
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bacharelado em Ciência da Computação

A Comparative Analysis of Metaheuristics
Applied to Adaptive Curriculum Sequencing
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Resumo

A adoção efetiva do aprendizado on-line depende da satisfação do usuário, pois as abor-

dagens de educação a distância sofrem com a falta de comprometimento que pode levar

a falhar e desistências. A literatura de aprendizagem adaptativa argumenta que uma

alternativa para alcançar a satisfação dos alunos é tratá-los individualmente, fornecendo

o conteúdo educacional de maneira personalizada. Além disso, o sequenciamento deste

conteúdo é importante para evitar a sobrecarga cognitiva e desorientação – esse problema

é chamado de Sequenciamento Curricular Adaptativo (SCA). A busca de uma sequência

ótima de bancos de dados que não param de crescer é um problema de otimização com-

binatória NP-Dif́ıcil. Embora algumas abordagens tenham sido propostas, é desafiador

avaliar suas contribuições devido à falta de dados de benchmark dispońıveis. Este tra-

balho apresenta um procedimento para criar conjuntos de dados sintéticos para avaliar

abordagens SCA e, como prova de conceito, analisa metaheuŕısticas normalmente usadas

em abordagens SCA: Algoritmo Genético, Otimização por Enxame de Part́ıculas (OEP)

e Algoritmo Presa-Predador usando os objetivos de aprendizagem dos alunos e suas car-

acteŕısticas extŕınsecas e intŕınsecas. Também propomos uma abordagem baseada na

Evolução Diferencial (ED). Os experimentos computacionais incluem conjuntos de dados

sintéticos com uma quantidade variada de materiais de aprendizado e conjuntos de dados

do mundo real para comparação. Os resultados mostram que o DE teve um desempenho

melhor do que os outros métodos quando menos de 500 materiais de aprendizado são

usados, enquanto o PSO teve um desempenho melhor em problemas maiores.

Palavras-chave: Caminho de Aprendizagem, Aprendizagem Adaptativa, Sistema Tuto-

rial Inteligente, Computação Evolutiva, Sequenciamento Curricular.



Abstract

The effective adoption of online learning depends on user satisfaction as distance educa-

tion approaches suffer from a lack of commitment that may lead to failures and dropouts.

The adaptive learning literature argues that an alternative to achieve student satisfaction

is to treat them individually, delivering the educational content in a personalized man-

ner. In addition, the sequencing of this content is important to avoid cognitive overload

and disorientation – this problem is called Adaptive Curriculum Sequencing (ACS). The

search for an optimal sequence from ever-growing databases is an NP-Hard combinatorial

optimization problem. Although some approaches have been proposed, it is challenging

to assess their contributions due to the lack of benchmark data available. This paper

presents a procedure to create synthetic dataset to evaluate ACS approaches and, as a

concept proof, analyzes metaheuristics usually used in ACS approaches: Genetic Algo-

rithm, Particle Swarm Optimization (PSO) and Prey-Predator Algorithm using student’s

learning goals and their extrinsic and intrinsic information. We also propose an approach

based on Differential Evolution (DE). The computational experiments include synthetic

datasets with a varied amount of learning materials and real-world datasets for compari-

son. The results show that DE performed better than the other methods when less than

500 learning materials are used while PSO performed better for larger problems.

Keywords: Learning Path, Adaptive Learning, Intelligent Tutoring System, Evolution-

ary Computing, Curriculum Sequencing.
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1 Introduction

The distance learning has begun widely adopted making it important to design techniques

to support this type of education (KARADENIZ, 2009). The effective use of e-learning

systems depends on solutions that aims the students’ satisfaction, as distance education

modality suffers from the lack of commitment that may causes failures and drop-outs

(DAVIS et al., 2016).

The Adaptive Learning and Intelligent Tutoring System (ITS) literature shows

that learning environment must be aware of learners’ attributes, such as background,

needs, intents and preferences in order to provide easy and effective understanding (RATHORE;

ARJARIA, 2020; SILVA et al., 2018; PHOBUN; VICHEANPANYA, 2010). However,

most e-learning systems provide “one size fits all” environments where all the learners are

treated the same way in terms of learning materials, and are self-guided with limited in-

structor support (KARDAN; AZIZ; SHAHPASAND, 2015). Besides, with digitization, a

rapid growth is seen in educational technology and different formal and informal learning

contents are available on the internet. This huge amount of information can lead student

and instructors to cognitive overload and disorientation (DEBBAH; ALI, 2014).

One well known problem in adaptive learning is the Adaptive Curriculum Se-

quencing (ACS) (WEBER; SPECHT, 1997; CHEN, 2008). It is considered a crucial

issue in personalized learning as its purpose is to find the best sequence of learning ma-

terials that meet the student profile (NIKNAM; THULASIRAMAN, 2020; MACHADO;

BARRÉRE; SOUZA, 2019; MUHAMMAD et al., 2016). The challenge of ACS lies in

automating the process, since unsuitable sequences may not offer learning materials that

meet the student’ learning goals and profile, leading to an increase in failure and dropout

rates (XIE et al., 2017). Previous works showed that the automatic search for an optimal

ACS from ever-growing databases is a combinatorial NP-Hard problem (PUSHPA, 2012;

CHANG; KE, 2013; MARCOS et al., 2008). Moreover, the process of adapting at the cur-

riculum sequencing level relies heavily on the parameters used – recently, several papers

have explored solutions using a variety of those parameters (MACHADO; BARRÉRE;



1 Introduction 11

SOUZA, 2019; WONG; LOOI, 2010; AL-MUHAIDEB; MENAI, 2011; WANG; WU, 2011;

PUSHPA, 2012; KHAMPARIA; PANDEY, 2015). This adds even more complexity to the

search for an optimal solution as these parameters define the quality of the relationship

between the student and the learning materials in a sequence. Solutions to large ACS in-

stances can only be approximated and, therefore, heuristic and metaheuristic methods can

be considered to approximate its solutions. Even though ACS problem is longstanding,

researchers still find it an important problem to be approached in different ways seeking

to infer even better results.

