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Resumo

Este trabalho busca realizar uma análise comparativa de três métodos de determinação de

fluxo óptico entre imagens: os tradicionais métodos de Lucas-Kanade e Horn-Schunck e o

método de Augereau. Para tal análise, são introduzidos conceitos de dinâmica dos fluidos.

O trabalho apresenta os métodos fazendo uma analogia entre o processo de determinação

do fluxo óptico e o processo de difusão de fluidos.

Palavras-chave: Fluxo óptico, dinâmica dos fluidos, Navier-Stokes equations.



Abstract

This work aims to realize a comparative analysis of three optical flow determination

techniques: the traditional Lucas-Kanade and Horn-Schunck methods and the recent

Augereau method. This work evaluates the methods on fluid dynamics viewpoint, making

an analogy between optical flow determination and fluid diffusion process.

Keywords: Optical flow, fluid dynamics, Navier-Stokes equations.
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1 Introduction

Movement detection on image streams is a core field of computer vision. Various appli-

cations arise from this task. The estimated field of velocities which describes movement

on an image is named optical flow. Several methods estimate local optical flow by using

a simplified version of Navier-Stokes equations.

The determination of optical flow comes from assuming that between two frames

the intensity of a pixel does not change, although its position can vary. This constraint is

insufficient to grant reliability of solutions. This way, for the computation of optical flow,

it is necessary to determine other constraints, called contour constraints [16].

Different methods were proposed to estimate optical flow, using different contour

constraints. Literature classifies methods into three main approach types: differential

methods, phase-based methods and correlation methods. Some methods use feature ex-

traction to reduce the amount of processing. The main focus of this work is on differential

methods.

This work has two main purposes: to present fluid dynamics concepts associated

to optical flow estimation, and to analyze three differential approaches of optical flow,

analyzing their errors in detecting ground-truth optical flows. Two of them are classical

methods largely known and explored by literature - Horn and Schunck and Lucas-Kanade.

The third is Augereau method, a more recent approach, based on the use of orientation

tensors.

The next chapters are divided as follows: Chapter two presents the theoretical

basis with the fundamentals of fluid dynamics and mathematical description of the optical

flow methods. Chapter three deals with the computational model used and some details

on implementation of the methods. Chapter four presents an analysis of the ground-truth

images results, and the fifth chapter brings the conclusion and future works.
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1.1 Problem definition

The main problem discussed on this work is the computation of optical flow between

two consecutive frames in a video I1 and I2. It is composed by the velocity vector field

V (x, y) = [u(x, y), v(x, y)] for each pixel (x, y) on image I1 that indicates its correspondent

pixel on image I2. Ideally, the optical flow represents the motion of the objects represented

on both frames.

1.2 Objectives

This work’s main objective is the study and implementation of optical flow estimation

methods. The secondary objectives are:

• To associate flow dynamics elements to the basic concepts of the methods,

• To test and evaluate results of optical flow estimation for ground-truth images,

• To present implementation details of each method,

• To compare results on the implementation of optical flow methods.
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2 Theoretical basis

This chapter presents the theoretical basis of the work, which includes notions of kinemat-

ics and fluid dynamics, the mathematical definition of optical flow, and a brief presentation

of variants on optical flow estimation methods.

2.1 Kinematics and Fluid Dynamics

2.1.1 Basic Concepts

This section describes basic concepts in fluid dynamics: fluid flow and rate of change

following a fluid. Yet, the notion of an ideal fluid is introduced. This concept is necessary

for the domain definition of Navier-Stokes equation, which will be discussed in the next

section. All the concepts defined in this section are based on [1].

Definition 2.1.1. (Fluid Flow) The fluid flow is usually defined as the set of vectors

~u : (Rn,R) → Rn which specifies flow velocity for each point of the flow ~x ∈ Rn in

time t ∈ R. As example, a three-dimensional flow can be written as ~u = [u(x, y, z, t),

v(x, y, z, t), w(x, y, z, t), t].

Definition 2.1.2. (Streamline) Considering a three-dimensional flow field, a streamline

can be defined as the set of points ~x = [x(s), y(s), z(s)] where s denotes distance along a

streamline, and the following condition is satisfied:

dx/ds

u
=
dy/ds

v
=
dz/ds

w
.

The set of points on a streamline defines a curve where flow field has the same direction.

Definition 2.1.3. (Rate of Change) Let f(x, y, z, t) denote a quantity of interest in

the fluid motion. The rate of change of f following the fluid is defined as Df
Dt

:

Df

Dt
=

d

dt
f(x(t), y(t), z(t), t),
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Df

Dt
= u

∂f

∂x
+ v

∂f

∂y
+ w

∂f

∂z
+
∂f

∂t
.

On the equation above, x(t), y(t) and z(t) change with time according to the

local field velocity ~u.

~u = [u, v, w],


dx
dt

= u,

dy
dt

= v,

dz
dt

= w.

The notation Df
Dt

indicates a material derivative, which is a way to describe the

local spatio-temporal rate of change of an element in a fluid. The local rate of change of

f can, so, be written in terms of the local field velocity, by the following relation:

Df

Dt
=
∂f

∂t
+ (~u · ∇f),

where ~u = [u, v, w].

By deriving the above equation, it is possible to define D~u
Dt

as the local field

acceleration of an element:

D~u

Dt
=
∂u

∂t
+ (~u · ∇u)~u.

With the definition of rate of change, it is possible to prove that the following

statements are true:

1. The scalar product ~u · ∇f is equivalent to |~u|∂f
∂s

,

2. If ~u · ∇f = 0, f is constant along a streamline,

3. If Df
Dt

= 0, f is constant for a particular fluid element.

Some theoretical studies about fluid dynamics are only possible considering some

properties. It was necessary to establish certain constraints to study some useful proper-

ties. Those constraints yielded to ideal fluid definition.

Definition 2.1.4. (Ideal Fluid) An ideal fluid satisfies the following properties:

1. It is incompressible, which implies that rate of change of its volume on time is zero,
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2. Its density ρ is constant,

3. The force exerted across a geometrical element ~n · δS within the fluid is p · ~n · δS,

where p(x, y, z, t) is a scalar function independent of the normal ~n, called pressure.

2.1.2 Navier-Stokes Diffusion Equation

This section presents a brief background on fluid dynamics and development of Navier-

Stokes equations. For further detail, see [1].

In Book II of the Principia (1687), Isaac Newton tried to describe the circular

motion of fluids. Although it was a good starting point to fluid mechanics theory, his

hypothesis could lead to wrong assumptions over the mathematical relationship between

radius and angular velocity. Quoting [1], “this error gives one small indication of how

rudimentary fluid mechanics was at the time, even in the hands of a great master”.

