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Resumo

Sistemas críticos são sistemas de software nos quais falhas podem levar a consequências

catastróficas, que variam desde danos ambientais, financeiros, à propriedade até lesões

e perda de vidas humanas. Em virtude de sua natureza crítica, as propriedades de se-

gurança desses sistemas devem ser analisadas e verificadas em diferentes níveis de ab-

stração. Assim, atividades de engenharia de segurança como Hazard Analysis and Risk

Assessment (HARA), Fault Tree Analysis (FTA) e Failure Modes and Effects Analysis

(FMEA) devem ser realizadas para identificar as potenciais ameaças à segurança do sis-

tema e a propagação de potenciais falhas pelos seus componentes. A realização dessas

atividades é necessária para a produzir artefatos requeridos por padrões de segurança e au-

toridades para certificação e liberação do sistema para operação. Entretanto, a produção

de artefatos de engenharia de segurança impacta no aumento significativo dos custos e es-

forços de projeto. Técnicas orientadas a reúso como Engenharia de Linha de Produtos de

Software, juntamente com técnicas dirigidas a modelos, vêm sendo amplamente adotadas

pela indústria no desenvolvimento de sistemas críticos por proporcionar o aumento da

produtividade, reduzir os custos de produção de artefatos de projeto e de engenharia de

segurança e o tempo de entrega do produto final. Existem no mercado, um conjunto de

ferramentas de apoio à engenharia de sistemas críticos, dentre elas, MATLAB Simulink

e HIP-HOPs, CHESS e OSATE AADL & Error Annex. Essas ferramentas visam apoiar

o desenvolvimento de modelos arquiteturais e de erros de sistemas críticos. Ferramentas

como CHESS fornecem apoio ao projeto, atividades de engenharia de segurança e geração

de código para sistemas críticos. Apesar do nível de maturidade de CHESS, existe atu-

alimente, uma falta de diretrizes para promover o seu uso adequado no desenvolvimento

de sistemas críticos. Além disso, a falta de integração do CHESS com ferramentas de

apoio ao reúso, como o Base Variability Resolution (BVR), impõe um obstáculo para o

reúso sistemático de certos artefatos como HARA, elementos arquiteturais e de erros de

componentes que podem ser usados como entrada aos plugins de análise CHESS-FLA e

SBA. Para resolver esses problemas, neste trabalho é proposta uma abordagem dirigida



a modelos para: apoiar o uso sistemático do apoio ferramental CHESS para o projeto ar-

quitetural e atividades de engenharia de segurança em conformidade com as diretrizes de

desenvolvimento definidas em padrões de segurança, e o gerenciamento de variabilidades e

o reúso de artefatos como elementos arquiteturais de sistemas, HARA e modelos de erros

de componentes. A abordagem proposta foi validada em um estudo de caso realístico no

domínio automotivo.

Palavras-chave: Sistemas criticos, gerenciamento de variabilidades, dependability engi-

neering, CHESS, BVR.
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Abstract

Safety-critical systems are computer systems which the occurrence of a failure may lead to

catastrophic consequences, ranging from damage to the environment, financial, property

damage to injuries and loss of human life. Due to the critical nature of these systems,

their safety properties should be analyzed and verified at different levels of abstraction.

Thus, Hazard Analysis and Risk Assessment (HARA) should be performed to identify

the potential threats to the overall safety, followed by the analysis of the propagation

of these threats throughout the system’s architecture (e.g., using Fault Tree Analysis -

FTA), and finally, the analysis of how components can contribute to the occurrence of

the system-level failures, e.g., using Failure Modes and Effects Analysis (FMEA) should

be done. The performance of dependability engineering activities are needed to produce

artifacts required by safety standards and certifying authorities for certification and release

of systems for operation. However, the production of safety/dependability engineering

artifacts may cause an increase on both the project effort and costs. Reuse-oriented

techniques, e.g., Software Product Line Engineering (SPLE), together with model-based

techniques, have been largely adopted by the industry in the development of safety-

critical systems. These techniques generally increase quality, productivity, and reduce

the costs of producing design and dependability engineering artifacts. There is in the

market, a series of tools that provide support to safety-critical systems engineering, e.g.,

MATLAB Simulink and HiP-HOPS, OSATE AADL & Error Annex, and CHESS. These

tools support the specification of safety-critical systems’ architectural and error models.

The CHESS Toolset for example, provides support for design, dependability engineering,

and code generation for safety-critical systems. Although the high level of maturity of

the CHESS toolset, there is a lack of guidelines/approaches to support its systematic

use in the development of safety-critical systems. Additionally, the lack of integration

with SPLE tools, e.g., Base Variability Resolution (BVR), imposes barriers on the reuse

of architectural and component fault models, which can be used as inputs to Failure



Logic and State-Based Dependability Analyses. In order to fill this gap, this project

proposes a model-based approach to support the systematic use of the CHESS toolset for

safety-critical system design and analyses in compliance with safety standards, and the

systematic reuse of architectural artifacts and component fault models. The proposed

approach was validated through a realistic case study from the automotive domain.

Keywords: Critical systems, variability management, dependability engineering, CHESS,

BVR.
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1 Introduction

1.1 Context

Critical systems are computer systems ranging from small devices to more complex sys-

tems such as industrial, aerospace or automotive systems. Due to their critical nature,

a single failure in a system of this kind may produce catastrophic consequences (SOM-

MERVILLE, 2018). As a result, critical systems must satisfy availability, reliability, safety

and security requirements (SOMMERVILLE, 2000).

Since these systems should address availability, reliability and safety require-

ments, a safety-critical system engineering process must consider both development and

safety engineering activities. This is necessary in order to verify the system’s safety prop-

erties at different levels of abstraction such as requirements, design, detailed design and

implementation. At the requirements level, potential threats to the system safety must

be identified, the risks caused by these threats must be estimated and measured, and

safety requirements, must be allocated aimed at eliminating or minimizing effects of the

occurrence of these threats in the overall system safety. In the design level, the system’s

architecture must be analyzed, in order to identify how some failures in certain compo-

nents can be a threat to the system’s safety. In the detailed design level, an analysis of the

impact of component failures in system level and how these failures propagate through-

out the system’s architecture must be done. Finally, in the implementation level, it is

identified how each one of the system’s components can directly or indirectly contribute

to system-level failures (CZERNY et al., 2010).

A set of model-driven approaches exist in the literature and offer support to both

the architectural design and safety engineering activities e.g. CHESS, AADL & Error

Annex, and MATLAB/Simulink/HiP-HOPS. These approaches allow the specification

of systems’ architectural aspects and error information in a single model. Both certify-

ing authorities and safety standards, e.g., ISO 26262, endorse the use of model-driven

approaches during the development of critical systems.
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The CHESS toolset supports the engineering of critical systems by providing

support for architectural modeling, which certain system architectural elements can be

specified via components, and their connections (data or electrical pulses inputs/outputs).

The CHESS toolset also supports component error modeling where failure probabilities

(usually based on time) and failure propagation information can be attached to archi-

tectural elements that were previously specified in the model. Likewise, CHESS allows

system engineers to perform a series of different analysis and simulations upon a system’s

model to find out more about the its behavior, or even for obtaining some evidence that

the system is acceptably safe. By doing so, valuable information can be extracted from

these analyses such as the probability that a system may fail during a certain period

of time, or the error modes that can be raised by the system or its components under

certain conditions. These results can be further used to align the system design with its

previously defined safety requirements and goals (CZERNY et al., 2010).

Component-based and Software Product Line Engineering (SPLE) approaches

have been widely adopted by the critical systems development industry, especially in

aerospace and automotive domains. This is due to the benefits that large-scale reuse

provides and the fact that safety-critical systems development companies, are constantly

trying to achieve shorter delivery times and increased quality in their products (PHOL;

BöCKLE; LINDEN, 2005). In this context, variations can occur on both the architectural

and component error models of a safety-critical system depending on how the system

was designed or due to the existence of different versions or configurations of a system

that were derived from a base model. Due to the lack of reuse-oriented techniques and

tools that support modeling and management of variability on system models, the BVR

Tool Bundle was built (HAUGEN; ØGåRD, 2014). Thus, variability management on

both architectural and error models specified in SysML/CHESS-ML can be achieved by

integrating the previously mentioned BVR Tool Bundle with the CHESS toolset.

1.2 Motivation/Problem

Due to the uprising demand of products that are considered variant-rich safety-critical

systems, in other words, systems that have one or more possible variants, variability



1.2 Motivation/Problem 15

management is becoming an important practice in the development of systems (VILLELA

et al., 2014). Current industry practices have been trying to focus on applying software

reuse techniques and prioritizing the reuse of software/hardware elements in the planning

and development phases of their products (VILLELA et al., 2014). As a result, the

development of such products are becoming more focused on the development of systems

product lines or families of systems using the paradigm known as Systematic Software

Reuse, thus, leaving old practices such as developing unique and independent systems

(FRAKES; ISODA, 1994 apud VILLELA et al., 2014).

The CHESS toolset provides critical systems engineers with tools that allow the

definition of system architectural models, components, subcomponents and component

error models. It also supports the execution of Failure Logic, State-Based Dependability

analyses and code generation. Although the CHESS toolset provides native support to

a broad set of features, it does not provide full support for Systematic Software Reuse,

since it does not address variability management on its models.