In Al-Muhaideb e Menai (2011), publications from the 2002 to 2009 whose used

evolutionary computation approaches to the ACS problem were reviewed. That work

revealed the increasing use of metaheuristics for the problem, highlighting Genetic Algo-

rithm (GA), Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO)

according to different problem modeling. Many of the works only present the validity of

using a metaheuristic considering that their proposed method converges. For instance,

a Prey-Predator Algorithm (PPA) was proposed in Machado, Barrére e Souza (2019) to

address the ACS problem assuming that such metaheuristics outperform GA and PSO

(two commonly metaheuristics used for ACS problem) in benchmark problems. However,

the authors focused on pedagogical results and no comparison among the approaches were

performed using the problem depicted here. Others studies, based on common formula-

tions, seek to compare their approach against others, for instance: PSO vs GA (LI et

al., 2012), PSO vs GA vs ACO vs Immune Algorithm (WAN; NIU, 2016) and differ-

ent implementations of PSO and/or ACO (MENAI; ALHUNITAH; AL-SALMAN, 2018;

CHANDAR et al., 2010). In either case, the studies considers its own dataset for ex-

perimentation and in most works use synthetic data without presenting implementation

details, as well as not providing the datasets – compromising reproducibility and making

it difficult to compare different works.

Given the previously mentioned problems and considering that new metaheuris-

tics have been introduced in recent years, the contributions of this paper are as follows.

We proposed a method to create synthetic datasets to evaluate the ACS proposals. Also,

the datasets were made available for further research. In addition, we present an experi-
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mental comparative analysis of four approaches to address the ACS problem: GA, PSO,

PPA, and our proposed Differential Evolution (DE) implementation. The computational

experiments were carried out using synthetic datasets with different amounts of learning

materials and a real-world dataset. These problem sizes allows for a performance analysis

facing different situations. The results show that the algorithms have similar results with

both real and synthetic datasets. Also, DE has the best performance in instances with

less than 500 learning materials. On the other hand, PSO is a better option for larger

instances.

The remaining of this paper is organized as follows: Section 2 describes the prob-

lem addressed by this work; Section 3 reviews related works; Section 4 presents the mod-

eling that we adopted; Section 5 presents the proposed procedure for generating datasets

with learning materials; Section 6 describes the implementation of the metaheuristics;

Section 7 shows the experiments carried out and the results obtained; Finally, Section 8

concludes the paper.
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2 Adaptive Curriculum Sequencing

The research and development of Intelligent Tutoring System (ITS) seeks to combine tech-

niques of Artificial Intelligence, Cognitive Psychology and Educational Learning Theories

towards learning environment systems able to know what to teach, to whom to teach and

how to teach (NWANA, 1990; SILVA et al., 2018). The problem of selecting the opti-

mal sequence of learning materials which considers the student’s individuality is one of

the most interesting and crucial goal in Adaptive Learning (MUHAMMAD et al., 2016).

There is not yet a consensus related to the term that defines this sequence (HNIDA;

IDRISSI; BENNANI, 2016) and, although other terminologies may be used, we adopted

Adaptive Curriculum Sequencing.

The goal of ACS is to provide the student with the most suitable ordering of

knowledge units and learning tasks (examples, questions, problems, etc.) to work with

(BRUSILOVSKY, 2003). The intention is to help the student find an ”optimal learning

path” within the knowledge domain (HAFIDI; BENSEBAA, 2015) therefore maximizing

understanding as well as learning efficiency. According to Kardan, Aziz e Shahpasand

(2015) the ACS should take into account the student characteristics and the learning

materials information.

The concept map is an important attribute for ACS. It can be considered a

representation of the programmatic content containing the interconnections between the

concepts addressed in a course (MARCOS et al., 2011; SHARMA; BANATI; BEDI, 2012).

Three main approaches were used for concept map construction in literature: (1) approx-

imated from mathematical methods (2) pre-defined by experts and (3) based on ontolo-

gies. The mathematical methods are used to approximate the concept map automatically

and decentrally (SEKI; MATSUI; OKAMOTO, 2005; CHEN, 2008; HUANG; HUANG;

CHEN, 2007; GUO; ZHANG, 2009). However, these methods ignore the relationships

between concepts, making it necessary to evaluate their use in the ACS problem since

illogical sequences can be produced (CHEN, 2008). The concept map construction based

on expert experience is common and well accepted, but it still has some disadvantages
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since it is a costly labour, depends on the experience of those involved and it is not flexi-

ble for students. Finally, the ontology based approach, seeks to associate semantics with

the structure of concepts. It is worth mentioning that the automatic construction of the

concept map is also a relevant issue in adaptive learning field (GUTIÉRREZ; PARDO,

2007).

The ACS problem can be formulated as either a Constraint Satisfaction Problem

(CSP) (MARCOS; MARTÍNEZ; GUTIÉRREZ, 2008; MARCOS et al., 2009) or a multi-

objective optimization problem (CHU; CHANG; TSAI, 2009; GAO et al., 2015) (AL-

MUHAIDEB; MENAI, 2011). In this paper, we define the ACS problem as a function

f(u, l, c)→ S that receives as parameters the user model (student representation) u, the

learning material information l and the concept map structure c. This function returns a

sequence s ∈ S that best approximates the student’s model among the various sequence

possibilities contained in S.