John Bernoulli described the concept of internal pressure in 1743, on Hydraulica.

Furthermore, the basic principles of mechanics arose with Euler at 1752, with the principle

of linear momentum. In 1755, Euler combined Bernoulli’s internal pressure with the

principle of linear momentum and obtained motion equations for an inviscid fluid.

Definition 2.1.5. (Euler’s Equations) Euler’s equations described movement on an

ideal fluid. On the following equations, term p represents fluid pressure; g is gravitational

body force per mass, ~u = [u, v, w] is the local velocity vector and ρ is the density of the

fluid.

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −1

ρ
· ∂p
∂x
,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −1

ρ
· ∂p
∂y
,

∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −1

ρ
· ∂p
∂z
− g,

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.

The next step in fluid dynamics equations was given by Cauchy in 1822, when

he introduced stress tensor concept.
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Definition 2.1.6. (Stress Tensor) Let ~x denote the position vector of some fixed point

on the fluid, and δS be a small geometrical surface element, with unit normal vector ~n.

The stress tensor for point ~x is defined by a 3× 3 matrix for which each element (T)ij is

the i-th component of stress on a surface element δS which has a normal ~n pointing in

j-th direction.

With the stress tensor, it is possible to define the force ~F exerted on this surface

by the fluid towards which n is directed. It is defined as:

~F = ~t · δS,

where ~t is named stress vector. It can be proved that the stress vector can be expressed in

terms of stress tensor and of the component j of the normals, using the following relation:

~t = (T) · ~nT .

Using notion of the stress tensor, Cauchy was able to define a general equation

of motion for any continuous medium:

ρ · Dui
Dt

=
∂(T)ij
∂xj

+ ρgi. (2.1)

This is obtained considering the i-th component of force exerted by the surrounding fluid

on an infinitesimal part of surface S:

∫
S

tidS =

∫
S

(T)ij · njdS =

∫
V

∂(T)ij
∂xj

dV .

An algebraic way to obtain the Cauchy Equation is by using Reynolds’s transport

theorem, that states:

Theorem 2.1.1. Reynolds’s transport theorem

d

dt

∫
V (t)

G · dV =

∫
V (t)

DG

Dt
+G∇ · u,

where G(x, t) is any scalar or vector function and V (t) denotes the region of space occupied
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by an infinitesimal part of the fluid.

Finally, Navier and Stokes related Cauchy’s stress tensor concept with the previ-

ous results.

If the fluid’s density is ρ and its viscosity is µ, it is possible to obtain numerical

values for the stress tensor in function of ρ, µ and the flow variables.

(T)ij = −pδij + µ
(∂uj
∂xi

+
∂ui
∂xj

)
. (2.2)

On the Equation 2.2, δij is the Kronecker’s Delta, defined by:

δij =

1, if i = j,

0, if i 6= j.

Notably, stress tensor is symmetric, reducing the amount of equations to six. In

case of constant viscosity µ, it is possible to substitute terms of Equation 2.2 in Equation

2.1, writing:

ρ
Dui
Dt

= − ∂p

∂~xi
+ µ

∂

∂~xj

(∂uj
∂~xi

+
∂ui
∂~xj

)
+ ρgi,

ρ
Dui
Dt

= − ∂p

∂~xi
+ µ

∂

∂~xi

∂uj
∂~xj

+ µ
∂2ui
∂2~xj

+ ρgi.

But ~xj = [x1, x2, x3], so we can write:

∂2

∂~x2
j

=
∂2

∂x2
1

+
∂2

∂x2
2

+
∂2

∂x2
3

.

The pressure of a fluid is defined in terms of the stress tensor is:

p = −1

3
(T11 + T22 + T33).

Also, we define v as the kinematic viscosity of the fluid. The value of v is obtained by:

v =
µ

ρ

With the fundamentals above, it is possible to define Navier-Stokes equation.
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Definition 2.1.7. (Navier-Stokes Equation) For a viscous fluid, the Navier-Stokes

equation is:

∂u
∂t

+ (~u · ∇)~u = −1
ρ
∇p+ v∇2~u+ ~g, (2.3)

This Navier-Stokes equation represents the process of diffusion and advection of

an incompressible fluid flow. The term v∇2~u represents diffusion, and (~u · ∇)~u is the

corresponding term for advection.

In fluid dynamics simulating applications usually the fluid is considered incom-

pressible, so that constraint ∇ · ~u = 0 is applied. This simplifies the amount of computa-

tion.

2.2 Optical Flow

Definition 2.2.1. (Optical Flow) Optical flow is the pattern of apparent motion of

objects, surfaces and edges caused by relative motion between an observer and a camera.

In video processing, determining optical flow corresponds to determine the velocity field

which describes each pixel’s movement.

Let I(x, y, t) be the brightness intensity function of a point (x, y) in the frame

number t of an image stream. We assume that in a small time interval an object can

change its position, although its reflectivity and illumination will not vary, which can be

represented by the following equation:

I(x+ ∆x, y + ∆y, t+ ∆t) ≈ I(x, y, t).

Assuming that this constraint is complied is equivalent to consider that all pixels

on the frame t will remain intact on the image in the frame t + ∆t and will not change

its brightness. This is a strong assumption for real cases. The error associated for optical

flow measurement on real sequences of images tends to be high, since there is no guarantee

that pixels will not be created or destroyed at each frame.
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Expanding the equation by Taylor series:

I(x+ ∆x, y + ∆y, t+ ∆t) = I(x, y, t) +
∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t+ h.o.t.

Ignoring higher-order terms, the above equation can only be assumed as true if

the following constraint is satisfied:

∂I

∂x
∆x+

∂I

∂y
∆y +

∂I

∂t
∆t = 0.

Considering ∆t = 1, we obtain the main optical flow constraint:

∇I · ~v + It = 0. (2.4)

On the above equation, ∇I =
[
∂I
∂x
, ∂I
∂y

]
is the spatial gradient, ~v = [u, v] =

[∆x,∆y] is the optical flow vector, and It is the partial derivative from the brightness

intensity function on time.

2.2.1 Physical comparison

There is an analogy that can be made between optical flow vector field and fluid equations

of motion. It is possible to consider an image as a bidimensional fluid varying in time.

In that case, the main optical flow constraint (Equation 2.4) indicates that in an exact

process there is no addition to original flow content, although particles’ position vary

inside the field through time. This indicates an incompressible flow. Therefore, Navier-

Stokes’ equations are used as a basis to optical flow determination.