Currently, there is a lack of approaches strictly focused on supporting variability

management on models defined using CHESS. Some tools, e.g. BVR Tool Bundle, offer

support for variability management in PapyrusUML and SysML based models. Since

the language used by the CHESS toolset, CHESS-ML is based on PapyrusUML’s UML

and SysML, it is possible to seamlessly integrate the BVR Tool Bundle with the CHESS

toolset in order to support variability management on both architectural and component

error models of systems specified in CHESS (JAVED; GALLINA, 2018).

Although the higher level of maturity of the CHESS toolset, there is a lack of

guidelines/approaches to support its systematic use in the development of safety-critical

systems. Additionally, the lack of approaches for integrating CHESS and SPLE tools, e.g.,

Base Variability Resolution (BVR), impose barriers on the reuse of architectural design

and component fault models specified with the support of the CHESS toolset. Thus, due

to the uprising demand for the specification of systems aiming at achieving the systematic

reuse of components, there is a need for approaches that support variability modeling and

management on both CHESS architectural and error models.

Architectural models can vary according to the targeted system configuration. As
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a consequence, variability can be present in various architectural elements such as ports,

components and connectors among the members of a systems family. Variation can also

be found in a components error models. A single component can have a certain error

model depending on the chosen system variant. A component can behave in a certain

way when used in a system variant but it can also have a completely different behavior if

implemented in a different system variant.

1.3 Objectives

In order to supply the lack of approaches that support the systematic use of the CHESS

toolset and variability modeling and management on both architectural and error models

developed using the CHESS toolset, this project proposes a model-based approach to

support the systematic use of the CHESS toolset for safety-critical system design and

dependability analysis in compliance with safety standards, and the systematic reuse of

design and component fault models. The proposed approach was validated through a

realistic wheel braking system case study from automotive domain.

1.3.1 General Objective

Propose a model-driven approach to support the systematic use of the CHESS toolset,

CHESS-FLA, CHESS-SBA and a software product line engineering based approach to

support the reuse of both CHESS generated design and component error model assets.

1.4 Work Structure

This capstone paper is organized into an introduction and five chapters. In Chapter 2,

a literature review covering all the important concepts to help the reader understand the

research contributions presented in Chapters 3 and 4 are introduced. Chapter 3 presents

a systematic approach to support both the architectural and error model specification of

safety critical systems using the CHESS toolset as well a set of steps to execute and

interpret the results of two different types of analyses generated by the CHESS toolset.

The proposed approach was extracted from (BRESSAN et al., 2018), and was validated
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in a detailed and realistic case study using a real-life automotive safety critical system.

The presented case study is an slightly modified version of the one presented in the

previously cited work. Chapter 4 presents a systematic approach to support the reuse

of CHESS design and component error model related assets. The proposed approach

was validated in a case study using the same real-life safety critical system presented in

Chapter 3. Chapter 5 lists and describes a set of related works. Finally, Chapter 6

presents a summary of this work’s contributions, their benefits and limitations, and a

brief description of the future work that will be developed from what has been proposed

in this project.
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2 Literature Review
This chapter presents the concepts and terms that were used as a theoretical background

throughout this project, which are required to better understand the research contribu-

tions presented in the Chapters 3 and 4.

2.1 Safety Engineering

Failures within a system can happen at any time no matter how well tested the given sys-

tem was. Failures can cause a series of consequences ranging from no effect to catastrophic

severity. The occurrence of failure can lead to financial loss, environmental disasters and

even put human lives in danger. System failures might happen due a set of reasons such

as bad design, lack of testing, lack of maintenance, use of low quality hardware components

and/or human error (VERMA; AJIT; KARANKI, 2015).

System engineers are strongly advised to apply safety engineering activities during

the development of safety-critical systems. Performing safety engineering activities are

mandatory/recommended by both certifying authorities and safety standards to achieve

the safety certification and release the system for operation. By doing so, engineers

can ensure that the system under development be acceptably safe, e.g., by reducing the

probability and the number of possible failures that can emerge from the system when

under operation. Activities related to safety engineering are intended to identify potential

threats and the risk that they pose to the overall system safety, quantify performance and,

based on the obtained results, allocate safety requirements to reduce the probability of

occurrence and the number of possible threats that a system may suffer. These activities

may also help on increasing the system’s performance and looking for better ways to

eliminate or minimize the effects of the occurrence of potential safety threats that were

previously identified (VERMA; AJIT; KARANKI, 2015).

Existing safety standards, e.g., ISO 26262 for the automotive and SAE ARP

4754A for the aerospace domains, provide guidance for the Safety Engineering life-cycle of
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safety-critical systems. Such guidance is presented in the form of a development method-

ology and establishes desirable quality attributes to be addressed to achieve safety certi-

fication. There are two examples of safety standards that are vastly used by the critical

systems industry: the ISO 26262 that supports the development and certifies automotive

systems and the SAE ARP 4754A that supports the development and provides certifica-

tion to aerospace systems.

2.1.1 Safety Terminology

Safety properties of critical systems should be analyzed and verified at different levels

of abstraction. This is done in order to certify that a given system addresses reliability,

availability, safety and security requirements. Thus, safety engineering activities should

be performed to identify the hazards, failures and harms that a given system may produce

due to a malfunctioning of a hardware or software component (CZERNY et al., 2010).

According to Papadoupoulos e McDermid (1999), safety can be defined as ”free-

dom from unacceptable risk” and it is only associated with hazardous failures while reli-

ability, relates to all potential failures (LEVESON, 1986). Reliability is defined as the

probability a given component, under a certain time interval and environmental condi-

tions, will continuously perform its intended function (LEVESON, 1995).

Hazards are potential sources of harm caused by a malfunctioning system or set

of systems that implement a function (ISO, 2011). According to MoD (2007), a system is

a combination of elements such as materials, tools, equipment, and software in a operating

environment that should perform a given task or achieve a specific purpose. Additionally,

a safety risk is defined as the the severity and likelihood of a harm. A harm is defined

by MoD (2007) as ”death, physical, injury, damage to the health of people, or damage to

property or to the environment”. A failure, according RTCA (2012) is ”the inability of a

system or system component to perform a required function within their specified limits”.

A fault, still according to RTCA (2012), is the ”manifestation of an error”.

Safety critical systems should address a set of safety requirements or risk re-

duction measures. These measures should be applied in order to reduce the effects of

potential faults associated with failures and hazards (MOD, 2007). Safety requirements
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can be divided into three categories: i) system-safety requirements which are allocated to

system-level hazards, ii) functional safety or derived safety requirements which are respon-

sible for minimizing or eliminating the effects, in system safety, of a failure (ISO, 2011)

and iii) safety integrity requirements, responsible for specifying, in terms of severity and

probability, the risks associated with failures, hazards and functional safety requirements

(OLIVEIRA, 2016).

Assurance is the the provision of evidence that a given product satisfies its

safety requirements through planned and systematic actions (RTCA, 2012) and generated

evidence. Assurance is the information that serves as the starting-point for the generation

of (safety) arguments. Based on how true these claims are, arguments can be established,

challenged and contextualized (SUN, 2013).

2.2 Safety Life-Cycle

A safety life-cycle comprises a set of steps and activities aimed at achieving overall func-

tional safety in a documented manner, through the design, specification and implemen-

tation of safety instrumented systems. It involves all known development phases starting

from the concept phase up to the decommissioning of the project, when all the Safety

Instrumented Functions are no longer available (ALI, 2005).

Each one of the main known safety standards, e.g., ISO 26262 and the SAE ARP

4754A have its own safety life-cycle being each one, adapted to the domain which each

standard addresses. Even though these life cycles can differ from each other in some as-

pects, they do share some common design, dependability and safety engineering activities

among each other within its phases such as allocation of safety-related responsibilities

among people or within entire departments or organizations, system design, item inte-

gration and testing, Hazard Analysis and Risk Assessment or HARA, allocation of safety

requirements, component fault analysis, Fault Tree Analysis (FTA) and Failure Modes

Effects Analysis (FMEA).
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Figure 2.1: The ISO 26262 safety life cycle, its phases and activities (ISO, 2011)

2.2.1 HARA and Allocation of Safety Requirements

HARA is an acronym for Hazard Analysis and Risk Assessment. The Hazard Analysis

process can be divided into five main steps: the identification of specific actions or tasks

that are necessary in order to achieve the defined project goals, the discovery of hazards

associated with these tasks, the identification of all the risks linked to the identified

hazards, the development of a checklist containing all the steps necessary to eliminate

or minimize the risks and the creation of a working procedure where ways of completing

each task the safest way possible will be described (MTU, 2018).

Risk assessment is done after identifying hazards and other factors that may

cause some kind of harm to the system, its users or the environment and the process is

responsible for evaluating and analyzing the risk associated with each identified hazard

(CCOHS, 2018).

