6 L ∀i ∈ P, k ∈ K (4.1l)

max{0, qi} 6 Qk
i 6 min{Qk, Qk + qi} ∀i ∈ V, k ∈ K (4.1m)

xkij ∈ {0, 1} ∀i, j ∈ V, k ∈ K (4.1n)
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The objective of the problem defined in (4.1a) is to minimize the total routing

costs. Equations (4.1b) and (4.1c) guarantee that each user will be served only once and

by the same vehicle. Constraints (4.1d), (4.1e) and (4.1f) ensure that each vehicle departs

from the origin depot and returns to the destination depot. Consistency of time and load

variables are imposed by constraints (4.1g) and (4.1h), respectively. The ride time for

each user is determined by equation (4.1i) and bounded by equation (4.1l). Each user

must be served within their time window, which is ensured by constraint (4.1k). Finally,

constraint (4.1j) bounds the duration for each route while constraint (4.1m) ensures that

vehicles will not have their maximum capacity violated at any time.

It is worth mentioning that as noted by (CORDEAU; LAPORTE, 2003), the time

window at vertex i is only violated if and only if Bk
i > li due to the fact that the arrival

before ei is allowed, which implies a waiting time W k
i > 0.
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5 Development

This chapter describes the solution methodology for the two proposed approaches, in

addition to preprocessing routines and feasibility checking techniques.

5.1 Solution evaluation

Every solution generated by the algorithms must be evaluated in terms of its cost c(s)

and its feasibility. Based on the work of (CORDEAU; LAPORTE, 2003), it is stipulated

an evaluation function f(s) that allows to perform such analysis. In this function, besides

cost c(s), the following violations are taken in account: load q(s), route duration d(s),

time window w(s) and ride time t(s). Each violation can be computed as follows:

q(s) =
∑
i∈V

(Qk
i −Qk)+ (5.1)

d(s) =
∑
i∈V

(Bk
2n+1 −Bk

0 − Tk)+ (5.2)

w(s) =
∑
i∈V

(Bk
i − li)+ (5.3)

t(s) =
∑
i∈P

(Lk
i − L)+ (5.4)

where x+ = max{0, x} and ∀ k ∈ K. The evaluation function f(s) can then be defined

as:

f(s) = c(s) + µq(s) + βd(s) + γw(s) + τt(s) (5.5)

Terms µ, β, γ and τ are penalty parameters for the constraints which they are

associated. They are set to µ = β = γ = τ = 1. Only feasible solutions are selected

during the course of the proposed algorithms. Let s∗ be the best solution found so

far. The necessary condition for a given solution s to become the new best solution is

f(s) < f(s∗) ∧ q(s) = d(s) = w(s) = t(s) = 0.

In order to optimize route duration in contrast to time contraints, we introduce
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The Eight Step Evaluation Scheme developed by (CORDEAU; LAPORTE, 2003).

This scheme uses the concept of forward time slack proposed by (SAVELSBERGH,

1992) to the VRP and is adapted to the DARP. The forward time slack Fi for a given

vertex i in the route gives the maximum amount of time that the departure from i can

be delayed without causing violations in time window and ride time constraints, and is

calculated as:

Fi = min
i6j6q

{ ∑
i<p6j

W k
p + (min{lj −Bk

j , L− Pj})
+

}
(5.6)

where q is the last vertex in the route and Pj is the ride time of the user whose destination

is j ∈ D given that j − n is visited before i on the route; Pj = 0 for all other j. Slack

at vertex j is given by the cumulative waiting time up to j plus the minimum of the

difference between the end of the time window and the beginning of service at j, and the

difference between the maximum user ride time and Pj. Hence, the forward time slack at

vertex i is the minimum of all slacks between i and the last vertex of the route.

Algorithm 6: The Eight Step Evaluation Scheme

1. Dk
0 ← e0;

2. Compute Ak
i , B

k
i , D

k
i ,W

k
i and Qk

i for each vertex i in the route;
If some Bk

i > lki or Qk
i > Qk, go to step 8.