Selecting a proper sequence of learning materials is a challenge as unsuitable

selection can bring unexpected results, increasing the dropout and failure rates (XIE et

al., 2017). This automatic selection is a difficult task, especially because the variety of

learning materials in online repositories is rather expansive. Moreover, several constraints

related to these learning materials and student’s model are involved in the adaptation

process, making the decision process even more complex. Finding an optimal curriculum

sequence is a combinatorial problem falling in the NP-Hard class of problems (PUSHPA,

2012; ACAMPORA; GAETA; LOIA, 2011). In a course with various constraints like

prerequisite relations, fixed-order sequence for some itinerary concepts, etc., a feasible

sequence consists of the C concepts arranged in a way satisfying all constraints, and

the total number of possible (valid and invalid) sequences (permutations) approaches

C! (MARCOS et al., 2008). This problem becomes even harder with a solution space that

is much larger in a realistic e-Learning situation where we consider a student’s background,

his/her learning style and similar student-related factors. Thus, several researchers were

motivated to use artificial intelligence techniques, especially metaheuristics, to deal with

the problem of automatically selecting an optimal Adaptive Curriculum Sequencing (from

now on ACS problem), after all in a classical manner, they are employed to solve similar



2 Adaptive Curriculum Sequencing 15

problems (KHAMPARIA; PANDEY, 2015; PUSHPA, 2012; AL-MUHAIDEB; MENAI,

2011).
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3 Related Works

The research and development of Intelligent Tutoring Systems (ITS) seeks to combine

techniques of Artificial Intelligence, Cognitive Psychology and Educational Learning The-

ories towards learning environment systems able to know what to teach, to whom to teach

and how to teach (NWANA, 1990; SILVA et al., 2018). The problem of selecting the op-

timal sequence of learning materials which considers the student’s individuality is one

of the most interesting and crucial goal in Adaptive Learning (MUHAMMAD et al.,

2016). ACS has been addressed in several papers (WONG; LOOI, 2010; PUSHPA, 2012;

AL-MUHAIDEB; MENAI, 2011; KHAMPARIA; PANDEY, 2015; MUHAMMAD et al.,

2016). In an investigative way, several parameters were used, either in relation to the

student or to the knowledge domain (i.e, learning materials).

ACS approaches can be divided in two groups: Individual Sequencing and Social

Sequencing. Individual Sequencing approaches consider only the student’s own parameter

information – i.e. the ACS selection ignores any other users information and interactions

among the student. In contrast, Social Sequencing approaches consider experiences of

previous students to benefit current students. Evolutionary approaches have been largely

used to solve the ACS problem, and among all, Ant Colony Optimization (ACO) and GA

stand out (AL-MUHAIDEB; MENAI, 2011). It is possible to perceive a relation with

the sequencing type and evolutionary approach, where in most papers, ACO is related

to Social Sequencing, just as GA is related to Individual Sequencing. This behavior is

related to the basis of these metaheuristics. GA usually finds the best population of

learning materials for a student and in ACO the behavior of the students (ants) interfere

in the way of the others. This relationship shows a trend when one approach is used over

another.

Several works evaluate their proposed solution by intrinsic evaluations, i.e. check-

ing if the chosen metaheuristic can converge to coherent solutions, observing fitness values

(MACHADO; BARRÉRE; SOUZA, 2019; MARCOS et al., 2011; CHU; CHANG; TSAI,

2011; MARCOS et al., 2009; SEKI; MATSUI; OKAMOTO, 2005; HUANG; HUANG;
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CHEN, 2007). Other common method is to compare the execution time according to

the number of learning materials in a repository. For instance, an experiment comparing

PSO and GA in a multi-objective formulation of ACS problem is presented in (LI et al.,

2012). They showed that the fitness values of PSO are close to those of GA concerning the

average fitness value of 100 independent runs, but GA has more user-defined parameters

than PSO. They also presented a comparison of the number of generations and execu-

tion time according to the increasing amount of learning materials. When the number

of learning materials is less than 300, the number of generations and execution time of

PSO are less than those of GA. However, when the number of learning materials is larger

than 300, the GA approach performs better than the PSO implementation. The same

behavior was reported in Christudas, Kirubakaran e Thangaiah (2018) when comparing

implementations of GAs and PSOs.

However, it is challenging to evaluate ACS approaches due to the lack of avail-

able datasets or benchmarks. Few studies indicate or make available the data used in

the evaluation process. In Menai, Alhunitah e Al-Salman (2018), the performance of

the solutions found was evaluated in a real e-learning environment on real data from an

information technology diploma program and 2,000 learners selected randomly at Buray-

dah College of Technology1. The data were gathered from the Learner Affairs System.

A dataset of 10,000 learners from the anonymised Open University Learning Analytics

Dataset (OULAD)2 was used in (AGARWAL et al., 2016), in which contains data of

courses, students and their interactions with Virtual Learning Environment for seven se-

lected courses (KUZILEK; HLOSTA; ZDRAHAL, 2017). In many cases, studies have

created their own dataset and provide information about them in the body of the pa-

per. For instance, a list of 6 learning materials and its prerequisites and outcomes was

described in (SHMELEV; KARPOVA; DUKHANOV, 2015). However, in most cases the

studies do not provide sufficient data to reproduce its experiments.

We present an individual sequencing approach for ACS that takes into account

different variables, such as the information of the students (previous knowledge, time

availability, learning preferences), learning materials (difficult, content, and style), and

1〈www.tvtc.gov.sa〉
2〈https://analyse.kmi.open.ac.uk/open dataset〉

www.tvtc.gov.sa
https://analyse.kmi.open.ac.uk/open_dataset
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the course (target concepts). Unlike other works, the evaluation is performed here using

a larger number of search techniques: four metaheuristics. Also, all data and methods

used in the comparative analysis process are freely available for further research.
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4 Modeling the problem

As a single objective may not adequately represent the ACS problem, another approach

is to model it with multiple objectives (MUHAMMAD et al., 2016). These objectives

depend on student representation, learning material information and the concept map

structure. In this work, the objective function f(x) is defined as the weighted sum of five

objectives Oi(x) as

f(x) = min
5∑

i=1

ωiOi(x) (4.1)