The allocation of safety requirements can then be done by taking all the informa-

tion produced by the risk assessment phase and using it to determine ways, procedures

or functionality that would help eliminating the known hazards or at least minimizing its

effects in case the hazard can’t be eliminated at all as safety integrity or functional safety

requirements (CCOHS, 2018) (OLIVEIRA, 2016).
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Most safety standards such as the ISO 26262 and the IEC 61508 define their safety

integrity requirements according to probabilistic or quantitative criteria where they can be

defined taking into consideration factors such probabilities, fault-tree operation, unavail-

ability and mean-time-to-failure (LITTLEWOOD; STRIGINI, 1993 apud OLIVEIRA,

2016). The IEC 61508 standard for example, determines its safety integrity requirements

taking into account two different factors. The first one is the probability that a failure

may happen during the execution of continuous or high demand functions and the second

one, the probability that an on demand system function might fail when requested or

executed. The standard defines different System Integrity Levels according to the two

previously mentioned probability criteria and the possible variation ranges within them

where the SIL 4 is the most stringent level and the SIL 1 the least one (OLIVEIRA, 2016):

Figure 2.2: IEC 61508’s Safety Integrity Levels (IEC, 2010)

Risk matrices are considered a very helpful resource and guidance to the allocation

of safety requirements to system components. In the IEC 61508 Risk Matrix, it is not only

possible to determine if a certain risk is acceptable, tolerable, undesirable or unacceptable

by combining failure frequency and severity together but also, to use it to allocate specific

safety requirements to certain components that will help decreasing failure frequency,

failure severity or both so risks can be minimized or even mitigated within the system or

component in question:
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Figure 2.3: IEC 61508’s Risk Matrix (IEC, 2010)

2.2.2 FTA and FMEA

Fault tree analysis and FMEA support the safety analysis in a system by identifying

potential faults, ever since the early stages of a system’s development process. Both

techniques are broadly used by the industry in the development of safety-critical systems

of various different domains such as the automotive, aerospace and nuclear power domains

(OLIVEIRA, 2016).

A fault tree provides important information about undesirable events and its

consequences to the system that is being analyzed (NASA, 2002). These events can be

associated with hardware/software failures and human errors. The information expressed

in a fault tree is specified through a series of logical gates connecting events. An output

(top) event, can be connected or related to one or many other input (lower) events. The

tree, through its gates and connectors, represents the events needed for the occurrence of

a higher event (VERMA; AJIT; KARANKI, 2015).

Figure 2.4 contains an example of a fault tree from the Fault Tree Handbook

(NRC, 1981) describing the steps necessary for the occurrence of a ’rupture of the pres-

sure tank after the start of pumping’ within a pressure control system. According to the

schematics shown in the fault tree, the rupture can occur by a ’tank rupture due to im-

proper installation’, ’tank rupture (primary failure)’ or ’tank rupture (secondary failure)’.

The ’tank rupture (secondary failure)’ can be triggered by ’ruptures due to internal

over-pressure caused by continuous pump operation for t > 60 sec or ”secondary failure

from other out-of tolerance conditions (eg. mechanical thermal)” (OLIVEIRA, 2016).
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Figure 2.4: Rupture of the pressure tank fault tree (NRC, 1981)

According to Verma, Ajit e Karanki (2015), ”Fault tree analysis is a failure ori-

ented, deductive and top-down approach, which considers an undesirable event associated

with the system as the top event, the various possible combinations of fault events leading

to the top event are represented with logic gates”.

FMEA is a systematic method where remedial actions should be taken considering

its results in order to mitigate the identified failures in a more effective way. FMEA

results are composed by a system’s rank of all potential failure modes in terms of their

criticality levels. The FMEA aims on analyzing the system-wide effects of failures of

certain components or items and classify potential failures according to their identified

severity (VERMA; AJIT; KARANKI, 2015).

2.3 Safety Standards and Certification

Safety standards provides guidance for developing safety-critical systems according to the

targeted safety objectives established per level of integrity. The guidance can be in the

form of activities to be performed and artifacts to be produced to achieve a given safety

objective. Thus, such guidance can be optional or mandatory depending on the targeted
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level of integrity. Standards help engineers to verify if a given system addresses the safety

requirements (HARPERCOLLINS, 2018). Due the level of maturity achieved by model-

based techniques, safety standards, e.g., ISO 26262 for automotive, and SAE ARP 4754A

for avionics, recommend their usage to support both development and safety assessment

activities.

The ISO 26262 comes from an adaptation of the IEC 61508 standard that has

a more general nature and certifies systems of all different domains available in the in-

dustry. One of its main objectives is to supply some of the more specific automotive

systems certification necessities. The ISO 26262 was developed by a partnership of a set

of automotive and research companies such as BMW, Bosch, Toyota and IBM and defines

a functional life-cycle for products of the automotive domain. By dong so, it is applied in

every single safety life-cycle activity of critical systems, incorporating electrical, electronic

or software components. The standard supports only a single class of automotive systems

being those terrestrial systems that weight no more than 3.5 tons and that are designed

for a general purpose and not for an specific purpose such as vehicles that are adapted to

people with disabilities, for example (CZERNY et al., 2010).

2.4 Model-Driven Engineering

Model-driven development techniques are approaches of great importance in the develop-

ment of critical systems. A model can defined as a simplified representation of a process

(GABRY, 2017). In critical systems engineering, models are used to describe system re-

quirements and attributes in a non-ambiguous or semi-ambiguous manner. Another very

important characteristic supported by some models is the possibility of generating arti-

facts from them. Models can be transformed into other models or even executable code

eg. Generation of SQL code through an entity-relation model diagram transformation.

Model-Drivel Engineering or MDE, according to Kleiner, Albert e Bézivin (2009),

”is a research area that considers the main software artifacts as graphs”. MDE was

conceived due to the need that organizations have to maintain themselves homogeneous

in a way that different software systems artifacts can be easily combined or separated

from each other.
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Models that are used to aid MDE professionals in their activities can be divided

into three different levels: the terminal model, the metamodel and the metametamodel

(M1, M2, M3). Terminal models are models that can be used to describe a certain system’s

characteristics. These models are expressed through modeling languages such as UML or

SysML by capturing the characteristics of system in question and expressing them through

these languages. A metamodel is the abstract syntax, expressed through a model, of a

modeling language. A metametamodel captures a metamodeling language that is used to

define metamodels, conceptual foundation (FLEUREY, 2006 apud NASTOV, 2013).

Companies are highly encouraged to use MDE in order to improve the short-term

and long-term productivity of their developers and professionals. By doing so, MDE aims

to reduce the development team’s effort on developing a new piece of software and increase

the organization’s profits (AKTINSON; KUHNE, 2003 apud NASTOV, 2013).

2.5 Dependability

Dependability is the ability an item or system has to operate as it is supposed to whenever

required or throughout a determined time interval. It can also be described as the ’time-

related quality characteristics of an item’ (IEC, 2015).

Dependability can be quantitatively measured through certain attributes or qual-

ities such as availability, reliability, recoverability, maintainability, maintenance support

performance, durability, safety and security. According to IEC (2015), the availability of

an item is the ability this item has to ”be in a state to perform as required”. Reliability

is the ability an item has to perform completely free of failures under certain conditions

for a certain time interval. Recoverability, as the name says, is the ability of an item to

recover from a failure without the need of a corrective maintenance (IEC, 2015).

Avionics systems for example, should be available and perform as they’re sup-

posed to throughout an entire flight. Redundant systems should also be available through-

out the entire duration of the flight in case some important system fails. The availability

of redundant systems is an important feature when it comes to reducing recoverability

rates since the faster the switch between a faulty system and a healthy system, the shorter

the needed recoverability time is.
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2.6 Model-Based Safety Analysis

As stated earlier in this work, there is in the literature, a vast support for model-driven

development and analysis techniques. Among these techniques, there are component

based techniques which both the architectural project and activities related to safety en-

gineering are supported. According to (OLIVEIRA, 2016), ”Compositional safety analysis

techniques provide formal and semi-formal languages to support the specification, com-

position, and analysis of the system failure behavior based on safety information about

the system components”.

Component based techniques are implemented by various known tools that are

frequently used by professionals in the development of critical systems such as CHESS,

AADL, Matlab Simulink and HiP-HOPS. The CHESS toolset for instance, implements the

State-based Dependability Analysis. This type of analysis aids developers on measuring

how available and reliable a certain system is and building or reshaping their systems in

order to make them safer and to ensure that they attend its safety requirements, based

on the results obtained through the analysis.

Formal verification techniques are used to generate results from model simula-

tions. Tools that use formal verification techniques such as Altarica 3.0 (BATTEUX et

al., 2013), simulate normal system operation and determine fault effects to system safety

by injecting them in the system that is being simulated (PAPADOPOULOS et al., 2011

apud OLIVEIRA, 2016).

2.7 The CHESS Toolset

CHESS is a collection of tools available as an Eclipse IDE extension that support the

specification of systems, its architectural features and error models. The MDT Pa-

pyrus extension is used alongside CHESS to support the creation of graphical models

in UML/SysML/CHESS-ML. The CHESS toolset supports all the steps defined in a sys-

tem development process. Such steps involve some practices such as the requirements

definition, systems’ functional architecture, physical and logical modeling, software de-

sign and its applications in hardware components. CHESS also supports automatic ADA
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code generation (INTECS, 2016).