3. Compute F0;

4. Dk
0 ← e0 + min

{
F0,

∑
0<p<qW

k
p

}
;

5. Update Ak
i , B

k
i , D

k
i and W k

i for each vertex i in the route;
6. Compute Lk

i for each request i ∈ P in the route;
7. For each vertex j ∈ P in the route

(a) Compute Fj;

(b) W k
j ← W k

j + min
{
Fj,

∑
j<p<qW

k
p

}
; Bk

j ← Ak
j +W k

j ; Dk
j ← Bk

j + dj;

(c) Update Ak
i , B

k
i , D

k
i and W k

i for each vertex i that comes after j in
the route;

(d) Update Lk
i for each request i ∈ P whose destination is after j;

8. Compute changes in violations of vehicle load, duration, time window
and ride time constraints;

The Eight Step Evaluation Scheme is presented in Algorithm 6. First, time

window violations are minimized in steps (1) and (2). In case violations regarding time

window or load constraints are found, then an irreparable violation has been spotted

and therefore the current solution will be infeasible. In steps (3) - (6) route duration is

minimized without increasing time window violations, and in step (7) the ride time of
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each user is minimized by delaying the beginning of service in the origin vertex without

increasing any other violation.

5.2 Preprocessing

To avoid unnecessary computations in the future and to improve performance, some

preprocessing routines are applied in the input instance before running the proposed

algorithm.

5.2.1 Time window tightening

According to (CORDEAU, 2006), time windows for each user can be tightened considering

the planning horizon H (the amount of time in the future that is taken in account when

preparing a strategic plan) as follows. In case of an outbound user, that is, a user where

time window is imposed in the destination vertex, the time window at the origin vertex

can be defined as ei = max{0, ei+n−L−di} e li = min{li+n− ti,i+n−di, H}. In case of an

inbound user where time window is imposed in the origin vertex, time window tightening

can be applied to the destination vertex by setting ei+n = max{0, ei + di + ti,i+n} and

li+n = min{li + di + L,H}.

5.2.2 Arc initialization

The travel cost cij between two vertices i, j ∈ V is computed as the euclidian distance

between i and j and stored in a matrix to allow efficient access in O(1). Based on DARP

works and as a matter of abstraction we let tij = cij. Assuming that time is given in

minutes and distance in kilometers, this assumption holds since the average travel speed

between two vertices is equal to
cij
tij

and is equivalent of considering that every vehicle

travels with a constant speed of 1 km min−1 or 60 km h−1.
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5.3 Construction of initial solution

Solution s0 used in both GRASP and ILS is initialized with |K| routes (one route per

available vehicle) containing the origin and destination depots. The candidate list (CL)

is constructed in two steps. First, for each user i ∈ P , we compute the cheapest feasible

insertion of i in every route of s0. Then, the route that caused the least increase in

the total routing costs is selected to join CL. In case a user can not be feasibly inserted

in any of the previous routes, the user is associated with a dummy route of cost +∞.

The cheapest insertion of a user in a given route can be determined by evaluating every

possible combination of the vertices i and n+ i and costs O(η2), where η is the length of

the route being analyzed. Feasibility check is done by invoking Algorithm 6.

After sorting CL according to route costs, the restricted candidate list (RCL) is

formed by the first α percent elements of CL. An element consisting of a user and its best

route is randomly selected from RCL to join the current solution. In case the selected user

has insertion cost equal to +∞, a new vehicle is activated to accommodate them, thus s0

will be infeasible. Finally, CL is updated by removing the current selected element and

recomputing the best insertion route for every other user. This process is repeated until

all users have been assigned.

5.4 Repair step

Solutions generated in construction phase might be infeasible with respect to one or more

constraints. If that is the case, the resulting solution will have more vehicles than allowed

and will not be eligible to local search. To avoid generation of infeasible solutions as

much as possible, a repair step is provided. Let x be the number of extra vehicles in the

solution. First, routes are sorted by decreasing size of distance since long routes often

contain remote users that cause high routing costs as depicted by (MASMOUDI et al.,

2017). Then, the top x routes are removed from solution and all users assigned to those

routes are inserted in random order in their best routes in the set of remaining routes.