As a fluid simulation process, optical flow is considered a process with dominant

convective phenomena. The equations are simplified by disconsidering the diffusion term

v∇2~u, the external force term ~g, and the internal pressure term −1
ρ
∇p.

Of course the choice of considering incompressible flow changes the landscape of

the problem. The solution obtained will be not exact in most cases, because pixels will

often be created and destroyed at each frame. Some approaches [27] propose alternatives

to this constraint, assuming high correlation between images. Another problem caused
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by the main optical flow constraint is about the continuity of time domain. Navier-Stokes

process consider continuous time, while the time in optical flow field calculation is assumed

to be discretized, since the frame set used on estimative is not continuous.

2.2.2 The aperture problem

By considering only the main optical flow constraint, optical flow estimation can compute

the component of the movement in the direction of the spatial gradient. But this constraint

alone is unable to estimate correctly other components of the field. This causes a problem

in the process, known as the aperture problem.

This problem accentuates in regions of homogeneous brightness, where the gra-

dient of the image is null. In these regions, any point on the neighborhood could be the

corresponding point on the other image. Therefore optical flow measurement becomes

ambiguous, and this constraint is insufficient.

Figure 2.1: Aperture problem example [9].

Figure 2.1 illustrates the aperture problem. Along the edges, optical flow repre-

sents only the motion on direction of normal vector. On the corner (2), there is sufficient

local gradient information, so optical flow vector represents correctly the measurement of

motion.



2.2 Optical Flow 18

2.2.3 General unidimensional movement

To measure optical flow between two signals G(~x) and F (~x) is to obtain the displacement

vector ~h such as F (~x+ ~h) = G(~x).

The work of Lucas and Kanade [20] defines forms of measuring error between

G(~x) and F (~x+ ~h) on a region of interest R:

• L1-norm:
∑

x∈R |F (~x+ ~h)−G(~x)|,

• L2-norm:
√∑

x∈R |F (~x+ ~h)−G(~x)|2,

• Negative of normalized correlation:

∑
~x∈R−F (~x+~h)·G(~x)√∑

~x∈R F (~x+~h)2·
√∑

~x∈RG(~x)2
.

Considering an one-dimensional case, it is possible to determine an approximation

to optical flow in function of displacement h between two signals F (x) and G(x), by

considering G(x) = F (x + h). This development is detailed on Lucas and Kanade’s

approach.

Figure 2.2: One-dimensional functions F (x) and G(x) with displacement h [20].

Taking a limit of the equation when h tends to 0, we obtain the spatial derivative:

lim
h→0

F (x+ h)− F (x)

h
≈ ∂F

∂x
.

Considering time displacement between signals ∆t = 1, it is also possible to

obtain an approximate measurement of temporal derivative ∂F
∂t

as:

∂F

∂t
= F (x+ h)− F (x).
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Relating spatial and temporal derivatives, we obtain:

∂F

∂t
=
∂F

∂x
· h.

Intuitively, this term is a simplificed version of optical flow main constraint (Equa-

tion 2.4). On relating this equation to the original constraint, we can consider:


∇I = dF

dx
,

~v = h,

It = dF
dt
.

That confirms that for small values of displacement h, the main optical flow

constraint is capable to represent rigid movement.

2.3 Optical Flow Approaches

Based on the aperture problem, it becomes necessary to define contour constraints, which

is a new set of constraints to be applied so that the process can be done not only in the

gradient direction.

This necessity yielded several approaches based on different sets of restrictions.

According to Barron and Beauchemin [8], those approaches can be classified as:

• Differential methods: create constraints based on spatio-temporal derivatives of

image brightness or consider filtered versions of the images. These approaches can

be classified as global or local, depending on the amount of information used to

estimate optical flow. The methods of Horn and Schunck [16], Lucas and Kanade

[20] and Nagel [24] are examples of differential methods.

• Region-based matching methods: based on similarity measures between the neigh-

borhood of pixels in the first image and candidate pixels in the second. These

methods are less sensitive to noise compared to differential methods. However,

they are far more expensive, considering the number of comparisons needed. Some

methods are used together with feature extraction techniques, which reduces its
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computational cost. Anandan et al [2] is an example of a region-based hierarchical

method.

• Energy-Based methods: based on energy of velocity-tuned filters. Some methods

on this class are based on Fourier domain. An example to this class of methods is

Heeger [15].

• Phase based methods: Defines velocity as phase of band-pass filter outputs. Exam-

ples are Waxman et al [33] and Fleet and Jepsen [12], which is one of the recom-

mended methods on Barron’s review.

The focus of this work is on differential methods, due to their efficiency on perfor-

mance and reasonably good precision. Some applications of optical flow, such as building

a descriptor for motion in videos [23] use this kind of approach. We will now introduce

mathematical model of three differential methods: the classical approaches of Horn and

Schunck (global differential), Lucas and Kanade (local differential), and the relatively new

Augereau’s formulation.

2.3.1 Horn and Schunck

Horn and Schunck method [16] is a differential global method. This method was one

of the first optical flow estimative approaches proposed. This way, Horn and Schunck’s

work was largely cited and explored in literature, and several approaches are based on

this method.

Horn and Schunck’s approach tries to solve the aperture problem by considering

that the optical flow field varies smoothly through the entire image. The method is based

on error minimization of the following function:

E2 =

∫ ∫
∇I · v + It + α2

(
∂u

∂x

2

+
∂u

∂y

2

+
∂v

∂x

2

+
∂v

∂y

2
)
dxdy. (2.5)

The error to be minimized considers a weighted sum of optical flow’s main con-

straint and a smoothness constraint, defined by:
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E2
c =

∂u

∂x

2

+
∂u

∂y

2

+
∂v

∂x

2

+
∂v

∂y

2

.

Helmholtz theorem states that any static vector field can be decomposed in two

components: an irrotational (curl-free) component and a solenoidal (divergent-free) com-

ponent. Recently, it has been proved by [14] that the error function adopted by Horn and

Schunck corresponds to an equal penalty on divergence and curl of the vector field.

It is clear that Horn and Schunck approach’s smoothness constraint generates

problems to deal with discontinuities on images. On frames with rough movement, the

estimative tends to be highly inaccurate. Of course, this is a major problem of all differ-

ential methods. As an advantage, the flow vector field resulted of this method is more

dense if compared to the result of local approaches.

2.3.2 Lucas-Kanade

Lucas and Kanade approach [20] is a differential local method. This method solves optical

flow by considering a weighted window around each pixel, and makes least-squares fit.