The CHESS toolset also supports many different types of analyses. One of the

main kinds of analysis supported by CHESS is the Failure Logic Analysis (FLA) where

given certain input error modes for a component’s or system’s input ports, the tool prop-

agates these values throughout the system’s components or components’ subcomponents

in accordance to the error model (specified using FPTC rules) defined for each system

or component and returns as a final result, the error modes generated by the analyzed

system and all its components or components and all its subcomponent’s output ports or

in other words, if an error mode such as an omission or a valueSubtle will be outputted

by the system’s or component’s output ports given a certain combination of error modes

as an input. It basically tells if the system or component in question, will mitigate, prop-

agate or output a different error modes from the ones that were set as input error modes

for that system or component.

Figure 2.5: A CHESS model containing back propagated Failure Logic Analysis results

(SEFER, 2015)

A second type of analysis that is supported by the CHESS toolset is called State-

Based Dependability Analysis. This type of analysis is capable of calculating and return-
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ing the probability of a system remaining healthy or free of errors from instant 0 until

a given time (Reliability), the probability of a system being on a healthy state on a de-

fined instant (Availability/Instantaneous) or the fraction of time that a system can keep

itself free of errors during a certain given time frame or interval (Availability/Interval of

Time) taking into account, just like in the previously mentioned Failure Logic Analysis,

the architectural and error models of the system that is being analyzed (UNIFI, 2017).

The analysis results are back-propagated by CHESS into the specified model and,

through these obtained results, critical systems engineers can modify or restructure the

model in such a way that the rebuilt system will satisfy certain previously established

safety requirements or safety goals or hit desirable levels of Availability and Reliability

(INTECS, 2016).

Figure 2.6: State-based Dependability Analysis results are back propagated into the ’mea-

sureEvaluationResult’ parameter of the «stateBasedAnalysis» stereotyped «Component»

(UNIFI, 2017)

In addition to offering the previously mentioned features, the CHESS toolset also

offers an Automotive Profile to support the development of automotive systems. The

Automotive Profile introduces certain properties such as inheritance and ASIL decompo-

sition verification and certain elements that can be used in a system’s modeling process

that must fit the demands listed by the ISO 26262 (INTECS, 2016).

2.7.1 Component Fault Modeling

The CHESS toolset implements three different types of component fault models: «Sim-

pleStochasticBehavior», «FLABehavior» and «ErrorModelBehavior». These stereotypes

and its elements are used to specify components’ error behavior characteristics such as
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fault propagation, probability of occurrence of an internal fault and repair times. This

information can be also further used to execute dependability analyses.

Components stereotyped as «SimpleStochasticBehavior» are components that are

only affected by one type of internal faults, generate one kind of errors and are capable

of generating different types of failure modes with a certain probability. The «Sim-

pleStochasticBehavior» stereotype contains three different parameters that can be used

to describe components’ dependability information: through the ’faultOccurrence’ param-

eter, engineers can specify as a time distribution, the average time to the occurrence of

an internal fault. The ’failureModesDistribution’ is an optional parameter that describes

all the possible output failure modes as well as their probabilities and uses the following

grammar:

Figure 2.7: The ’failureModesDistribution’ grammar (UNIFI, 2017)

Finally, the ”repairDelay” parameter can be used to specify, as a time distribution,

the time a component needs to be repaired or to recover from an internal failure. Figure

2.8 shows a «SimpleStochasticBehavior» stereotyped component which fails once in every

1.0E5 hours and whenever it fails, it outputs a commission failure mode through the ’gas’

output port:

Figure 2.8: A «SimpleStochasticBehavior» stereotyped «Component» (UNIFI, 2017)

The second stereotype supported by the CHESS toolset, «FLABehavior» can be

used to specify components’ failure logic behavior. It is used to express how components

propagate, mitigate and transform failure modes experienced on their input ports through
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a technique called FPTC. Different behaviors of individual components can be expressed

by a set of logical expressions called FPTC rules and these behaviors can be separated

into four different groups: source, sink, propagational and transformational behaviors.

A source behavior happens when a component outputs a certain failure mode due to an

internal fault within it, a sink behavior happens when a component detects and mitigates

an error mode propagated through its input, a proportional behavior happens when an

error mode on a component’s input is propagated through its output and a transformation

behavior is when a component outputs a different kind of failure mode compared to the

one received on its input (SLJIVO et al., 2016). The syntax used to specify FPTC rules

within models generated by the CHESS toolset is shown on Figure 2.9:

Figure 2.9: The FPTC grammar supported in the CHESS toolset by CHESS-FLA (SE-

FER, 2015), (SLJIVO et al., 2016)

As shown above on the FPTC grammar, there are five different failure modes

supported by it and those failure modes can be separated into three different groups

(SEFER, 2015):

• Value related failures:

– valueSubtle: this failure mode denotes that an input or output has deviated

from its expected range of values in a way which humans cannot detect it

(GALLINA; PUNNEKKAT, 2011 apud SEFER, 2015).

– valueCoarse: this failure mode denotes that an input or output has deviated

from its expected range of values in a detectable way by humans (GALLINA;

PUNNEKKAT, 2011 apud SEFER, 2015).

• Time related failures:
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– early: this failure mode happens when input or output is provided earlier than

expected (SEFER, 2015).

– late: this failure mode happens when input or output is provided later than

expected (SEFER, 2015).

• Provision related failures:

– omission: this failure mode happens when an input or output is omitted (SE-

FER, 2015).

– commission: this failure mode happens when input or output is provided when

not expected (SEFER, 2015).

The noFailure keyword denotes that the input or output in question had not

received any kind of failure modes and the wildcard keyword is used to indicate that a

certain input port can receive any kind of the previously mentioned failure modes and

still generate a certain output failure mode e.g. The in1.wildcard → out1.omission rule

indicates that the component in question will always produce an omission failure mode

through its out1 output port no matter what failure mode it experiences through its in1

input port (SLJIVO et al., 2016).

The third stereotype supported by the toolset, the «ErrorModelBehavior» stereo-

type can be used to provide a more detailed error behavior model by supporting the

specification of more technicalities related to faults, errors and failure modes of system

elements. This stereotype uses state machine diagrams stereotyped as «ErrorModel»

containing all the information related to certain component’s fault behavior. An state

machine comprises the following elements (UNIFI, 2017):

• Initial state: represents a component’s ’healthy’ state.

• Error states: represents an error state using an UML State stereotyped as «Er-

rorState». Eg. undetected.

• Internal faults: connects the initial state to an error state through an UML transition

stereotyped as «InternalFault». Through this type of transition, the time to a fault

occurrence can be specified using the occurrence parameter.
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• Internal propagation: UML transitions stereotyped as «InternalPropagation» where

the time after which the propagation occur (delay), relative probability of occur-

rence (weight) and the indication if an external fault will be produced by it (exter-

nalFaults) can be specified through the stereotype parameters.

• Failures: represents the failure modes propagated to the component’s output ports

through the mode parameter. It is represented by an UML «Failure» stereotyped

transition.

The «ErrorModel» state machine diagram on Figure 2.10 shows a «ErrorModel-

Behavior» component’s error behavior. The diagram indicates that the component fails

once in every 10−4 hours/days/years with an internal fault. Once it fails, there is a 50%

chance it will go to a ”LateDetection” error state and produce a delayed output through

its ’out’ output port and there is also a 50% chance it will go to an Undetected error state

and omit whatever was supposed to be outputted by its ’out’ output port:

Figure 2.10: An «errorModel» used to describe an «ErrorModelBehavior» stereotyped

component’s error behavior (UNIFI, 2017)

2.8 Software Product Line Engineering (SPLE)

Software product line engineering (SPLE) is the application of Product line engineering

activities during the development of software families. Software families are a set of

systems that share a common set of features among each other. These activities are

mainly aimed in the reduction of development costs, the provision of customized products
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at reasonable costs, reduction of time to market and product quality enhancement (PHOL;

BöCKLE; LINDEN, 2005).

The Software Product Line Engineering approach comprises the processes: Do-

main and Application Engineering. In the Domain Engineering, both commonality and

variability analysis of a product family is performed. Thus, defining the reusable platform

in which all types of software artifacts, e.g., requirements, design, realization and tests

can be found (PHOL; BöCKLE; LINDEN, 2005). The Application Engineering process,

is responsible for deriving SPL products from the platform established in the domain

engineering”. During application engineering, an SPL product is derived from a set of

specific artifacts previously defined in the domain engineering phase (PHOL; BöCKLE;

LINDEN, 2005).

Figure 2.11: The Product Line Engineering Process (PHOL; BöCKLE; LINDEN, 2005)

2.9 Product Line Variability Metamodel

A variability metamodel comprises two key concepts: variation point and variant. A

variation point is a place where variability can occur. A variant, on the other hand, is

something that provides an instance for domain artifacts, specified in a variation point,

that can vary (PHOL; BöCKLE; LINDEN, 2005 apud OLIVEIRA, 2016). Excludes con-

straints indicating that the instance of a variation point is restricted to the instance of
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another and requires constraints indicate that a variation point requires the instance of

a variant belonging to a distinct variation point, can be used to define different types

of inter-dependencies between variation points and variants (OLIVEIRA, 2016). Figure

2.12 shows the variability metamodel and all the relations between variants and variation

points:

Figure 2.12: The variability metamodel defined by (BACHMANN et al., 2004)

Variations in a system’s both the architectural and error models can produce

different effects when it comes to hazard causes and the safety requirements allocated to

prevent those hazards effects. Certain variation points must be chosen depending on the

selected relevant operation modes and their criticalities in the context model. As previ-

ously mentioned in the beginning of this paragraph, these selections can impact directly

on how an specific design can contribute to system level hazards previously identified in

the product’s feature model (HABLI; KELLY; PAIGE, 2009 apud OLIVEIRA, 2016).