The repair step will be sucessful if all users can be feasibly assigned to a vehicle; otherwise

solution will remain infeasible and ineligible to local search phase.
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5.5 VND-based local search

Local search operators in routing problems are classified either as intra-route or inter-

route. An intra-route operator performs exchanges between users belonging to the same

route, while in an inter-route operator users from different routes may be exchanged.

In this work a single intra-route operator (relocate) and a pair of inter-route operators

(shift 1-0 and 2-opt*) were adopted. In the hope of finding promising solutions, a best

improvement strategy is used and neighborhoods are explored using VND metaheuristic

(Algorithm 5).

5.5.1 Inter-route: 2-opt* (N1)

This operator was introduced by (POTVIN; ROUSSEAU, 1995) after they realized that

operator k-opt (LIN; KERNIGHAN, 1973) is not very suitable to problems with time

windows because most of the exchanges do not preserve route orientation, thus yelding

a high number of infeasible solutions. The 2-opt* works as follows: two routes p and q

are selected and each have an arbitrary arc removed. The remaining segment of route

p is appended to the end of route q and vice versa, yelding two new routes p′ and q′.

For the DARP only arcs where the vehicle is empty are eligible for removal, since origin

and destination vertices of a given user must belong to the same route. This procedure

if performed for every pair of elegible arcs and the selected solution will contain the best

exchange found.

5.5.2 Intra-route: Relocate (N2)

A user is removed from their route r and reinserted in their best position in r yielding

a new route r′. This procedure is performed sequentially for all users and the solution

consisting in the best reinsertion for each route is selected.
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p : 0 3+ 3− 2+ 2− 11

q : 0 4+ 4− 5+ 5− 1+ 1− 11

...

p′ : 0 3+ 3− 5+ 5− 1+ 1− 11

q′ : 0 4+ 4− 2+ 2− 11

Figure 5.1: 2-opt* operator for routes p and q and the resulting routes p′ and q′.

r : 0 1+ 2+ 1− 2− 3+ 3− 7

... 0 1+ 1− 3+ 3− 7

r′ : 0 1+ 1− 3+ 3− 2+ 2− 7

Figure 5.2: Relocate operator for user (2+, 2−) and the resulting route r′.

5.5.3 Inter-route: Shift 1-0 (N3)

A user is shifted from their route p and inserted in their best position in another route q,

yielding two new routes p′ and q′. This procedure is performed sequentially for all users

and the selected solution is the one containing the pair of routes that provided the best

shift operation.

5.6 GRASP applied to the DARP

The general structure of GRASP was presented in Algorithm 1. Nevertheless, some

subtle changes were embedded in to suit the problem at hand. These changes are shown
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p : 0 1+ 2+ 1− 2− 3+ 3− 11

q : 0 4+ 4− 5+ 5− 11

...

p′ : 0 1+ 1− 3+ 3− 11

q′ : 0 4+ 2+ 4− 2− 5+ 5− 11

Figure 5.3: Shift 1-0 operator for user (2+, 2−) and the resulting routes p′ and q′.

in Algorithm 7.

Algorithm 7: GRASP applied to the DARP

Input: niter and randomness parameter 0 ≤ α ≤ 1.
Output: The best solution found for the DARP instance.

1 begin
2 s∗ ← ∅, f ∗ ← +∞;
3 for i← 1 to niter do
4 s0 ← ConstructGreedyRandomizedSolution(α);
5 if s0 is not feasible then
6 s0 ← Repair(s0);
7 end if
8 if s0 is feasible then
9 s′ ← V ND(s0);

10 if f(s′) < f ∗ then
11 s∗ ← s′;
12 f ∗ ← f(s′);

13 end if

14 end if

15 end for
16 return s∗;

17 end

First, the stopping criterion is set to a maximum number of iterations niter in

order to equally distribute them among all threads that will be used. Second, a repair

step (see Section 5.4) is provided in the hope of fixing infeasible solutions that might be

generated by the constructive algorithm (see Section 5.3). Finally, the local search step
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(VND) and the incumbent solution update are involved in a conditional statement where

only feasible solutions are allowed.