O1(x) = (1− ρ)(|R(x)| − |R(x) ∩ E|) + ρ(|E| − |R(x) ∩ E|) (4.2)

O2(x) =

|M |∑
i=1

xi

∣∣∣∣∣∣∣∣∣D
mi −

|C|∑
j=1

Rmi
cj
EcjHcj

|C|∑
j=i

Rmi
cj Ecj

∣∣∣∣∣∣∣∣∣
1

|M |∑
i=1

xi

(4.3)

O3(x) = max

T ↓ −
|M |∑
i=1

Tmixi, 0

+ max

0,

|M |∑
i=1

Tmixi − T ↑

 (4.4)

O4(x) =

|C|∑
j=1

Ecj

∣∣∣∣∣∣∣∣∣
|M |∑
i=1

xiR
mi
cj
−

|M |∑
i′=1

|C|∑
j′=1

xi′R
mi′
cj′ Ecj′

|C|∑
j′=1

Ecj′

∣∣∣∣∣∣∣∣∣ (4.5)

O5(x) =
4∑

k=1

|M |∑
i=1

xi |3sgn(θmi
k )− Lk|

4
|M |∑
i=1

xi

(4.6)

where ωi are the weights associated to the objective Oi, x = (x1, x2, . . . , x|M |)

is the vector of the binary design variables, M is the set of learning materials, mi ∈ M

represents the i-th learning material, and cj ∈ C represents the j-th concept of a course.
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We also defined that
∑5

i=1 ωi = 1 and ωi ∈ [0, 1] ∀i ∈ {1, . . . , 5} in order to constraint

the weight values. The objectives and their components are detailed in the following

paragraphs.

Objective O1(x) checks whether the course concepts covered by the selected se-

quence meet the student’s learning goals, whereR(x) represents the set of concepts covered

by all learning materials present in vector x, E represents a set of learning goals expected

by the student, and ρ ∈ [0, 1]. This function associates penalties to the quantity of spare

concepts (first part of the equation) and the number of missing concepts (second part of

the equation) according to student’s learning goals. Let Rmi be the concepts covered by

a learning material mi, function R(x) is defined as:

R(x) =

|M |⋃
i=1

{Rmi |xi = 1} (4.7)

The learning material difficulty is compared in O2(x) to the average of the stu-

dent’s ability in the concepts addressed by such learning material and that are included

in the student’s learning goals, where Dmi represents the difficulty associated to a learn-

ing material mi, R
mi
cj

indicates whether the learning material cover a concept cj. Thus,

Rmi
cj

= 1 if the learning material cover the concept cj and R
cj
mi = 0 otherwise. Ecj indicates

whether a concept cj is in accordance with the student’s learning goals. Thus, Ecj = 1 if

the concept cj is expected by the student, and Ecj = 0, otherwise. Finally, Hcj represents

the ability level of the student with respect to the concept cj.

Objective O3(x) represents the deviation of the time estimated and that expected

by the student for the course. Thus, O3(x) checks whether the total time of the course

is between the lower and upper limits, where T ↓ represents the lower and T ↑ the higher

bounds times expected by the student. Besides, Tmi represents the estimated learning

time of a learning material mi.

The balancing of the selected learning materials is evaluated in O4(x). This

function returns a low value as more concepts are covered by a similar amount of learning

materials.

Finally, O5(x) relates the student’s learning style to the characteristics of the
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learning material according to the Felder and Silverman Learning Style Model (FSLSM)

(FELDER; SILVERMAN et al., 1988). In O5(x), θmi
k indicates which learning style the

i-th learning material tends to contemplate the k-th dimension of FSLSM, k = 1, . . . , 4,

and Lk ∈ [−3, 3] represents the student intensity in a learning style of the k-th FSLSM

dimension (MACHADO; BARRÉRE; SOUZA, 2019).
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5 Proposed Procedure for Generating

Learning Materials

Performing tests with real data presents some difficulties. It is necessary to organize a

course with several students having a large amount of properly classified learning mate-

rials. In addition, problems such as student dropout and uneven distribution of students

and learning materials among learning style profiles require even larger amounts of data.

To work around these problems, this work proposes a method for generating synthetic

data based on features extracted from a real-world dataset.

The real-world dataset was obtained as part of a course on Computer Science

Fundamentals held in 2017 remotely on the Moodle platform. The concepts taught were

distributed over a six week period. Each week the students received a sequence of learning

materials covering the expected concepts and were evaluated at the end of the week. The

course consisted of 284 learning materials covering a total of 30 separate concepts across

eight subjects. Material sequencing was performed as part of an ITS application and was

applied to a group of 61 students. However, as the assessments were performed weekly,

the number of students for each week may be smaller. The data used were the learning

style profile, the student’s skill level in each of the concepts and the time available for the

course.

For the assessment of students learning style, it was applied a questionnaire based

on the Index of Learning Style (ILS) (SOLOMON; FELDER, 1999) where each dimension

of the learning style model were mapped to the interval [-3, 3]. Students prior knowledge

was determined by applying a student self-assessment. Then three questions were deliv-

ered: one lower level, one equal level and one higher level than the student statement.

The data collected from this course was used to create a synthetic dataset. The

purpose of the synthetic dataset is to address the lack in the literature of comparative

assessments of the performance of metaheuristics using a large amount of learning materi-

als. For the creation, we considered characteristics as distribution of material’s difficulty,
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average learning time of materials, amount of concepts covered by each material and the

most appropriate learning style profile. The learning materials were divided according to

their level of difficulty, each group were analyzed, and the observed characteristics were

used to create the new dataset.