2.10 Reuse in Safety Engineering and Software Prod-

uct Lines

Software Reuse is defined as the usage of existing system’s development artifacts or char-

acteristics in the inception of new system’s. In other words, the use of certain functionality

or aspects such as source code fragments, specifications, design structures or even docu-

mentation from other existing projects in the development of a newer system (FREEMAN,
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1983 apud KRUEGER, 1992).

Software Product Lines are defined as a set of similar systems that are designed

through similar means and developed from a series of common artifacts and characteris-

tics. Software Product Lines are created and consequently maintained, tested or improved

through a series of existing practices defined by Software Product Lines Engineering con-

cepts (BIGLEVER, 2013). Software Reuse is one of the main concepts addressed by

Software Product Lines once these are strongly based in the reuse or the share of compo-

nents and other aspects of systems belonging to a product line among themselves.

Due to the benefits provided by the large scale reuse, especially in the development

of software systems and systems that must align with certain safety standards such as

ISO 26262 or the SAE ARP 4754A, the industry has started adopting reuse practices

in safety-critical system’s development processes (OLIVEIRA et al., 2018). This is due

the adoption of large-scale reuse may impact on the reduction of the time-to-market, and

increase on the quality of the produced artifacts such as dependability.

2.11 BVR and the BVR Tool Bundle

As mentioned previously, due to the industry’s increasing demand for practices supported

by Software Product Line Engineering especially when aimed towards the development

of critical systems product lines, the BVR language or Base Variability Resolution was

conceived. BVR was created to support variability management in EMF compliant models

belonging to the safety domain (HAUGEN; ØGåRD, 2014).

A Software Product Line can be modeled using a feature tree represented in

a diagram where certain system’s features or functionality are classified as mandatory,

optional or alternative. For example, a certain car can have many different types of

engines, and each different engine choice may impact on the possibility of this car having

an automatic transmission or not.

The BVR Tool Bundle provides a set of plug-ins for the Eclipse platform that

support BVR language, and the use of certain practices such as variability management

and derivation of models defined in UML/SysML through the MDT Papyrus plug-in. The

BVR tool bundle also supports feature modeling, and resolution modeling which allows



2.12 Variability Modeling and Management 37

the definition of different configurations that a certain system may have (SINTEF, 2018).

2.12 Variability Modeling and Management

The BVR tool bundle implements a set of features that allows engineers to specify software

product lines. In order to do so, engineers must follow a series of steps to successfully

model, manage software product lines and generate derived models using the tool.

The fist step consists on modeling the family features using BVR’s VSpec Editor.

Figure 2.13 shows a feature tree for a diesel car and each one of its VSpecs in which its

gear box can be either automatic and manual. If the selected box type is automatic, the

car will have AWD traction and have a 140 hp engine. Otherwise, the car will be either

AWD or FWD being the AWD version either 140 hp or 110 hp and the FWD version

being exclusively 110 hp.

Figure 2.13: A Diesel car’s VSpec tree (HAUGEN; ØGåRD, 2014)

After defining the system’s VSpecs, Variants should be specified by selecting com-

ponents within the model as placements and/or replacements. For each pair of placement

and replacement engineers should also specify to which previously specified VSpec each

one of them refers. Components inside a placement will be taken away from the model

while components inside a replacement will stay in the final derived model. Figure 2.14
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shows a variant containing a placement and a replacement, linked to the ’Manual’ VSpec.

In this example, the car’s automatic gear box was set as a placement and will be taken

out of the final derived model if the ’Manual’ VSpec is set to True in the resolution model.

Figure 2.14: A variation point containing a placement and replacement linked to the

’Manual’ VSpec

The third step consists on setting each previously defined VSpec as ’True’ or

’False’ according to the product variant in question. After doing so, the engineer can

then execute BVR upon the desired Papyrus model. Once BVR is done executing, a new

derived Papyrus model will be generated.

Figure 2.15: A simplified diesel car’s VSpec tree on the Resolution editor



39

3 The Proposed CHESS Model-Based

Design and Dependability Analysis Process
In this chapter, the proposal of a model-based to support the systematic usage of the

CHESS toolset in the engineering of safety-critical systems, is presented. The proposed

approach was previously published as a conference paper by Bressan et al. (2018), and it

provides guidance to support engineers on specifying both architectural and error models

using the CHESS toolset. This chapter also provides guidance for generating safety evi-

dence, recommended by standards, e.g., ISO 26262, through the different types of analysis

tools bundled within the toolset.

The proposed approach was specified in SPEM 2.0 activity diagrams. SPEM

2.0 is a modeling notation for specifying software processes. SPEM 2.0 comprises a set

of model elements such as activities, tasks, and milestones. An activity represents a

process that can be decomposed into tasks. A Task or Task Definition element defines

a work unit which cannot be decomposed. A Milestone element represents a significant

achievement within a project (OMG, 2008). As illustrated in Figure 3.1, the proposed

approach comprises four main phases: Architectural/System Model Design, System Error

Modeling, Failure Logic and State-Based Dependability Analyses.
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Figure 3.1: CHESS model-based design and dependability analysis phases

The Hybrid Braking System (HBS) is be used through this report to illustrate

the application of proposed process and its steps. HBS is a real world automotive braking

system originally designed on MATLAB/Simulink meant to be used with electric road

vehicles that integrate one electric motor per wheel (CASTRO; ARAUJO; FREITAS,

2011 apud BRESSAN et al., 2018). As shown on Figure 3.2, the braking system com-

prises 4 subsystems, 24 subsystem components, 6 components and 69 different connections

among subsystems and sub-components. The combined action of the electrical In-Wheel

Motors (IWMs) with the Electromechanical Brakes (EMBs) provides braking power to

the system. Since the IWMs work as generators when the brakes are activated trans-

forming the vehicle’s kinetic energy into electrical energy to feed the Powertrain Battery,

increased vehicle autonomy can be achieved by using the brakes. Since HBS should always

be available to the driver to guarantee their safety, the braking torque generated by it

should always be correct and it can never be omitted otherwise the driver could suffer

catastrophic consequences in case the system malfunctions (BRESSAN et al., 2018).
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Figure 3.2: HBS’ Architectural Model (OLIVEIRA, 2016)

3.1 Architectural/System Design

Input: The requirements document.

Output: The system’s architectural model containing the system «block»s or compo-

nents and their ports specified in a Block Definition Diagram (BDD). The sys-

tem’s and its internal subcomponents internal architectures (instances of «block»s

as «part»s, and the data connections between them) described through an Internal

Block Diagram (IBD).

The ’Architectural/System Design’ phase prescribes a set of steps to define a

system’s architectural model. In order to specify a model using the CHESS toolset,

a CHESS project and a Papyrus UML model should be created. Latter, a new UML

Block Definition Diagram should be created within CHESS’s modelSystemView. All the

system’s components, sub-components and their input and output ports must be specified

in this diagram using SysUML «block» and «port» elements (BRESSAN et al., 2018).

Figure 3.3 shows the required tasks and activities to successfully produce a CHESS

system architectural model.
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Figure 3.3: CHESS model-based design and dependability analysis process and its phases

Figure 3.4 shows the HBS SysML Internal Block Diagram. HBS is a real world

automotive braking system originally designed in MATLAB/Simulink. HBS is meant for

integration in electrical vehicles, in particular for propulsion architectures that integrate

one electrical motor per wheel [9]. The term hybrid comes from the fact that braking is

achieved throughout the combined action of the electrical In-Wheel Motors (IWMs), and

the frictional Electromechanical Brakes (EMBs). One of the most important features of

this system is that the integration of IWM in the braking process allows an increase in

the vehicle’s range. Thus, while braking, IWMs work as generators and transform the

vehicle kinetic energy into electrical energy that is fed into the Powertrain Battery. HBS

should not raise omission of braking torque or incorrect value of braking torque failures

in the wheel’s while braking, since the occurrence of such hazardous events can lead to

catastrophic consequences for the driver
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Figure 3.4: The HBS system and a set of its components and subcomponents on a Block

Definition Diagram

Once all systems, components and subsystems have been specified specified, sys-

tem’s and subsystem’s internal architectures should be defined in UML Internal Block

Definition diagrams. In CHESS, subsystem’s architectures are specified using instances

of elements previously defined on a Block Definition Diagram, its ports, and by deter-

mining links or connections between them. The HBS comprises four Wheel Brake Unit

subsystems, so a total of 5 different Internal Block Diagrams must be created in order to

specify the HBS system and all of its subsystems’ architectures (BRESSAN et al., 2018).