5.7 ILS applied to the DARP

As done in the GRASP, the general ILS framework was slightly modified to the DARP

as shown in Algorithm 8.

Algorithm 8: ILS applied to the DARP

Input: niter, nimp and randomness parameter 0 ≤ α ≤ 1.
Output: The best solution found for the DARP instance.

1 begin
2 s0 ← ∅, f ∗ ← +∞, j ← 0;
3 repeat
4 s0 ← ConstructGreedyRandomizedSolution(α);
5 if s0 is not feasible then
6 s0 ← Repair(s0);
7 end if

8 until s0 is feasible;
9 s∗ ← V ND(s0);

10 for i← 1 to niter do
11 s′ ← Perturb(s∗);
12 if s′ is feasible then
13 s∗′ ← V ND(s′);
14 if f(s∗′) < f ∗ then
15 s∗ ← s∗′;
16 f ∗ ← f(s∗′);
17 j ← 0;

18 end if
19 else
20 j ← j + 1;
21 end if

22 end if
23 else
24 j ← j + 1;
25 end if
26 if j = nimp then
27 break;
28 end if

29 end for
30 return s∗;

31 end

The stopping criterion is defined as a maximum number of iterations niter or nimp
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iterations without improvement (whichever comes first). The reason for this choice is to

seek a balance between computing time and solution quality. Due to the fact that only

feasible solutions are allowed in the local search phase, the construction of initial solution

is repeated until a feasible solution has been reached (lines 3-8). The acceptance criterion

simply checks if the current solution is feasible and better than the incumbent solution.

5.7.1 Perturbation mechanism

In order to generate a new starting point for the local search phase, a basic perturbation

mechanism is implemented. Three distinct non-empty routes {r1, r2, r3} are chosen at

random and three requests {req1, req2, req3} are randomly selected, one on each route.

Then, each of them are reinserted in their best positions in a cyclic fashion, that is, req1

in r2, req2 in r3 and req3 in r1.

r1, req1

r2, req2 r3, req3

Figure 5.4: Pictorial representation of the perturbation mechanism.
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6 Computational experiments

All experiments were performed in a i7-8565U laptop with 1.8GHz and 8 GB RAM. Both

algorithms were implemented in C++. For the ILS only a single thread is allowed, while

in the GRASP a total of 8 threads were adopted, using the OpenMP library (DAGUM;

MENON, 1998) for parallel computing. In all tables, gap is calculated as c(s)−BKS
BKS

, where

c(s) is the average cost of the obtained solutions and BKS is the cost of the best-known

solution for the given instance.

6.1 Benchmark instances

The set of twenty randomly generated instances from (CORDEAU; LAPORTE, 2003) was

used. The number of requests ranges from 24 to 144, where half of them are inbound and

the other half are outbound requests (see Section 5.2.1). The length of the time window

in instances R1a-R10a varies between 15 and 45, and between 30 and 90 in instances

R1b-R10b. For each instance, all vertices are randomly generated in the square [−10, 10]2

and the planning horizon is equal to 24 × 60 = 1440. For each vertex, the service time

is set to 10, and a single type of user with a capacity requirement of 1 and maximum

ride time of 90 is considered. Furthermore, a fleet of homogeneous vehicles with capacity

of 6 is assumed, and their maximum route duration is set to 480. A brief summary of

the benchmark instances with their respective best-known solutions to date is provided

in Table 6.1.

Instance Requests Vehicles BKS Instance Requests Vehicles BKS

R1a 24 3 190.02 R1b 24 3 164.46
R2a 48 5 301.34 R2b 48 5 295.66
R3a 72 7 532.00 R3b 72 7 484.83
R4a 96 9 570.25 R4b 96 9 529.33
R5a 120 11 625.64 R5b 120 11 573.56
R6a 144 13 783.78 R6b 144 13 725.22
R7a 36 4 291.71 R7b 36 4 248.21
R8a 72 6 487.84 R8b 72 6 458.73
R9a 108 8 653.94 R9b 108 8 592.33
R10a 144 10 845.47 R10b 144 10 783.81

Table 6.1: Benchmark instances.
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6.2 Constructive algorithm evaluation

The randomness parameter α used in the procedure ConstructGreedyRandomizedSolution

(see Section 5.3) used in both GRASP and ILS was set empirically. For each candidate

value, the constructive algorithm was run a thousand times for each instance, and the

gap from the best-known solution and the infeasibility rate was considered. Results are

reported in Table 6.2.