The main characteristics obtained from this data collection were: most learning

materials cover only few concepts (Figure 5.1a), and there is a correlation between the

difficult and the learning time of materials (Figure 5.1c). The learning time follows an

exponential distribution for all difficulties but the easiest materials are generally shorter

than the most difficult. The other features follow a normal distribution, as can be seen

in Figures 5.1b and 5.1d.
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Figure 5.1: Characteristics of the real-world dataset.

We propose here the following steps for generating each new learning material.

First, the number of concepts the material covers is chosen. This value is randomly

obtained according to the same distribution of the real dataset (Figure 5.1a), and the
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probabilities are: 78.17% for one concept, 13.73% for two concepts, 5.63% for three con-

cepts, 1.41% for four concepts and, finally, 1.05% for five concepts. A randomly selected

set of concepts is than assigned to the material according to the real-world dataset. The

first concept is chosen based on the occurrence rate of each concept. Each of the remain-

ing concepts are selected according to the probability of co-occurrence between each new

concept and the concepts already selected. This procedure avoids the creation of materi-

als with a set of unrelated concepts. After the selection of the concepts for the material,

the difficult is randomly selected (Figure 5.1b) from a scale from 1 (easy) to 5 (hard).

The learning time of the material is chosen according to its difficult. The learning time is

generated from a exponential distribution (Figure 5.1c) in which the coefficients depend

on the difficulty: the more difficult the material, the longer its learning time tends to be.

Finally, the most appropriate learning style profile is determined following normal

distributions for each of the four FSLSM dimensions: perception, input, processing, and

understanding. The Learning Object Metadata (LOM) from real-world learning materials

were collected and mapped to FSLSM dimensions. Each dimension was modeled in a

scale with values representing the intensity of the characteristics of the learning material

in each dimension, as follows: in the dimension Processing, the material may be used for

students more reflexive or more active; in the dimension Perception, it may be used for

students more intuitive or more sensing; in the dimension Input, the values can represent

contents more verbal or more visual; and, finally, the dimension Understanding represents

a knowledge explained using a global approach or a more sequential approach.

The generation procedure is presented in Figure 5.2. All data and scripts used in

the data creation are freely available3 on the Web for further research.

Choose the number 
of concepts for the 
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Select a new 
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to the concepts 
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difficulty

Choose material 
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difficulty.
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Figure 5.2: Procedure used to create the evaluation datasets.

3〈https://github.com/lapic-ufjf/evolutionary-ACS-benchmark〉

https://github.com/lapic-ufjf/evolutionary-ACS-benchmark
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6 Metaheuristics for Adaptive Curriculum

Sequencing

The main evolutionary computation algorithms used to solve the ACS problem are an-

alyzed here. Two algorithms widely used for Individual Sequencing are Genetic Algo-

rithm and Particle Swarm Optimization. In Machado, Barrére e Souza (2019), the Prey-

Predator Algorithm is presented as a recent and non-fully explored metaheuristic. Finally,

we propose a Differential Evolution technique for the context of ACS, as DE obtained good

results in other optimization problems from the literature. It is worth noting that we are

dealing with the individual sequencing approach (AL-MUHAIDEB; MENAI, 2011) mod-

eled as a multi-objective problem (using only student’s learning goals and their extrinsic

and intrinsic information, without other students’ information), therefore, although other

metaheuristics have been investigated, we have selected the most used ones as a baseline.

6.1 Genetic Algorithm

Genetic Algorithm (GA) was proposed by J. H. Holland in 1975 inspired by the Dar-

win’s Theory of Evolution (PIRES; COTA, 2016). The evolutionary concepts are used to

define a search technique for solving optimization problems. In GA, a population of can-

didate solutions (normally, randomly initialized) evolves by means selection of the fittest

individuals (best candidate solutions), crossover and mutation.

More specifically, the process begins with a set of Individuals (Population),

where each individual is a candidate solution to the problem. In the parental Selection,

a set of individuals (parents) are chosen. Roulette wheel (fitness proportionate selection),

ranking and tournament are commonly procedures to select parents in GA. The individ-

uals selected in the previous phase are recombined by Crossover in order to generate

new individuals. One of the most simple approach is the Point crossover, where one or

more crossover points are chosen at random and the offspring is created by exchanging the
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parent’s genes. Another common method is the Uniform crossover where each gene of

the parents is swapped following a uniform distribution. Mutation is applied to the gen-

erated offspring. Mutation is a small modification in the generated candidate solutions.

Here, one of the bits in the bit string is flipped according to a Mutation Probability

(MP). Mutation is important as it maintains the diversity of the population and prevents

premature convergence.

The candidate solutions created (children) by crossover and mutation are evalu-

ated with respect to the objective function and the current population is replaced. It is

common to keep the best individuals in the population. Also, 10% of the worst candidate

solutions can be kept in the population (labeled as “permissive” option in Table 7.1). To

do so, the number of new individuals is given by the population size minus the number of

best and worst individuals kept in the population. TS defines the proportion of the best

individuals which is not replaced by the offspring (an elitism). The algorithm ends when

a stopping criterion is met. Here, a maximum number of objective function evaluations

is allowed. A pseudo-code of a Genetic Algorithm is presented in Algorithm 1.

Algoritmo 1: Pseudo-code of a Genetic Algorithm.

Result: Sequence of learning materials
1 Population← InitializePopulation(PS, |M |);
2 Objective← CalculateObjective(Population);
3 Sbest ← GetBestSolution(Objective);
4 while ¬StopCondition() do
5 Parents← SelectParents(Population, TS);
6 Children← ∅;
7 foreach Parent ∈ Parents do
8 Children← Crossover(Parent);
9 Children← Mutation(Children,MP );

10 end foreach
11 Objective← CalculateObjective(Children);
12 Sbest ← GetBestSolution(Objective);
13 Population← Replace(Population, Children);

14 end while



6.2 Particle Swarm Optimization 27

6.2 Particle Swarm Optimization

Particle Swarm Optimization (PSO) was proposed by Russell Eberhart and James

Kennedy, and is inspired by the flocking and schooling patterns of birds and fish (EBER-

HART; KENNEDY, 1995). The algorithm uses local and global best information to

move and improve the quality of the particles. Each particle consists of: its velocity, a

continuous-valued vector which is how certain it is of the values in the current position; its

position, a binary vector representing a candidate solution; and local best, representing

the best position of the current particle. At iteration t, the velocities of the particles are

updated as

v
(t+1)
i (x) = c1 · v(t)

i (x) + c2 · rand() · (pb(x)i − xi) + c3 · rand() · (gbi − xi) (6.1)

where rand() returns a random value uniformly distributed in [0, 1[.