Lucas and Kanade assume that in a small neighborhood the flow is smooth.

Therefore, considering the general equations described on Section 2.2.2, the value of the

displacement could be computed by using an average process:

h ≈
∑

x∈Ω
G(x)−F (x)
F ′(x)∑

x∈Ω 1

But this approximation can be improved, since the closer points in the neighbor-

hood generates more precise values of ∂F
∂x

. Therefore, the approach combines the various

estimates of h at various values of x by making a weighted sum of derivatives in a small

neighborhood:

h ≈
∑

x∈Ω
w(x)(G(x)−F (x))

F ′(x)∑
x∈Ωw(x)

. (2.6)

This constraint then is generalized for a displacement on higher dimensions, by

considering

F (~x+ h) = F (~x) + h
∂

∂~x
F (x),
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with ∂
∂~x

=
∑

i
∂
∂xi
.

In this case, the term to be minimized is

h =
[∑
~x∈Ω

(∂F
∂~x

)T
· [G(~x)− F (~x)]

]
·
[∑
~x∈Ω

(∂F
∂~x

)T
·
(∂F
∂~x

)]−1

.

Typically, the weighting mask used is a gaussian mask of independent size, variat-

ing with the amount of neighbour elements desired for the process of the flow computation.

Extending the solution for the image domain, the error function to be minimized

by Lucas and Kanade is then defined by:

ELK =
∑
~x∈Ω

w2(~x) ·
(
∇I(~x, t) · ~v +

∂I

∂t

)
. (2.7)

The final solution is given by considering a linear system of size of the neighbor-

hood for each pixel. The main advantage of the local differential displacement minimiza-

tion, in comparision to global Horn and Schunck method, is the reduced sensitivity to

discontinuities on flow, for considering the variation over the weighted window. This way,

variations on parts of the image will not influence distant pixels.

2.3.3 Augereau

Augereau et al [4] addresses the problem of the computation of optical flow on multi-band

image sequences. The brightness on the image I is now described by a three-dimensional

vector ~I = [I1, I2, I3]. For each dimension on color space, it is possible to compute a vector

field.

Therefore, the problem is to find a vector field capable of describe the resulting

flow on color images. By expressing optical flow main constraint (Equation 2.4) for each

dimension, we obtain:

∂I1
∂x
u+ ∂I1

∂y
v + ∂I1

∂t
= 0,

∂I2
∂x
u+ ∂I2

∂y
v + ∂I2

∂t
= 0,

∂I3
∂x
u+ ∂I3

∂y
v + ∂I3

∂t
= 0.

This linear system is overdeterminated, and three main strategies were developed:

to select two equations in order to obtain a direct estimation [22, 25], to solve the system
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using least squares [7, 13, 25, 38], or to fuse the results on flow to recover one vector

field [3]. Color optical flow vector must also be a potential optical flow vector for each

dimension, and all three strategies mentioned fail to achieve this property.

Augereau’s approach aims to determine an optical flow vector field which satisfies

the following constraint:

~vT · ∇~I = 0,

where ~v = [u, v, 1], and ∇I is the multi-band color gradient direction of the vetorial image

~I. To ensure this, the approach defines the structure tensor of a pixel:

Definition 2.3.1. (Structure Tensor) For one brightness channel, considering the gra-

dient vector ∇IT =
[
∂I
∂x
, ∂I
∂y
, ∂I
∂t

]
, the structure tensor (S) [32] is defined by:

(S) =


∂I
∂x

2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂t

∂I
∂x

∂I
∂y

∂I
∂y

2 ∂I
∂y

∂I
∂t

∂I
∂x

∂I
∂t

∂I
∂y

∂I
∂t

∂I
∂t

2

 .
Definition 2.3.2. (Spectral Direction Stability) Considering a vector ~uT = [a, b, c]

and a tensor (T) = ~u · ~uT , the eigenvalues of (T) are:

β
(T)
1 = a2 + b2 + c2,

β
(T)
2 = 0,

β
(T)
3 = 0,

and its respective eigenvectors are:

~V T
1 =


a

b

c

 , ~V T
2 =


b

−a

0

 , ~V T
3 =


ac

bc

−(a2 + b2)

 ,

forming an orthogonal basis.

The tensors (Ti), i = 1, 2, 3 are defined as the product ~Vi · ~V T
i . (T1) is the original

tensor, so its eigenvectors are V T1
1 = U, V T1

2 = V2, V
T1

3 = V3. For tensor (T3), we have
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(T3) = ~V3 · ~V T
3 . The eigenvalues of (T3) are:

β
(T3)
1 = (a2 + b2)(a2 + b2 + c2),

β
(T3)
2 = 0,

β
(T3)
3 = 0,

and the eigenvectors are:

~V
(T3)

1 =


ac

bc

−(a2 + b2)

 , ~V (T3)
2 =


b

−a

0

 , ~V (T3)
3 =


a

b

c

 .

This way, we have:

~V
(T1)

1 = ~V
(T3)

3 , ~V
(T1)

2 = ~V
(T3)

2 , ~V
(T1)

3 = ~V
(T3)

1 . (2.8)

This property is called spectral direction stability of (T) tensor.

For the structure tensor of a pixel (S) defined above, the spectral elements of are

the eigenvalues:

β
(S)
1 = ∂I

∂x

2
+ ∂I

∂y

2
+ ∂I

∂t

2
,

β
(S)
2 = 0,

β
(S)
3 = 0.

The eigenvector associated to β
(S)
1 is the gradient vector ~V

(S)
1 = ∇I. The subspace

generated by the two other eigenvectors is orthogonal to ∇I, so any vector belonging to

the kernel of (S) is a solution of the main optical flow constraint (Equation 2.4). To form

a direct orthogonal basis, ~V
S)

2 and ~V
S)

3 can be:

~V S
1 =


∂I
∂x

∂I
∂y

∂I
∂t

 , ~V S
2 =


∂I
∂y

− ∂I
∂x

0

 , ~V S
3 =


∂I
∂x
· ∂I
∂t

∂I
∂y
· ∂I
∂t

−( ∂I
∂x

2
+ ∂I

∂t

2
)

 .

Extending this approach to a three-bands image, consider that the gradient vector

~g = [∇I1,∇I2,∇I3]. The multidimensional structure tensor (G) in this case is obtained
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by:

(G) =
3∑
j=1

∇Ij · ∇ITj , (G) =
3∑
j=1

Sj,

where Sj is the structure tensor of the j-th channel. (G) have three real eigenvalues

distinct and positive. Considering β
(G)
1 as the dominant eigenvalue and V

(G)
1 as the

associated eigenvector, V
(G)

1 is the direction of maximal variation, Augereau considers

the direction V
(G)

1 as the multiband gradient:

∇I = ~V
(G)

1 .