Instance BKS α = 0.2 α = 0.4 α = 0.6 α = 0.8 α = 1.0

Gap Inf. Gap Inf. Gap Inf. Gap Inf. Gap Inf.

R1a 190.02 19.50 1.37 19.69 0.49 21.10 0.49 22.66 0.78 26.09 1.37
R2a 301.34 24.50 17.97 27.94 15.82 31.96 13.67 35.88 10.84 40.88 8.11
R3a 532.00 33.84 24.80 38.08 16.11 42.18 11.72 47.36 10.45 54.32 8.30
R4a 570.25 41.41 0.20 46.69 0.10 51.34 0.00 56.85 0.00 64.65 0.00
R5a 625.64 41.42 3.22 47.23 1.46 52.85 1.56 58.47 0.49 65.33 0.49
R6a 783.78 44.06 0.10 50.16 0.00 56.07 0.00 61.92 0.00 69.90 0.00
R7a 291.71 21.32 32.91 24.77 31.54 27.37 30.76 30.27 28.52 34.78 23.54
R8a 487.84 35.50 88.96 38.37 87.89 42.52 86.33 47.40 86.13 53.32 83.69
R9a 653.94 N.A 100.0 N.A 100.0 N.A 100.0 N.A 100.0 N.A 100.0
R10a 845.47 43.27 99.32 49.65 99.61 55.34 99.51 61.73 99.51 67.75 98.93
R1b 164.46 27.45 0.10 28.60 0.29 29.97 0.68 32.65 0.20 35.08 0.10
R2b 295.66 30.71 0.88 33.09 0.29 36.13 0.20 38.92 0.00 44.31 0.00
R3b 484.83 41.50 3.22 47.32 2.25 52.93 1.46 57.94 0.20 65.74 0.59
R4b 529.33 44.17 9.38 50.98 5.66 56.85 3.42 62.64 1.86 70.00 0.78
R5b 573.56 49.39 0.10 56.17 0.00 62.60 0.00 68.31 0.00 76.16 0.00
R6b 725.22 49.45 0.00 56.38 0.00 62.54 0.00 69.03 0.00 77.95 0.00
R7b 248.21 30.37 5.66 34.52 4.49 38.29 4.88 43.70 5.47 48.78 4.30
R8b 458.73 39.46 15.53 44.08 12.40 48.62 5.76 53.73 5.76 60.87 5.27
R9b 592.33 49.99 52.34 56.54 53.71 61.85 52.25 68.47 46.78 77.16 47.07
R10b 783.81 N.A 100.0 N.A 100.0 N.A 100.0 N.A 100.0 N.A 100.0

Avg. 37.07 19.78 41.68 18.45 46.14 17.37 51.00 16.50 57.39 15.70

Table 6.2: Results on five different values of α for the constructive algorithm.

Instances R9a and R10b were categorized as outliers, since no feasible solutions

could be obtained, thus assigning their gaps to the value N.A (not achievable). Their

values were not considered in the final average.

In any case, as the value of α increases, the quality of the obtained solutions

worsens, but a smaller percentage of infeasible solutions is generated. On the one hand,

it is desirable to generate high quality initial solutions in order to obtain promising final

solutions, but it is also important to obtain the least possible number of infeasible solu-

tions, especially for the GRASP, since only feasible solutions are eligible for local search.

Plotting the average infeasibility rate against the average gap for each α (Figure 6.1), one
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can observe that the distance between the gaps of α = 0.2 and α = 1.0 is around 20%,

while the distance between their infeasibility rates is only 4%. Due to the small difference

in the infeasibility rate between all values of α when compared to the difference in the

quality of their solutions, the value of α = 0.2 was chosen for all subsequent numerical

experiments.
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Figure 6.1: Gap versus the infeasibility rate for each candidate value of α.