PSO is usually used to solve problems in continuous search space. As the ACS

problem solved here was modeled as a binary problem, the design variables are discretized

when the objective function is called. Thus, the search occurs in continuous search space

and the variables are converted to a binary vector for the evaluation.

Similarly to GA, PSO is initialized here with a randomly generated population

and the search technique stops when the maximum number of objective function evalua-

tions is reached. Algorithm 2 presents the PSO pseudo-code.

Algoritmo 2: Pseudo-code of a Particle Swarm Optimization.

Result: Sequence of learning materials
1 Population← InitializeParticles(PS, |M |);
2 while ¬StopCondition() do
3 foreach x ∈ Population do
4 vi(x)← UpdateVelocity(vi(x), pb(x), gb, c1, c2, c3);
5 pi(x)← Evaluate(vi(x), EM);
6 pb(x)← Best(pb(x), pi(x));
7 gb← Best(gb, pb(x));

8 end foreach

9 end while

Two discretization strategies, called here Evaluation Method (EM), were consid-
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ered: fixed and random. In the fixed strategy, the continuous values are in [−1, 1], the

variables are discretized to the nearest bound (−1 or 1), and the learning material is

considered selected when the particle position is positive. The random strategy is based

on that presented in Kennedy e Eberhart (1997), where the i-th binary component x
(b)
i is

defined in a probabilistic manner as

x
(b)
i =


0, if rand() ≤ S(xi).

1, otherwise

(6.2)

where S is the sigmoid function.

6.3 Prey-Predator Algorithm

The Prey-Predator Algorithm was recently introduced by Tilahun and Ong (TILAHUN;

ONG, 2015). It is inspired by the ecological interaction among individuals classified as

prey and predator. There are different kind of prey-predator interaction based on the

kind of the prey and how the predator consumes this prey. However we will stick to the

carnivorous ones.

Predators actively seek out and pursue their prey, which in turn try to escape

by running, hiding or even fighting. The prey often tries to join the stronger ones, after

all as faster and stronger prey tend to be more likely to escape. On the other hand, the

predator tends to chase the weaker and closer prey. Naturally, there are animals that are

more likely not to survive, e.g., they are slower or smaller. Thus, it can be said that each

animal has associated with it a Survival Value. This value indicates how difficulty it is to

capture that prey.

Animals are labeled based on the survival value. First, the animal with the worst

survival value is labeled as Predator. Second, the animal with the best survival value is

labeled as Best prey. On the prey-predator interaction the Best prey is considered the

one that has found a hiding place, and thus is not affected by the predator. Finally, the

remaining animals are called Ordinary prey.

The so called prey-predator interaction consists in the movement of animals at the
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time that a predator is hunting. Two basic factors are taken into account in the movement

of animals: (1) the direction in which the movement will occur and (2) the step length,

which will determine how much the prey or predator will walk in that direction.

The ordinary prey moves in direction of other preys that have better survival

values and then moves in a random direction, in the orientation that is farthest from the

predator, as in Equation 6.3. The best prey does not have any other prey to follow so

it does a local search trying to find a better position using Equation 6.4. Equation 6.5

describes the predator’s movement to chase the worst prey and then move in a random

direction. Algorithm 3 presents a pseudo-code of PPA.

xi = xi + lmax(i)ε2
yi

‖yi‖
+ ε2

yr

‖yr‖
(6.3)

xbest = xbest + λminε4
yl

‖yl‖
(6.4)

xpredator = xpredator + λmaxε5
yr

‖yr‖

+ λminε6
x′
i − xpredator

‖x′
i − xpredator‖

(6.5)

We considered a version of the algorithm proposed in Machado, Barrére e Souza

(2019) that adapts the movement to work in binary space. In this approach the distance

between two individuals is calculated using the Hamming Distance (HD). The movement

direction is done step by step, choosing one of the better preys using a roulette and moving

towards it. Here, moving towards means changing one of its binary values to be equal to

the other individual.

Pfsi
(sj) = 1−

τ
HD(sj,si)

m
+ η

f(sj)

f(si)

2
(6.6)

lmax(i) =
λmaxε

exp(β
HD(si,spredator)

m
)

(6.7)

d1 = HD(spredator,yr) (6.8)

d2 = HD(spredator,−yr) (6.9)

lpredator = λminε (6.10)
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Algoritmo 3: Pseudo-code of Prey-Predator Algorithm.

Result: Sequence of learning materials
1 Population← InitializePopulation(PS, |M |);
2 Objective← CalculateObjective(Population);
3 xbest ← GetBestSolution(Objective);
4 xpredator ← GetWorseSolution(Objective);
5 while ¬StopCondition() do
6 Population← UpdatePreyFollow(Population, τ, η, λmax, λmin, β, FC);
7 Population← UpdatePreyRun(Population, xpredator, λmax);
8 Population← UpdateBestPrey(xbest, λmin);
9 Population← UpdatePredator(xpredator, λmax, λmin);

10 Objective← CalculateObcjetive(Population);
11 xbest ← GetBestSolution(Objective);
12 xpredator ← GetWorseSolution(Objective);

13 end while

6.4 Differential Evolution

Differential Evolution (DE) (STORN, 1995) is a metaheuristic where the candidate solu-

tions are vectors in Rn and new candidate solutions are generated by mutation (based on

differences between vectors) and crossover. Normally, the initial population is randomly

created. The new generated individuals are evaluated and the selection for survival is

local: each new individual is compared to a base individual and the best one between

composes the next population. For each Individual in the Population, a mutant vector

is generated as:

x(m) = x(1) + F × (x(2) − x(3)) (6.11)

where x(i), i = 1, 2, 3, are individuals randomly selected from the population with x(1) 6=

x(2) 6= x(3), F is the Mutation Scale, a user-defined parameter in ]0, 2] which controls

the step size of the difference vector (x(2) − x(3)).