Additionally, since all elements that represent components and subsystems within

a system are instances of the SysML «block»s specified in a Block Definition Diagram,

these elements can be instantiated multiple times within a given system. This allows

engineers to provide different safety information for different instances or «part»s of the

same SysML «block». Thus, the number of SysML Internal Block Diagrams and «block»

elements needed can be decreased when compared to the model presented by Bressan et al.
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(2018). The number of Internal Block Diagrams can be reduced to 2 since a single Brake

Unit SysML «block» can be created and instantiated 4 times within HBS. The HBS also

comprises two Communication Buses components, specified as an «block» in the Block

Definition Diagram, and then instantiated twice on HBS’ Internal Block Diagram.

Figure 3.5 illustrates the Internal Block Diagram for the Brake Unit component.

A wheel Brake Unit comprises 6 internal components. The Wheel Node Controller (WNC)

component calculates the amount of breaking that is going to be produced by the brake

unit, and it send commands to both the EMB PowerConverter (Electromechanical-Brake-

Power-Converter) and IWM Power Converter (In-Wheel-Motor-Power-Converter) compo-

nents. These commands further propagated to both EMB(Electromechanical-Brake) and

IWM (In-Wheel-Motor) components. The IWM decreases the vehicle’s kinetic energy by

converting into energy. The EMB is used alongside the IWM to provide enough braking

power since it can be fairly decreased on high speeds when HBS’ Powertrain Battery is

close to being charged. The Add component outputs both the torque generated and the

total amount of power generated by the brake (BRESSAN et al., 2018):

Figure 3.5: Internal Block Diagram containing the Brake Unit subsystem architecture

(BRESSAN et al., 2018)

3.2 Error Model Specification and Dependability Anal-

ysis

The process presented in the previous section defines a phase that covers system’s error

modeling activities, and two distinct phases for each one of the two different types of

analyses supported by the CHESS toolset. In the ’System Error Modeling Phase’, com-
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ponents are selected and annotated with dependability or failure propagation information,

depending on the error stereotypes applied to each one.

Figure 3.6: Set of tasks and activities to enrich components with dependability or failure

propagation information in CHESS

The error information of a given component can be specified in three differ-

ent ways. Different stereotypes or CHESS-ML profiles, e.g., «simpleStochasticBehavior»,

«flaBehavior» and/or «ErrorModelBehavior», can be applied to components to enrich

them with error/failure information that can be further used by CHESS’ analysis tools.

The process illustrated in Figure 3.6, defines a set of steps to be performed when using

each one of these profiles on the specification of failure behaviors of system or subsys-
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tem components: «flaBehavior» stereotyped components should be annotated with their

respective FPTC rules taking into account how the component behaves when receiving

certain failure modes, hardware components annotated with «simpleStochasticBehavior»

must have the profile’s parameters specified, and components stereotyped with the «Er-

rorModelBehavior» should have one or more ErrorModel state machines attached to them.

Each state machine can either express how and how often an internal failure occurs or

how certain failure modes are propagated throughout the component.

The following subsections describe how Failure Logic and State-Based Depend-

ability analyses can be performed through the CHESS-FLA and CHESS-SBA plugins.

Hybrid Braking System is used again to exemplify the steps and the results that can be

obtained from each type of analysis.

3.2.1 Failure Logic Analysis (FLA)

Inputs: Architectural model containing components stereotyped as «FLABehavior» and

annotated with error mode propagation information.

Output: FLA Analysis results are back propagated into the selected system. Error

modes coming through the system’s input ports are propagated through the system’s

components according to their FPTC rules. These components’ output ports are

then annotated with comments containing the error modes they outputted according

to the input error modes received through their inputs.

As mentioned previously on section 2.10, CHESS’ FLA Analysis propagates fail-

ure modes received through a component’s or system’s input through its elements an-

notated with failure propagation information and stereotyped as «flaBehavior» using the

FPTC language and returns the failure modes the system will output. By doing this, FLA

Analysis determines if a certain error mode will be mitigated, propagated or changed when

outputted by the component or system being analyzed.

In order to illustrate the use of CHESS-FLA, and the execution of FLA Analysis,

a Brake Unit subsystem was taken out of context, and its components were annotated

with FPTC rules as shown on Table 3.1:
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Table 3.1: Brake Unit components and their corresponding FPTC rules

Component FPTC Rules

WheelNodeController in1.omission,in2.wildcard → out1.omission, out2.omission;

in1.wildcard,in2.omission → out1.omission, out2.omission;

in1.valueSubtle,in2.noFailure → out1.valueSubtle, out2.valueSubtle;

in1.noFailure,in2.valueSubtle → out1.valueSubtle, out2.valueSubtle;

in1.valueSubtle,in2.valueSubtle → out1.valueSubtle, out2.valueSubtle;

in1.valueCoarse,in2.noFailure → out1.noFailure, out2.noFailure;

in1.noFailure,in2.valueCoarse → out1.noFailure, out2.noFailure;

in1.valueCoarse,in2.valueCoarse → out1.noFailure, out2.noFailure;

EMBPowerConverter in1.omission → out1.omission;

in1.valueSubtle → out1.valueSubtle;

IWMPowerConverter in1.omission → out1.omission;

in1.valueSubtle → out1.valueSubtle;

EMB in1.omission → out1.omission;

in1.valueSubtle → out1.valueSubtle;

IWM in1.omission → out1.omission;

in1.valueSubtle → out1.valueSubtle;

Add in1.omission,in2.wildcard → pw.omission, t.omission;

in1.wildcard,in2.omission → pw.omission, t.omission;

in1.valueSubtle,in2.noFailure → pw.valueSubtle, t.valueSubtle;

in1.noFailure,in2.valueSubtle → pw.valueSubtle, t.valueSubtle;

in1.valueSubtle,in2.valueSubtle → pw.valueSubtle, t.valueSubtle;

According to its FPTC rules, the wheelNodeController component for example,

propagates an omission if any of its inputs fails with an omission, a valueSubtle error

mode if one input fails with this mode and the other doesn’t fail or both inputs fail with a

valueSublte error mode and mitigates valueCoarse errors received through one input when

the other doesn’t fail or through both of its input ports since the valueCoarse component
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can detect and consequently mitigate valueCoarse errors.

Once all the system components were properly annotated with their correspond-

ing FPTC rules, the Failure Logic Analysis can be executed by selecting the system or

subsystem that is going to be analyzed and annotate the selected system’s input ports

with incoming error modes. CHESS-FLA can be now executed and once done running,

each system component’s output ports are annotated with with their respective failure

mode taking into account both the system component’s FPTC rules and its previously

defined incoming error modes:

Figure 3.7: The set of tasks and activities required to perform the Failure Logic Analysis

using CHESS-FLA

In order to exemplify how CHESS-FLA’s Analysis works and back-propagates its

results into the model, two different scenarios were considered. In the first scenario, the

BrakeUnit component receives no failures through its ’in1’ input port and a valueCoarse

error mode through its in2 port. The analysis shows that the valueCoarse error mode is

mitigated by the valueCoarse thence preventing the BrakeUnit component from failing:
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Figure 3.8: FLA Analysis results for the first scenario

The second scenario considers that the BrakeUnit component receives an omission

failure through its in1 input port, and a valueSubtle error mode through its in2 input port.

The FLA Analysis results for this case show that the valueCoarse ignores the valueSubtle

error mode received through its in2 port and simply propagates the omission through

both its outputs. The omission is then propagated through all the other BrakeUnit’s

components and the Add component omits both the braking torque (t) and the generated

power (pw):
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Figure 3.9: FLA Analysis results for the second scenario

3.2.2 State-Based Dependability Analysis

Inputs: CHESS architectural model components annotated with «simpleStochasticBe-

havior», «FLABehavior» or «ErrorModelBehavior» stereotypes, i.e., annotated with

dependability or error mode propagation information.

Outputs: State-Based Dependability Analysis results back propagated into the model

as a probabilistic distribution.

State-Based analysis provides a way to quantitatively evaluate the dependability

attributes of a system. It uses information within CHESS specified architectural and error

models to return the probability that the system or component being analyzed does not

fail at a given instant (Availability) or the probability that a system remains healthy until

a predefined time instant (UNIFI, 2017).

The CHESS State-Based Dependability analysis can be performed by: creating a

new UML Class Diagram under «DependabilityAnalysisView», creating a «StateBased-

Analysis» stereotyped «Component» in this class, and by executing the CHESS-SBA’s
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State-Based Analysis:

Figure 3.10: The series of tasks and activities required to perform the State-Based De-

pendability Analysis using CHESS-SBA

Hardware components that are part of HBS have their error models specified using

the «SimpleStochasticBehavior» stereotype since these can only suffer from internal faults

for not having input ports and can generate one or more different output error modes once

they fail.

Software components can be annotated with both «FLABehavior» or «Error-

ModelBehavior» error model stereotypes. «FLABehavior» should be used on components

that propagate failure modes without suffering from internal faults. «ErrorModelBehav-

ior» can be used on components that propagate failure modes without suffering from

internal faults, and on components that can suffer from internal faults and by conse-

quence, output an error mode through their output ports. All components that are a part

from a BrakeUnit subsystem, except the Add component, can be annotated with «Er-

rorModelBehavior» to perform the CHESS-SBA. The Add component is annotated with

«FLABehavior» stereotype, since this component does not suffer from internal faults. All

other software components from the HBS which might raise internal failures were anno-

tated with the «ErrorModelBehavior» stereotype, and their error models were specified

with «ErrorModel» stereotype referencing a given component state machine.