It is worth mentioning that even though a constructed solution is infeasible,

it might become feasible when the repair step is applied (see Section 5.4), potentially

reducing the rate of infeasible solutions.

6.3 Results on the DARP instances

General results from 10 runs of each algorithm are illustrated in Table 6.3, where the CPU

time is given in minutes. After preliminary tests, the maximum number of iterations niter

was set to 2,048 in the GRASP and 20,000 in the ILS. Additionaly, the value of 2,500

was chosen as the maximum number of iterations without improvement (nimp) in the ILS.

The choice of such values was due to the fact that they provide a reasonable limit to

the computing time, while allowing the algorithms to explore a potentially wide range

of solutions. Instance R9a was run a single time with the stopping criterion being a

60 minute time limit, because it proved to be the most challenging instance for both
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algorithms, in terms of obtaining a feasible solution.

Instance BKS GRASP ILS

Best Gap1 Avg. Gap2 CPU Best Gap1 Avg. Gap2 CPU

R1a 190.02 190.02 0.00 190.69 0.35 0.26 190.02 0.00 195.18 2.72 0.62
R2a 301.34 303.41 0.69 306.67 1.77 1.97 301.34 0.00 314.04 4.21 4.49
R3a 532.00 556.03 4.52 560.53 5.36 5.78 538.72 1.26 573.86 7.87 5.41
R4a 570.25 620.05 8.73 626.99 9.95 16.71 584.26 2.46 599.91 5.20 10.85
R5a 625.64 683.12 9.19 699.27 11.77 31.32 655.46 4.77 666.36 6.51 13.87
R6a 783.78 878.38 12.07 889.31 13.46 54.59 817.61 4.32 827.59 5.59 17.49
R7a 291.71 295.59 1.33 297.99 2.15 0.68 293.39 0.58 339.22 16.29 2.10
R8a 487.84 526.57 7.94 537.77 10.23 3.46 511.06 4.76 593.42 21.64 1.80
R9aa 653.94 915.59 40.01 915.59 40.01 60.00 817.66 25.04 817.66 25.04 60.00
R10a 845.47 1032.94 22.17 1055.70 24.87 20.82 945.99 11.89 1068.43 26.37 4.16
R1b 164.46 168.35 2.37 169.16 2.86 0.42 167.11 1.61 175.67 6.82 2.87
R2b 295.66 305.10 3.19 308.01 4.18 3.10 299.70 1.37 303.71 2.72 7.61
R3b 484.83 525.24 8.33 528.92 9.09 10.47 495.73 2.25 501.94 3.53 7.94
R4b 529.33 580.57 9.68 589.96 11.45 26.01 541.22 2.25 560.08 5.81 17.42
R5b 573.56 637.21 11.10 650.34 13.39 60.92 599.88 4.59 607.52 5.92 29.43
R6b 725.22 820.85 13.19 836.36 15.33 94.74 763.51 5.28 778.23 7.31 34.00
R7b 248.21 253.51 2.14 259.42 4.52 1.20 251.96 1.51 271.78 9.50 3.05
R8b 458.73 486.35 6.02 498.46 8.66 9.89 470.94 2.66 479.76 4.58 9.47
R9b 592.33 670.05 13.12 679.97 14.80 31.27 626.03 5.69 677.15 14.32 15.39
R10bb 783.81 1061.98 35.49 1140.94 45.56 32.79 989.43 26.23 1.097.12 39.97 12.75

Avg. 506.91 575.55 10.56 587.10 12.49 23.32 543.05 5.42 572.43 11.10 13.04

Table 6.3: Results on the DARP instances.
a: Single run with a time limit of 60 minutes.
b: Only 3 runs attempted.
1: Gap for the best case.
2: Gap for the average case.

The results showed that ILS tends to find better solutions than GRASP, but this

is not always true on the average case. This situation is due to the fact that sometimes

ILS generates solutions that are very distant from the remaining others, slightly distorting

the final average. The boxplots in Figure 6.2 show this behavior for 30 solutions obtained

by each algorithm, highlighting the stability of the GRASP when compared to the ILS.