In order to increase the diversity of the population, Crossover is introduced

(STORN, 1995). The crossover is performed as

x
(a)
i =


x
(m)
i , if cp < CR OR i == j

xi, otherwise,

(6.12)
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where cp is randomly generated for each component i, and j is an randomly drawn com-

ponent (this assures that the new individual receives at least one value from the mutant

vector). Thus, a new individual, named applicant, is created.

The new population replaces the current one according to: the applicant indi-

vidual replaces the corresponding target vector when the objective function value of the

applicant is better. This iterative procedure continues while the stopping criteria isn’t

met. A pseudo-code of DE is presented in Algorithm 4.

Algoritmo 4: Pseudo-code of Differential Evolution.

Result: Sequence of learning materials
1 Population← InitializePopulation(PS, |M |);
2 Objective← CalculateObjective(Population);
3 Sbest ← GetBestSolution(Objective);
4 while ¬StopCondition() do
5 NewPopulation← ∅;
6 foreach x ∈ Population do
7 x(1), x(2), x(3) ← SelectIndividuals(Population);

8 x(m) ← Mutation(x, x(1), x(2), x(3), F );

9 x(a) ← Crossover(x, x(m), CR);

10 X(a) ← Evaluate(x(a), EM);

11 NewPopulation← Best(x,X(a));

12 end foreach
13 Objective← CalculateObcjetive(NewPopulation);
14 Sbest ← GetBestSolution(Objective);
15 Population← Replace(Population, Children);

16 end while

Similarly to PSO, DE is also designed to solve optimization problems with contin-

uous search space. Thus, the same strategies adopted for PSO were used when evaluating

candidate solutions in DE.



32

7 Computational Experiments

To compare the metaheuristics, a real dataset was used, as well as a synthetic dataset

generated from characteristics extracted from this real data. The stop criterion for all

experiments was defined as a maximum number of objective function evaluations. Tests

were carried out comparing the quality of the solutions for instances with different sizes

(number of learning materials). Also, the objectives which composes the objective function

were analyzed (Section 4).

7.1 Conduction and parameter settings

The comparison of the results of each algorithm was performed with the real-world dataset.

Due to the limited amount of learning materials, tests were also carried out with the

synthetic dataset. The tests with the synthetic data were carried out with different

amount of materials to evaluate the performance of the algorithms when the problem

size grows. All methods were compared using 5 executions in datasets with different

number of learning materials, from 50 to 1000 learning materials. Each dataset was used

to find solutions for 24 student profiles with different characteristics. The stop criterion

was defined as the maximum number of objective function evaluations equals to 100,000.

Also, the convergence of the techniques is analyzed in terms of the normalized value of the

objective function value. Thus, the performance of the search techniques can be evaluated

for different budgets.

The performance of the metaheuristics depends on a correct parameter setting.

In order to conduct the comparisons with a good performance of the metaheristics tested

here, their parameters have been optimized using the irace package. The best parameters

found by irace are presented in Table 7.1. Only the real-world data was used in the

selection of the parameters. Thus, the performance observed in the analysis of the results

also considers the generalization capacity of the methods.
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Table 7.1: Best parameter values selected by irace.

Method Parameter values

GA
PS: 10 TS: 0.15; Replacement: permissive; Selection: roulette;
Crossover: uniform; Mutation: single bit

PSO PS: 20; c1: 1.3; c2: 4.1; c3: 2.5; EM: random
PPA PS: 10; τ : 0.6; η: 0.9; λmin: 10; λmax: 15; β: 0.5; FC: 0.6
DE PS: 20; F : 0.2; CR: 0.05; EM: fixed

7.2 Results

The performance of GA, PSO, PPA, and the proposed DE are analyzed here when solv-

ing ACS problems with 50-1000 learning materials – real-world and synthetic data are

considered. The search methods are compared with respect to (i) the final value of the

objective function (normalized using the best value found for each student and number of

materials), (ii) boxplots of the results considering different number of learning materials,

and (iii) convergence. Also, the value of each objective in the objective function (given

by a weighted sum of these objectives) is analyzed during the search.

Figure 7.1 compares the algorithms behavior regarding the increasing number of

learning materials using the synthetic data. To remove the variation between the range of

objective values for each instance and student profile, the results were normalized based on

the best result in each dataset for each student profile. It serves as a good approximation

as the best solution for each problem is not known in advance.

Figure 7.2 presents the results of each metaheuristic. All methods achieve good

solutions most of the cases, but larger variations in the objective functions can be observed

for larger datasets, due to the increased difficult of finding good solutions. It is worth

mentioning that all tests were executed using the same budget. DE and PSO obtained

the most consistent results according to the variation presented. This means that these

methods are able to find similar values in most runs when compared to other methods.

PPA presented the largest variation.

The tests were carried out with a high budget (i.e. 100,000 objective function

evaluation) to allow that all algorithms have their results stabilized. However, in a real

scenario, it would be important to find good results with low computational cost. Figure

7.3 shows the convergence of each metaheuristic during the search. Figure 7.3a presents
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Figure 7.1: Methods comparison for each instance.

the convergence in the real dataset and Figure 7.3b presents the mean convergence of all

synthetic datasets. PPA and PSO achieve worse results than DE and GA in the real-world

dataset, which contains 284 learning materials. However, PSO reaches the best objective

value from 75,000 evaluations in the synthetic dataset, but DE obtained better results

from approximately 7,000 to 75,000 objective function evaluations.