After executing the CHESS state-based analysis, the analysis results were back

propagated through the model, more specifically, to the «Component» that holds the

analysis parameters. In this specific scenario, the reliability of HBS was tested where the
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system fails only when one of its BrakeUnits omits braking torque (hence the ”target-

FailureMode” parameter set to ”omission”). The time interval that the system is being

analyzed is 8760 hours or a year. As a result, the analysis returned that the Hybrid

Braking System has a 99.6% probability of continuously staying in a healthy state during

a whole year.

Figure 3.11: State-Based Analysis parameters and results

3.3 The Relation Between the Proposed Approach

and the ISO 26262 Standard

The systematic process described through this chapter was built upon activities and work

products prescribed by ISO 26262 standard. In their work, Bressan et al. (2018) have

compared the activities that are part from the proposed process with some of ISO 26262

Safety life-cycle activities.

The ”Architectural/System Model Design” phase described in Section 3.1, covers

the ”3-5 Item Definition” activity prescribed by ISO 26262 as shown on Figure 3.12 by

producing both a high-level and low-level definition of the system or product through

SysML Block Definition and Internal Block Diagrams respectively. The ISO 26262 ”3-6

Initiation of the safety life-cycle” is covered by ”System Error Modeling” phase of the

proposed process, since during this phase, components are annotated with dependability

or failure logic information that will be further used to perform CHESS Failure Logic

and State-Based Dependability Analyses. This support can be useful for reusing artifacts

in different projects or environments since a set of different behaviors that can be raised

when the artifact’s environment changes (BRESSAN et al., 2018) can be stored in different

error models.
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Both CHESS-SBA and CHESS-FLA support engineers with useful information

about potential threats that may impact the overall system safety, through the results

of their analyses. Both the ”Failure Logic Analysis” and ”State-Based Dependability

Analysis” phases described in Section 3.2 of this report, cover ISO 26262’s ”3-7 Hazard

Analysis and Risk Assessment” activity since they aid, through component error models

and analyses, with the identification of potential hazardous behaviours that can impact

on the overall system safety, and how these behaviours propagate throughout system

architecture. CHESS-SBA’s State-Based Dependability Analysis results can also be used

to calculate the level of exposure to each identified hazard. Thus, supporting engineers

during risk classification, covering ISO 26262 ”3-7 Hazard Analysis and Risk Assessment”

activity (BRESSAN et al., 2018).

The State-Based Dependability Analysis and Failure Logic Analysis phases can

also address ISO 26262’s ”3-8 Functional Safety Concept” and ”4-6.4.2 Safety Mecha-

nisms” activities. System Engineers and Analysts can use CHESS-FLA and CHESS-SBA

model simulation results to allocate functional safety requirements and Automotive Safety

Integrity Levels to mitigate the identified hazards through the system architecture. The

results generated by these two analyses can be also used to determine the impact of item

failures in the overall safety of the system. These results can be also used to aid them on

determining ways to control random item failures thus, addressing ISO 26262’s ”4-7.4.3.1

Measures for avoidance of systematic failures” and ”4-7.4.4 Measures to control random

hardware failures” activities (BRESSAN et al., 2018).

At last, the application of both State-Based Dependability Analysis and Failure

Logic Analysis phases and their prescribed activities address the ”4-7.4.8 Verification of

system design” activity defined in the ISO 26262 standard since through these analyses

results, analysts can verify if the system requirements are all covered by its developed

architecture (BRESSAN et al., 2018). The relation between the approach described in

this chapter and ISO 26262 activities is shown in Figure 3.12 and their work products in

Figure 3.13:
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Figure 3.12: The described process and the ISO 26262 activities (BRESSAN et al., 2018)
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Figure 3.13: CHESS and ISO 26262 Work Products (BRESSAN et al., 2018)
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4 Reuse and Variability in CHESS
In this chapter, a preliminary approach to support variability in both CHESS architectural

and safety artifacts, is presented. The proposed approach was formalized in a SPEM 2.0

activity diagram. Each one of the approach‘s phases is described in the following sections.

The proposed process was validated through a case study using a slightly modified version

of the HBS model presented in Chapter 3.

As shown on Figure 4.1, the proposed process comprises three main phases: Vari-

ability Specification, Variability Realization, and Variability Resolution. These phases are

decomposed into 14 tasks, 4 activities, and generate 3 work products. The proposed ap-

proach demands the following inputs: a base model specified using the steps described

in the System Design/Modeling phase (see Chapter 3) (BRESSAN et al., 2018). The

starting point of the approach is the creation of a BVR Model. Then, there is the phase

where a VSpec tree or diagram containing all the product’s possible features is specified,

realization which is when artifacts that will be kept in or removed from specific VSpecs

are chosen and resolution, the phase where product variants and their features or VSpecs

are defined and the derived model is generated based on those selections.

Figure 4.1: The proposed CHESS + BVR approach and their main phases
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4.1 Architectural Model Variability Management

Inputs: CHESS project containing a Papyrus model, a BVR model and a system’s archi-

tectural and error (optional) models graphically specified through Block Definition

and Internal Block diagrams.

Outputs: Derived Papyrus model containing the desired product variant.

In order to derive a base model within a CHESS project using the BVR tool

bundle, the model should be first specified by modeling its components, subcomponents,

ports and connections using both SysML’s Block Definition and Internal Block Definition

diagrams. The base model must contain all the possible model elements that are part of

some specific product configuration. These elements are subsequently kept in or derived

out of the model depending on the variant that is being generated by the tool. Figure 4.2

shows the Block Definition diagram containing part of HBS’s base model. This specific

model contains both the MechanicalPedal components, one manufactured by Bosch and

the other by Mercedes-Benz, that can be kept in a final derived model depending on the

product variant in question. Then, a new BVR Model within the previously specified

CHESS project must be created.

Figure 4.2: Part of the Hybrid Braking System base model in a Block Definition Diagram
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4.1.1 VSpec

Inputs: A BVR Model.

Outputs: The product’s VSpec tree.

The VSpec phase is consisted of a task, an activity and a work product that is

the final VSpec tree containing all the product’s features or VSpecs as show on Figure

4.3:

Figure 4.3: The process for specifying a VSpec tree in BVR

Once the BVR Model is created, the BVR VSpec Editor must be used to specify

each different VSpec or each one of the possible configurations that the previously mod-

eled base system can have using a VSpec tree. Figure 4.4 shows the VSpec tree for the

HBS model used in this chapter to exemplify the process. The Hybrid Braking System

in question has a total of 4 different possible configurations: one which it only contains

the front Brake Units, one containing only the rear Brake Units, one that consists of

two Brake Units which are set up diagonally and at last, a configuration containing all

four Brake Units. Each configuration can also be consisted of any one of the 4 different

types of PowertrainBatteries which only differ from each other in the number of input

ports and in their error model. Different settings can also be composed of any one of

the 2 different Mechanical Pedal models where each one have their own different manu-

facturer and «SimpleStochasticBehavior» parameter values. Each different configuration

can imply in a different set of system components. The ”RearWheelsOnly” variant for
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example, implies that the Powertrain Battery model to be used with this specific setting

must be the B model and that the Mechanical Pedal must be the one manufactured by

Bosch. For the ”FrontWheelsOnly” variant, either one of the Mercedes-Benz or Bosch

MechanicalPedal components can be used but the PowertrainBattery variant must be the

”PowerTranBatteryA”:

Figure 4.4: The HBS VSpec tree

4.1.2 Realization

Inputs: CHESS project containing a Papyrus model and a system’s architecture.

Outputs: Product’s variants, placements, replacements and links between the VSpecs

and variants.

The next phase, the Realization phase, consists on using BVR’s Realization Ed-

itor to specify which model elements will be kept in and which elements will be derived

out in each one of the VSpecs specified in the previously created VSpec tree. As shown

on Figure 4.5, this phase is consisted of 9 tasks, 2 activities and a work product which is

the final specified Realization Model:
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Figure 4.5: The steps required to perform the Realization phase on a CHESS model using

BVR

The first few tasks described in this phase, consist on selecting the system’s

Block Definition Diagram and creating an empty replacement. Now that an empty re-

placement has been created, elements that will be removed from the base model when an

specific VSpec is selected, must be chosen. For the ”FrontWheelsBrakingOnly” variant,

placements containing both rear BrakeUnits must be created. The first placement ”Re-

moveRearBUsBlockDef ”, is consisted of the two composition associations represented in

the Block Definition diagram between the HBS and BrakeUnit «block»s. These associ-

ations represent the instances of the two rear BrakeUnits inside the HBS «block». The

second placement contains both the rear BrakeUnit «part»s or the BrakeUnits instances
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represented in HBS’ Internal Block diagram and all the connectors coming from or going

to these two «part»s. The same steps were applied on the PowertrainBattery and Me-

chanicalPedal components since this specific VSpec implies on using the MechanicalPedal

made by Bosch and the PowertrainBattery model A containing only the input ports in3

and in4.