The optical flow vector ~v should then be in the orthogonal subspace, defined by

~V
(G)

2 and ~V
(G)

3 . There is no direct indication of how to interpret the two last spectral

directions; it is not possible to state, for example, that flow will be linked to the direction

~V
(G)

3 associated to the smallest eigenvalue, because each band structure tensor (Sj) has

two null eigenvalues. This problem is solved by applying the Equation 2.8 of spectral

directions stability. Flow tensor (Fj) is defined as

(Fj) = V
(Sj)

3 · V (Sj)T
3 , (2.9)

where V
(Sj)

3 = ~vj is the optical flow from the structure tensor of the j channel. Its

eigenvalues are:

β
(T3)
1 = (

∂I

∂x

2

+
∂I

∂y

2

)(
∂I

∂x

2

+
∂I

∂y

2

+
∂I

∂t

2

),

β
(T3)
2 = β

(T3)
3 = 0,

with eigenvectors:

~V
(Fj)

1 =


−( ∂I

∂x

2
+ ∂I

∂t

2
)

∂I
∂y
· ∂I
∂t

∂I
∂x
· ∂I
∂t

 = ~vj, ~V
(Fj)

2 =


∂I
∂y

− ∂I
∂x

0

 = ~V
(Sj)

2 , ~V
(Fj)

3 =


∂I
∂x

∂I
∂y

∂I
∂t

 = ∇Ij.
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Having computed the flow tensors for each band, global flow tensor is build as:

(F) =
3∑
j=1

(Fj) =
3∑
j=1

~vj · ~v(T)
j . (2.10)

The color optical flow ~v is defined in terms of the flow tensor as V
(F)

1 , which is

the direction given by the dominant eigenvalue. The computation of ~v is then possible

by obtaining the roots of the characteristic polynomial of tensor (F) and solving a linear

system.

2.3.4 Revision of more recent works

Baker et al [5] addresses and evaluates a whole new generation of algorithms of optical

flow, explaining some of the problem detected on traditional approaches and how those

new methods contour them.

One of the problems detected on Horn’s approach was the use of a L2-norm,

which implies the assumption of flow smoothness, which does not happen in practice.

Black and Anandan [10] presented an algorithm capable of using an arbitrary penalty

function. Some new differential methods [11, 34] used a L1-norm as penalty function,

changing the effect of the error penalty on discontinuities.

Another recent variant of research on optical flow is to use different pixel features,

instead of using only intensity gradient. The work of Lui et al [21] uses SIFT-features to

determine optical flow. Another possibility of optimization is to try to model illumination

and blur, as made by the method of Seitz and Baker [29].

Some methods use continuous optimization techniques, such as gradient descent

techniques [17, 18] or variational approaches [30, 35, 37] to solve optical flow. Gradient

descent is a traditional method for nonlinear system resolution, based on local mini-

mization using the gradient vector. Variational approaches are based on Euler-Lagrange

minimization equations.

Another problem addressed is the use of multiband color images. Aside the work

of Augereau et al [4], Zimmer et al [37] explores different ways of treating colored images,

such as the use of HSV color space. Some other works related to multiband color images
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are Andrews [3], Golland and Bruckstein [13].

Some works are based on generating flow multiple times with a number of dif-

ferent parameters, and choosing for each pixel the best of the set of possible candidates.

Lempitsky et al [18] uses this kind of approach.

It is also common to see methods based on “coarse-to-fine” heuristics. The first

technique to use this kind of approach was [2]. This approach creates a “laplacian pyra-

mid” with series of images from the input image with decreasing resolution. Optical flow

is calculated on lower resolutions and its results are passed up in the pyramid as an initial

guess of the next level. A recent approach based on the use of laplacian pyramids is the

work of Xu et al [36], which presents a scale-invariant approach for optical flow.

The approaches of Li [19] and Sun et al [30] solve optical flow by generating

a Markov random field model capable to learn optical flow pattern by training with

ground-truth images. These methods have proven to be as precise as traditional methods

to determine optical flow.

Also, some approaches work on method trying to improve performance. Parallel

versions of optical flow were proposed in the work of Rannacher [28] anad more recently

in Tao et al [31].
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3 Computational Model

This chapter presents the computational model, i. e., details for implementation of the

three differential methods described in Chapter 2.

3.1 Horn and Schunck

The computation of Horn and Schunck method is made by minimizing Equation 2.5, which

corresponds to a weighted sum of the optical flow’s main constraint and a smoothness

constraint.

By using variational calculus and a digital estimation of the Laplacian, Horn and

Schunck described the optical flow field by a large linear system with two equations for

each pixel:

(α2 + ∂I
∂x

2
+ ∂I

∂y

2
)(u− ū) = − ∂I

∂x
· ( ∂I

∂x
· ū+ ∂I

∂y
· v̄ + ∂I

∂t
),

(α2 + ∂I
∂x

2
+ ∂I

∂y

2
)(v − v̄) = −∂I

∂y
· ( ∂I

∂x
· ū+ ∂I

∂y
· v̄ + ∂I

∂t
),

where ū and v̄ are the averages of the component of the flow vector in a small neighborhood

around the current pixel (x, y). The value of α is used to prevent wrong adjustments of the

flow occasioned by the noise derivative estimates. This parameter must be proportional

to the expected noise in the estimation of the derivatives.

The resulting linear system is sparse and very large, since there are two equations

per pixel. Therefore, direct methods such as Gauss-Jordan elimination are computation-

ally expensive to this problem, and iterative methods such as Gauss-Seidel are a better

choice. The iterative step of the optical flow estimative is:

un+1 = ūn −
∂I
∂x
·( ∂I

∂x
·ūn+ ∂I

∂y
·v̄n+ ∂I

∂t
)

α2+ ∂I
∂x

2
+ ∂I

∂y

2 ,

vn+1 = v̄n −
∂I
∂y
·( ∂I

∂x
·ūn+ ∂I

∂y
·v̄n+ ∂I

∂t
)

α2+ ∂I
∂x

2
+ ∂I

∂y

2 .
(3.1)

In homogeneous parts of the image, the estimation will be the average value of

the neighboring velocity estimates. For constrained regions, the apparent velocity of the

borders shall propagate itself through the region in a number of iterations. Therefore, the
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progress effects of a flow field during the iterative process can be associated to solution

of heat diffusion equation for an uniform flat plate.