However, when it comes to computing time, ILS proves to be more efficient,

especially for instances with more requests. Far beyond the choice of parameters, this can

be explained by the fact that in each iteration of GRASP a starting solution is constructed,

which makes the algorithm costly when this procedure is performed many times, mainly

because of the great number of calls to the Eight Step Evaluation Scheme (Algorithm 6).

In fact, profiling techniques pointed out that the total consumption of the constructive

algorithm accounts for about 33.3% of the total computing time in the proposed GRASP,

with the remaining 66.7% being the local search step.
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(a) R7b (b) R3a

(c) R10a

Figure 6.2: Analysis of solution quality in 30 runs of the algorithms in three different
instances.

6.3.1 Convergence analysis

In order to evaluate which algorithm converges more quickly to the final solution, ex-

periments were performed on six different instances, which were classified according to

the number of requests: (i) small: [24, 72), (ii) medium: [72, 108) and (iii) large: [108,

144]. Two instances per group were chosen. The maximum running time was set to 16

minutes for small and medium instances, and 64 minutes for the large ones. A total of

4 single-threaded runs on each algorithm was attempted. Results for each instance are

shown in Figure 6.3, and the continuous lines in the graphs highlight, for each approach,

the executions where the best result was obtained.

(a) Small: R2a (b) Small: R7b
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(c) Medium: R3a (d) Medium: R4a

(e) Large: R10a (f) Large: R9b

Figure 6.3: Convergence analysis on six instances of different sizes.

In the long run, one can note that the ILS tends to achieve better results overall.

However, the GRASP seems to be a rather consistent algorithm, in terms of generating

solutions with similar values. This behavior can be observed, e.g., in the instance R3a, in

which the ILS outputs two curves very distant from the remaining others, while GRASP

maintains a certain consistency. As a matter of fact, these observations are in line with

the data presented in Table 6.3, where the proposed ILS proved, on average, to output

better solutions within less computing time when compared to GRASP.
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7 Conclusion

The dial-a-ride problem (DARP) was introduced and a literature review on the cur-

rent state-of-the-art was provided, along with research opportunities in variants of the

problem, such as the multi-deport heterogeneous dial-a-ride problem (MD-H-DARP) and

the DARP with electric vehicles. The objective of the work was the development of

heuristics approaches to the problem, given its NP-hardness character. To that pur-

pose, the mathematical modelling of the problem was presented, following the pioneer

work of (CORDEAU; LAPORTE, 2003), and two algorithms based in GRASP and ILS

metaheuristics were proposed. The VND procedure was embedded in both approaches

in order to perform a systematic exploration in the search space, using three different

neighborhood structures of great appeal in vehicle routing problems.

Extensive computational experiments were conducted, using a widely adopted

set of challenging benchmark instances from the literature. Numerical results showed the

potential of both metaheuristics on providing reasonable solutions. Although they did not

outperform the state-of-the-art methods, their behavior could be thoroughly investigated

and compared. In general, the ILS provided better results in terms of computing time and

quality of solution with respect to the GRASP. Moreover, the main overhead identified in

the proposed GRASP was the time demanded by the constructive algorithm, which was

about 33% at the bigger picture, mainly due to the nature of the Eight Step Evaluation

Scheme (Algorithm 6). In any case, improvements can be made. Other perturbation

operators could be tried in the ILS, along with a long-term memory mechanism that

allows the usage of previous known solutions. Besides that, one could, e.g., optimize the

constructive algorithm, so as to consume less computing time in the GRASP, while adding

more neighborhood structures and search strategies to improve the quality of solutions.

Another possibility is to try the constructive algorithm with different values of α, so as

to observe the general behavior of the algorithm within the search strategies.

In short, two different heuristics approaches were implemented, and their effec-

tiveness were proven good. Furthermore, a constructive algorithm that aims at generating
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high-quality initial solutions was described and tested. All algorithms proposed can be

easily extended and modified, including to other DARP variants. Code and benchmark

instances are avaliable at 〈https://github.com/diegopaiva1/darp〉.

https://github.com/diegopaiva1/darp
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