Once all the placements are specified, placements and a replacements or in this

case, placements and the previously created empty replacement should be combined to-

gether into a Variant and linked to a previously defined VSpec. A single VSpec can contain

one or more variants linked to it. By doing so, BVR makes sure that when a certain VSpec

is selected in the Resolution phase, all the model elements contained in a placement that

linked to that VSpec, will be derived out of the final generated model. Figure 4.6 shows

HBS’s empty replacement, some of its placements, variants and to which VSpecs those

variants are linked to. The image also shows a selected placement and the elements that

will be derived out of the HBS’ Internal Block diagram, highlighted in red, in case a VSpec

containing a variation point that contains the ”RemoveMechPedalBIntBlock” placement

is selected.

Figure 4.6: Part of HBS’ Realization model
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4.1.3 Resolution

Inputs: Product variants and their VSpecs.

Outputs: Derived model containing the desired product variant.

The last phase of the proposed process involves creating product variants and se-

lecting the VSpecs that will compose each one of them. The Resolution phase is composed

by 3 tasks, one activity and one work product as shown on Figure 4.7:

Figure 4.7: The steps required to perform the Resolution phase on BVR

The BVR Resolution editor displays a different version of the previously created

VSpec tree. The Resolution editor allows users to set the VSpecs that will be kept on

a variant’s final derived model and the VSpecs that will be derived out of that variant’s

model by setting them as either ’true’ or ’false’. Figure 4.8 shows one of HBS’s product

variants (HBS[0]). In this specific product variant, the ”FrontWheelsOnly” VSpec is set to

’true’ meaning that all the model elements selected as placements that are linked to this

VSpec, will be removed from the base model when the final derived model is generated.

Since this specific VSpec implies in ”PowertrainBatteryA” and ”MechanicalPedalBosch”,

both these VSpecs were also set as true:
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Figure 4.8: HBS’ Resolution model for the product variant HBS[0]

Once all the desired VSpecs have been selected, the Resolution model can be ex-

ecuted. Once done executing, the derived papyrus model containing the selected product

variant is generated into the same CHESS project the base model is part of.

4.2 Component Error Model Variability Management

As previously mentioned in Chapter 3, there are three ways to add dependability and error

propagation information to components in CHESS using certain CHESS-ML stereotypes.

Components can behave differently depending on which product variant they are a part of

and variability will be managed differently for each kind of error stereotype a component

has. This section describes ways to manage variability in error models defined using all

the different error stereotypes supported by the CHESS Toolset and uses the same HBS

model from the previous sections to illustrate it.

The reason why it is important to define how each one of these stereotypes should

be treated when it comes to variability management, is the fact that different product

variants can imply on different error models or parameter values. A certain component,

even though having the same architectural model across all product variants, can behave

differently when integrated into a certain variant when compared to the others.
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4.2.1 Components Stereotyped as «simpleStochasticBehavior»

and «FLABehavior»

Variability management in components stereotyped as «simpleStochasticBehavior» and

«FLABehavior», can be done by replicating the desired component, its ports and con-

nectors according to the number of desired different error model variants. In the HBS

model used in the previous sections for example, both MechanicalPedal components are

«simpleStochasticBehavior» stereotyped. Even though both components share the same

exact architectures (both components have one output port that outputs a Real value),

they have different ”failureOccurrence” values indicated by their corresponding manu-

facturers: the MechanicalPedalBosch has a ”failureOccurrence” of exp(1.5E-6) and the

MechanicalPedalMercedes has a ”failureOccurrence” of exp(1.0E-6).

The process for managing variability in these components’ error models follows

the same tasks and activities described in the previous sections for architectural variability

management. A base model should be defined containing all the replicated components

and their corresponding error models and failure information. These components should

be then selected as Placements or Replacements according to the VSpecs and product

variants in question and finally, the base model should be derived according to the VSpecs

selected in the Resolution phase.

4.2.2 Components Stereotyped as «ErrorModelBehavior»

There are a total of two ways to manage variability in components stereotyped as «Er-

rorModelBehavior». These components can be managed the same way as components

stereotyped as «simpleStochasticBehavior» and «FLABehavior» by replicating the de-

sired component, creating different error model state machines for each one of them and

then selecting the component that will stay and the component that will be removed from

the final derived model.

A better way to manage variability in «ErrorModelBehavior» stereotyped com-

ponents though is by taking into account the fact that this specific stereotype uses a

State Machine diagram to specify components’ failure behaviors. By doing so, the same
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principle used to manage variability within components in the Internal and Block Defini-

tion Diagrams can be applied to on components’ «ErrorModelBehavior» state machines

by selecting transitions and states on the desired State Machine diagram and creating

Placements and Replacements for the elements that must be kept in and the ones that

must be removed from the base model. The Figure 4.9 shows a Variation Point linked

to the VSpec ”PowertrainBatterA”. This specific VP, consists of an empty Replacement

and a Placement that removes all the «InternalFault» transitions except the one with

occurrence=exp(2.0E-6) from the base model. The base model in question, is consisted of

4 different «InternalFault» transitions, one for each different ”PowertrainBattery” VSpec:

Figure 4.9: PowertrainBattery base «errorModel» diagram and part of HBS’ Realization

model
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5 Related Work
As a consequence of the increasing demand and the popularization of the development of

products as part of software product lines by the industry, there are many different ap-

proaches in the literature trying to integrate variability management and Software Prod-

uct Line Engineering techniques with tools or languages that support the model-driven

development or even adapt or create a methodology to support variability management

in models defined using a specific tool or language.

Among the many notable works in the area, there is the process proposed by

(SHIRAISHI, 2010) where an approach for managing variability on models defined using

the AADL language is defined. In this work, the author introduces a series of steps to

support the variability management in systems defined through the mentioned language

in the various different levels supported by AADL such as systems, processes and threads.

The author proposes a way of managing variability in AADL models more specifically, in

systems belonging to the automotive domain, using some reuse and inheritance concepts

where components can have on or more distinct implementations where different variants

of the same system can have different implementations of a given component depending

of the variant in question.

In their work, Oliveira et al. (2018) introduce a model-based approach that en-

ables the systematic reuse, in application engineering, of Software Product Line architec-

ture and dependability artifacts called DEPendable-SPLE. This approach supports vari-

ability management in dependability analysis based on widespread Software Product Line

Engineering methods. The main goal of this paper, is not only to present DEPendable-

SPLE but also, to validate the presented approach through a case study using a critical

system from the aerospace domain and prove that it makes ’efficient management of

the impact of design and context variations on HARA and component fault modeling’

(OLIVEIRA et al., 2018) possible.

Another notable work in the area is the OpenCert Toolset (OPENCERT, 2018)

from AMASS project (AMASS, 2018). OpenCert is a solution that focuses on assur-
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ance certification management of Cyber-Physical Systems (CPS) (OPENCERT, 2018)

and bundles not only an updated version of the CHESS toolset, but also the BVR tool

bundle. In their work Javed e Gallina (2018), present how a seameless integration between

the Eclipse Process Framework (EPF) and the BVR Tool Bundle can be achieved. The

EPF Composer is a tool implemented using the Eclipse Process Framework and supports

the specification of software processes. These processes are defined through elements such

as activities, tasks and work products using the SPEM 2.0 notation. The authors also

intend to extend the proposed integration to other tools such as CHESS and OpenCert

for system and assurance case variability management respectively.
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6 Conclusion
This chapter contains a summary of the contributions in this capstone project, its benefits

and limitations, and future work that may concern and extend some aspects of the inte-

gration between the CHESS Toolset and the BVR tool bundle and variability management

using other model-driven design tools.

6.1 Contributions

This work has presented a more elaborate version of the process introduced by Bressan

et al. (2018) in their work. It has also focused on introducing how it is possible to use

instances of «blocks»s as multiple «parts»s for components that are used more than once in

a system’s architecture. A more detailed Failure Logic Analysis case study containing two

distinct scenarios and a more detailed description of each component’s failure propagation

behavior has been used to better illustrate the FLA process.

Additionally, this work has also presented an approach to support variability

management in CHESS models. The integration between the CHESS Toolset and the

BVR Tool Bundle has been validated by successfully applying the proposed process in

a realistic case study. Different ways to manage variability in CHESS component error

models have also been presented and exemplified using the Hybrid Braking System.

6.2 Benefits

Both systematic processes described in this work and the case studies offer a more practical

and ”hands on” way to understand how systems can be specified how certain analysis can

be performed upon those systems and how their results can be interpreted using the

CHESS toolset. The processes also guide users on managing variability in CHESS models

using the BVR Tool Bundle on both architectural and error models in a completely cost

free way since both tools are not commercial.
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6.3 Limitations

Although the proposed process was proved to work, there may be some means to simplify

the way variability management on CHESS error models is done by making some changes

on how error information is attached to components. This could be done by letting the

user attach more than one of the same or different error stereotypes to a single component

eg. using SysML comments with the desired error stereotype. This would prevent the

need to replicate components and their architectures in order to specify their different

«simpleStochasticBehavior» and «FLABehavior» parameters in the base model.

6.4 Future Work

Additional case studies will be further developed to validate the approaches presented in

this paper and a more detailed analysis of the proposed process against automotive and

aerospace safety standards will be further performed.
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