For instance, consider a single square object: the first estimative of optical flow

will consider only the gradient property. Therefore, due to aperture problem, along the

edges only the normal component is estimated. At the corner all components are esti-

mated, and inside the square the optical flow vector is null, since gradient is zero. During

the iterative process, the missing component of the borders will be filled by propagation

from the corners, and then the flow shall diffuse through the inside of the square [26].

The original article from Horn and Schunck recommends setting the number of

iterations larger than the number of cells on the largest region to be filled in.

For a sequence of more than two images, it is possible to set the flow from the

previous time-step as initial value of the current time-step field, optimizing the estimative.

3.2 Lucas-Kanade

Lucas and Kanade [20] solves optical flow by assuming similarity in a small neighborhood

around the pixel, which is described by Equation 2.7. Solution for this equation satisfies:

AT ·W 2 · A · ~v = AT ·W 2 · b,

where:

A = [∇I(~p1),∇I(~p2), · · · ,∇I(~pn)]T ,

W = diag[W (x1),W (x2), · · · ,W (xn)],

~b = −[It(x1), It(x2), · · · , It(xn)]T .

The solution to the system is:

~v = [AT ·W 2 · A]−1AT ·W 2 ·~b. (3.2)

The system is overdetermined, since the number of equations is proportional to

the number of neighbours. It can be solved in closed form when AT ·W 2 ·A is nonsingular,
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since it is a 2x2 matrix:

AT ·W 2 · A =

 ∑
p∈Ω W

2(x)∂I(~p)
∂x

2 ∑
p∈Ω W

2(x)∂I(~p)
∂x

∂I(~p)
∂y

,∑
p∈Ω W

2(x)∂I(~p)
∂y

∂I(~p)
∂x

∑
p∈Ω W

2(x)∂I(~p)
∂y

2
.


This eases the process of obtaining the inverse matrix. For a 2x2 matrix

A =

a b

c d

 ,
it is possible to compute inverse matrix by using the following property:

A−1 =
1

detA
∗ adj(A),

where adj(A) is the adjugate matrix of A, which in 2x2 case is:

adj(A) =

 d −b

−c a

 ,
and det(A) = a · d− b · c.

With the inverse matrix computation, Equation 3.2 can be directly solved by a

matrix multiplication process.

3.3 Augereau

The optical flow vector on Augereau’s approach is defined as the vector associated to the

first eigenvalue of the global flow tensor F . As demonstrated in Section 2.3.3, the global

flow tensor is the sum of each band’s tensor. To obtain flow tensor for each band is to

build the structure tensor of each point, to find the three eigenvalues and to use Equation

2.9.

A possible simplification on the process is obtained by the use of the quadractic

form property:

Definition 3.3.1. (Vector projection and quadratic form)
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Considering a vector ~uj
T = [aj, bj, cj] and the tensor (Qj) = ~uj · ~ujT . Now consider

a matrix q in which each row j is a vector uj. We associate tensor (Q) = q · qT . Tensor

(Q) verifies:

(Q) =
n∑
j=1

~uj · ~uTj , (Q) =
n∑
j=1

(Qj),

where (Qj) is the tensor associated to the ~uj vector.

Now, consider an arbitrary vector ~v. Evaluating product (Q) · ~v, it is:

(Q) · ~v =
n∑
j=1

(~uj
T · ~v) · ~uj,

which is the projection of a vector V relative to the matrix element q. In a similar way:

~vT (Q) · ~v =
n∑
j=1

(~uj
T · ~v) · ~vT · ~uj.

~vT (Q) · ~v =
n∑
j=1

(~uj
T · ~v)2. (3.3)

This is the quadratic form applied to a vector ~v and defined by the set of vectors

[~u1, · · · , ~un].

Modifying Equation 2.10 by applying this property, it is possible to construct the

quadratic form of a matrix defined by vectors ~vj applied to the global flow vector ~v:

~vT (F)~v =
3∑
j=1

(~vj · ~v)2.

Since ~v is a spectral element of (F):

(F) · ~v = β
(F)
1 · ~v,

therefore optical flow can be calculated iteratively, by making:

β
(F),k
1 =

∑3
j=1

(
~vTj ·~vk−1

||~vk−1||

)2

vk = 1

β
(F),k−1
1

∑3
j=1

(
~vTj · ~vk−1

)
~vj

(3.4)
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However, this is an alternative to computation of the characteristic polynomial

of the tensor and resolution of a linear system.
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4 Performance Evaluation

4.1 Error evaluation of Optical Flow

Barron and Beauchemin [8]’s benchmark to Optical Flow was one of the first benchmarks

published in computer vision. This work proposed an absolute evaluation metric for

optical flow techniques. Recently, several new approaches to optical flow were developed,

and Barron’s benchmark cryteria became insufficient to evaluate new features of those

approaches.

Baker et al [6] proposed a new benchmark for optical flow evaluation. Along with

the publication of the new benchmark, the Middlebury University Computer Vision’s

research team disponibilized on link http://vision.middlebury.edu/flow/ 1 a dataset

of ground-truth images, which were used to evaluate results on new methods. When a

new optical flow method is developed, the author has now the option of evaluating his

method on the benchmark, so that its precision and execution time can be compared to

the other methods previously submitted. Even if the method wasn’t yet published on a

conference, it can be evaluated and its results are posted as a blind submission.

The proposal was effective and in 2011, Baker et al [5] published a survey with

results of optical flow recent methods evaluation. At current date, 91 optical flow methods

have been evaluated by Middlebury’s benchmark.

The set of cryteria evaluated on this benchmark are:

Definition 4.1.1. Angular Error (AE) : This is the a popular measure of performance,

proposed by Fleet and Jepsen [12] and used for evaluation of classic methods on Barron

and Beauchemin [8]’s survey.

The error between two vectors [u0, v0] and [u1, v1] is the angle in 3D space between

[u0, v0, 1.0] and [u1, v1, 1.0]. Usually it is computed by normalizing the vectors, taking dot

1Middlebury benchmark for optical flow: http://vision.middlebury.edu/flow/. Access date:
22/08/2013.

http://vision.middlebury.edu/flow/
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product and then taking the inverse cosine of dot product:

eAE(~u0, ~u1) = cos−1 (~u0 · ~u1)

||~u1|| · ||~u0||
.

This measure penalizes error in large flows more than error in small flows.

Definition 4.1.2. Flow Endpoint (EP): This is the error defined by the L2 norm of

the difference between flow vectors [u0, v0] and [u1, v1]:

eEP (~u0, ~u1) =
√

(u0 − u1)2 + (v0 − v1)2.