The problem modeling considers different characteristics of each solution with

multiple objective functions but the optimization only considers the weighed sum of them.

However it is important to consider not only the final result but which objectives the meth-

ods were capable to solve. Figure 7.4 shows the convergence of each objective function

for DE. The other methods performed similarly. In Figure 7.4a, it is shown the objective

value for the real-world dataset and Figures 7.4b, 7.4c, 7.4d shows the objective value

for the synthetic dataset with 50, 300 and 700 learning materials, respectively. The main

difference between instances is in the function O3 that measures the total learning time

of the selected learning materials. In large datasets the algorithms are not able to remove

enough material from the solution to attend the desired learning time. Another difference

happens with very small datasets where there is not enough learning materials to solve
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(a) Results obtained by DE.
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(b) Results obtained by GA.
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(c) Results obtained by PSO.
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(d) Results obtained by PPA.

Figure 7.2: Boxplots of the results found by DE, GA, PSO, and PPA.
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(a) Real-world dataset.
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(b) Synthetic dataset.

Figure 7.3: Methods convergence comparison.

the problem, making the values from functions O1 and O4 high. Although functions O2

and O5 are the functions that model the students’ preferences and abilities, their objective

values have remained constant throughout the iterations. This is a major concern as these
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are objectives that consider the individual characteristics of each student. None of the

algorithm compared in this work were able to find good solutions for this two objectives.
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(a) Real-world dataset with 284 learning mate-
rials.
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(b) Synthetic dataset with 50 learning materials.
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(c) Synthetic dataset with 300 learning materi-
als.
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(d) Synthetic dataset with 700 learning materi-
als.

Figure 7.4: Average of the functions (Oi(x)) that compose the objective function (f(x))
calculated during the optimization process considering every student.

7.3 Discussion

One of the points raised in Machado, Barrére e Souza (2019) was that PPA could have

better results than GA or PSO and further comparison was needed. The results presented

here showed that the only situation where PPA obtained better results was with very

low budget. For high budget, PPA was not able to find solutions as good as the other

algorithms. Also, the results of PPA present high variations.

The preference in the literature for GA and PSO is somewhat justified specially
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for bigger datasets. PSO shows the best results for datasets with more than 500 learning

materials and, although GA is worse than DE in most scenarios, for some datasets it is

able to outperform DE. The behavior of GA and PSO is similar to the one found in Chu,

Chang e Tsai (2009) and Li et al. (2012) where PSO requires more budget to find good

solutions in terms of objective function evaluation.

Although little explored in literature, DE obtained good solutions using a small

number of objective function evaluations. DE outperforms the other techniques in this

situation. However, the quality of the solutions obtained varies by a wide range for

larger datasets, decreasing the average value. With a high enough budget, PSO has

demonstrated that it scale better, being able to achieve better results, especially for

larger datasets.
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8 Concluding remarks

Several recent works on adaptive curricular sequencing propose different ways to solve

this problem. One of these approaches that have been gaining a lot of popularity is

the use of evolutionary computing algorithms. Despite the amount of research on ACS,

few comparisons are analyzing which algorithms can obtain the best results. Given the

diversity of modeling for the problem and the lack of available databases for use, this

comparison becomes a hard task.

To deal with the lack of dataset and the difficulty of carrying out experiments

with real-world data, a method for generating synthetic data has been proposed here.

This method uses data collected from a real-world dataset to generate learning materials

that simulate characteristics present in the real ones. The proposed procedure for creating

synthetic datasets to evaluate ACS algorithms allows for researchers to fairly compare dif-

ferent methods in specific scenarios (large amount of materials, large number of students,

different distribution of materials and student features).

The dataset generated using this procedure was applied to compare four search

techniques: GA, PSO, PPA, and the proposed DE. Although DE is not easily found in the

literature applied to the problem solved here, the proposal has reached the best results

among the tested algorithms for small datasets. On the other hand, PSO has obtained the

best results for the larger ones. In general, it is important to highlight that DE converged

faster than the other techniques tested here.

The influence of the different objective functions used to describe the quality of

the solution was also analyzed. Although a solution to the problem needs to meet several

targets, it is possible to see that none of the algorithms were able to find solutions that

suited the students’ learning style or skill level.

The objective function used here is a linear combination of targets of interest.

Although the problem involves multiple objectives, their relationship was not analyzed.

Thus, the study of the objectives of the ACS problem is an important research avenue.

Also, we intend to investigate the optimization via multiobjective metaheuristics assisted
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by a multicriteria decision-making approach.
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GUTIÉRREZ, S.; PARDO, B. Sequencing in web-based education: approaches, stan-
dards and future trends. In: Evolution of Teaching and Learning Paradigms in Intelligent
Environment. [S.l.]: Springer, 2007. p. 83–117.

HAFIDI, M.; BENSEBAA, T. Architecture for an adaptive and intelligent tutoring sys-
tem that considers the learner’s multiple intelligences. International Journal of Distance
Education Technologies (IJDET), IGI Global, v. 13, n. 1, p. 1–21, 2015.

HNIDA, M.; IDRISSI, M. K.; BENNANI, S. Adaptive teaching learning sequence based
on instructional design and evolutionary computation. In: IEEE. Information Technology
Based Higher Education and Training (ITHET), 2016 15th International Conference on.
[S.l.], 2016. p. 1–6.

HUANG, M.-J.; HUANG, H.-S.; CHEN, M.-Y. Constructing a personalized e-learning
system based on genetic algorithm and case-based reasoning approach. Expert Systems
with Applications, Elsevier, v. 33, n. 3, p. 551–564, 2007.
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