Unlike the angular error measurement, it does not penalize error resulting from large

displacements more than small displacements.

For evaluation of methods previously described on Chapters Two and Three, this

work will follow Baker et al [6]’s benchmark cryteria. But the ground-truth data refering

to Middlebury’s evaluation datasets is not directly available, and a process of submission

of details from the publication is necessary to obtain evaluation ground-truth values. The

evaluation of results is manual and a results table is provided to the author of the method.

Since this work does not propose new approaches to optical flow, there was no necessity

of a submission and we decided to use the public datasets provided on Middlebury’s page,

for which ground-truth results are available. All tests were executed on a computer with

the following configurations: Intel Core 2 Quad, 2.83GHz, 4GB memory, Windows 7 64

bits.

4.2 Ground-Truth Flow

Baker’s benchmark proposed a new representation for optical flow, due to high density

of flow obtained in some methods. The flow is normalized and visualized as an HSV

image, where hue indicates flow direction, saturation indicates flow intensity and value is

1. Figures 4.1, 4.2, 4.3 and 4.4 show examples of correlation between the color image and

the vector field.
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Figure 4.1: Example of mapping flow vector into RGB space.

Figure 4.2: Example of correspondence between a color flow image and a vector flow field.

Figure 4.3: Example of correspondence between a color flow image and a vector flow field.
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Figure 4.4: Example of correspondence between a color flow image and a vector flow field.

4.3 Comparison Results

As mentioned above, evaluation cryteria used on this work were average and standard

deviation values for the angular error and flow endpoint for each image. Density of flow

field and average time ellapsed were also measured. The methods were evaluated for the

ground-truth image sequences available on Figures 4.5, 4.6, 4.7, 4.8 and 4.9.

• Hydrangea:

Figure 4.5: Both images and ground truth flow for Hydrangea sequence.
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• Rubber Whale:

Figure 4.6: Both images and ground truth flow for Rubber Whale sequence.

• Urban2:

Figure 4.7: Both images and ground truth flow for Urban2 sequence.

• Dimetrodon:

Figure 4.8: Both images and ground truth flow for Dimetrodon sequence.
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• Grove2:

Figure 4.9: Both images and ground truth flow for Grove2 sequence.

For Augereau’s method, the flow was evaluated and the error measured to color

images, and the methods of Lucas and Kanade and Horn and Schunck considered grayscale

images.

On the evaluation tables, AVG AE and AVG EP are average values for the angular

error (in degrees) and the flow endpoint (in pixels) on each pixel. SD AE (degrees) and

SD EP (pixels) are standard deviation for angular error and flow endpoint. DENSITY

(percentual) is the percentage of flow vectors considered “valid”, and TIME (in seconds)

is total time of the method’s execution.

For density measurement, we considered that displacements larger than 20 pixels

per frame were mismatching assignments from the method. Therefore, only pixels with

flow norm smaller than 20 pixels per frame were considered on error computation. Density

measured is the percentage of pixels on the image with valid flow measurements.

4.3.1 Horn and Schunck

On Horn and Schunck implementation, the algorithm was executed considering different

α values. The parameter α is the weight of smoothness term relative to the gradient

constraint term.

Considering α ∈ [0.1, 0.3, 0.5, 0.8, 1, 3], the error values were evaluated for 1000

iterations on each image. The results are presented on Table 4.1, and Figures 4.10, 4.11,

4.12, 4.13 and 4.14 presents the best estimative obtained for each image.
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α AVG AE AVG EP SD AE SD EP DENSITY TIME

Hydrangea 1 31,271 3,063 38,895 1,283 93,119 39,72

RubberWhale 5 35,106 0,864 43,125 0,694 98,010 39,36

Urban2 1 68,922 8,162 44,386 8,206 98,910 53,21

Dimetrodon 1 50,992 1,785 30,034 0,734 95,018 38,82

Grove2 5 61,633 2,796 41,195 0,926 99,034 53,35

Table 4.1: Horn and Schunck - Results with lower flow endpoint for each example.

Figure 4.10: Optical flow field estimated by Horn and Schunck for Hydrangea example.

Figure 4.11: Optical flow field estimated by Horn and Schunck for Rubber Whale example.

Figure 4.12: Optical flow field estimated by Horn and Schunck for Urban2 example.
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Figure 4.13: Optical flow field estimated by Horn and Schunck for Dimetrodon example.

Figure 4.14: Optical flow field estimated by Horn and Schunck for Grove2 example.

It is also interesting to see the flow diffusion evolution through the iterations. For

Grove2 Example, we plotted the vectorial field for 1, 10, 50, 100, 500 and 1000 iterations.

The results are presented on Figures 4.15 and 4.16, on vectorial and color representation,

respectively.
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Figure 4.15: Flow evolution for Horn and Schunck Method, with 1, 10, 50, 100, 500 and
1000 iterations.

Figure 4.16: Color representation of flow evolution for Horn and Schunck Method, with
1, 10, 50, 100, 500 and 1000 iterations.

On the small region of Grove2 example presented on Figure 4.17, it is possible

to see how the diffusion solves the aperture problem, making the flow diffuse through

homogeneous regions:

The parameter α indicates velocity of diffusion. For small values of α, the weight

of the gradient constraint is bigger than the smoothness constraint, as we can see in

Equation 2.5. This indicates that diffusion process occasioned by smoothness constraint

will occur slowly, and more iterations will be necessary for achieving a dense field.
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Figure 4.17: Flow evolution for a small region, with 1, 5, 10, 50, 100 and 500 iterations.

On the other hand, if α >> 1, the algorithm is relying much more on the smooth-

ness constraint then on the gradient constraint. This speeds convergence, but can occa-

sionate loss of detail on the vector field obtained.

The original Horn and Schunck method [16] proposes using α = 100. Barron and

Beauchemin [8] obtained better results considering α = 0.5. On this work, for most cases

the better results are obtained considering α = 1.

4.3.2 Lucas and Kanade

Lucas and Kanade method is dependent of two parameters: size of the gaussian filter W

used and the standard deviation σ for the filter. The size of the mask influentiates the

amount of neighbours taken in count for the computation. The standard deviation indi-

cates the degree of smoothness of gaussian filter applied. For the optical flow estimation

process, it can be seen as a measurement of precision on neighbor derivative estimatives.

This work used the same values considered by Barron and Beauchemin [8] for

size of neighborhood and standard deviation. W is a 5x5 matrix, and σ = 1.5. Results

obtained are on Table 4.2, and the estimatives obtained on each sequence for Lucas and

Kanade method are on Figures 4.18, 4.19, 4.20, 4.21 and 4.22.
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AVG AE AVG EP SD AE SD EP DENSITY TIME
Hydrangea 67,7421 3,70712 52,274 2,379 73,073 0,124
RubberWhale 39,468 1,34949 41,604 1,275 71,993 0,124
Urban2 79,0861 9,88212 49,681 9,123 52,9 0,166
Dimetrodon 66,7753 2,63076 39,82 1,966 27,997 0,122
Grove2 76,6741 3,45482 52,18 2,389 85,415 0,17

Table 4.2: Lucas and Kanade - Results with lower flow endpoint for each example.

Figure 4.18: Optical flow field estimated by Lucas and Kanade for Hydrangea example.

Figure 4.19: Optical flow field estimated by Lucas and Kanade for Rubber Whale example.

Figure 4.20: Optical flow field estimated by Lucas and Kanade for Urban2 example.
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Figure 4.21: Optical flow field estimated by Lucas and Kanade for Dimetrodon example.

Figure 4.22: Optical flow field estimated by Lucas and Kanade for Grove2 example.
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4.3.3 Augereau

The images evaluated for Augereau method are colored, differently from Horn and Schunck

and Lucas and Kanade methods. Therefore, the results obtained may not reflect the real

quality of Augereau method if compared to Horn and Schunck and Lucas and Kanade. For

obtaining a fair comparative quality measurement, Augereau method should be evaluated

with grayscale images.

Table 4.3 presents Augereau’s results for each example. The estimatives obtained

are presented on Figures 4.23, 4.24, 4.25, 4.26 and 4.27.

AVG AE AVG EP SD AE SD EP DENSITY TIME
Hydrangea 81,0153 4,67847 46,98844 2,987073 89,109 0,088

RubberWhale 61,26236 1,70489 44,49664 1,602105 89,242 0,084
Urban2 85,02931 9,79227 53,34374 8,87436 70,104 0,099

Dimetrodon 81,33943 2,902915 50,76337 2,29702 69,353 0,07
Grove2 88,61234 4,411229 48,20267 3,013752 87,137 0,111

Table 4.3: Augereau - Results for each example.

Figure 4.23: Optical flow field estimated by Augereau method for Hydrangea example.
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Figure 4.24: Optical flow field estimated by Augereau method for Rubber Whale example.

Figure 4.25: Optical flow field estimated by Augereau method for Urban2 example.

Figure 4.26: Optical flow field estimated by Augereau method for Dimetrodon example.
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Figure 4.27: Optical flow field estimated by Augereau method for Grove2 example.

4.3.4 Analysis of Results

Table 4.4 shows a comparison of error results, density and time for each method.

AVG AE AVG EP SD AE SD EP DENSITY TIME
Hydrangea AUG 81,015 4,678 46,988 2,987 89,109 0,088

LK 67,742 3,707 52,274 2,379 73,073 0,124
HS 31,271 3,063 38,895 1,283 93,119 39,72

RubberWhale AUG 61,262 1,705 44,497 1,602 89,242 0,084
LK 39,468 1,349 41,604 1,275 71,993 0,124
HS 35,106 0,864 43,125 0,694 98,010 39,36

Urban2 AUG 85,029 9,792 53,344 8,874 70,104 0,099
LK 79,086 9,882 49,681 9,123 52,9 0,166
HS 68,922 8,162 44,386 8,206 98,910 53,21

Dimetrodon AUG 81,339 2,903 50,763 2,297 69,353 0,07
LK 66,775 2,631 39,820 1,966 27,997 0,122
HS 50,992 1,785 30,034 0,734 95,018 38,82

Grove2 AUG 88,612 4,411 48,203 3,014 87,137 0,111
LK 76,674 3,455 52,180 2,389 85,415 0,17
HS 61,633 2,796 41,195 0,926 99,034 53,35

Table 4.4: Results with lower flow endpoint for each example and method.

As for the evaluation of results, it is possible to see that Horn and Schunck

method presents more accurate results and more dense flow. In contrast, the precision

enhancement of this method is directly proportional to the number of iterations executed,

so the time spent is proportionally bigger then other methods.
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Sequences analysed presents specific features: Hydrangea presents a rigid body

angular movement. The flow on Grove2 is characterized by smooth rotation and trans-

lation. Urban2 presents a large displacement on part of the image, and the sequences

RubberWhale and Dimetrodon presents multiple rigid objects moving.

Considering Angular Error, the best results on Augereau and Lucas-Kanade

methods are on RubberWhale sequence, as Horn and Schunck works fine on Hydrangea.

For Flow Endpoint, the best results for the three methods were on RubberWhale sequence.

As for weak points, the error on Horn and Schunck’s result on Urban2 sequence is very

large, even considering 1000 iterations and nearly 40s execution time. On Augereau and

Lucas Kanade, the worst Angular Error error was measured on Grove2 sequence.

Standard deviation was nearly constant on all sequences. For density, Horn and

Schunck generates a dense flow in all cases. In opposition, the field generated on Lucas

and Kanade method is sparse. Augereau is a reasonable mid-term in this cryteria.

In conclusion, for real-time dense optical flow computation, Augereau method is

a good choice. For more precise computation, Horn and Schunck method is indicated.
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5 Conclusion

This work begins by introducing basic flow dynamics concepts and Navier-Stokes equa-

tion, which are needed to understand the mathematical model of optical flow. Then, it

was possible to define optical flow on an image, as well as three computation methods:

Horn and Schunck, Augereau and Lucas and Kanade. Later, a brief summary of current

research on area was presented. The computational model of the methods and possible

optimizations on the process were described, such as the faster solution for Lucas and

Kanade’s linear system and the iterative scheme on Horn and Schunck algorithm. Then

the methods were evaluated on Middlebury public dataset, and results show that itera-

tive Horn and Schunck method obtained a more accurate result, despite its relatively high

execution time.

It is always important to reaffirm that this work has no intention to compare

methods with the current state-of-art of optical flow estimation methods at the moment.

The intention here is mostly to give basic notions to the readers about the optical flow

problem and classical solutions.

The top results on Middlebury evaluation dataset at the moment are from recent

papers, or some methods that will yet be presented on conferences, whose results are

posted on the site as a blind submission. This indicates that although modern methods

achieve very high precision, optical flow estimative is still an open problem and yet a hot

research topic on computer vision.
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A - General solution for unidimensional

movement

This is an extension of section 2.2.2. On that section, we evaluated displacement as a

constant value h. It is possible to consider that displacement h is a value dependent of

the total displacement x, i.e. h(x) = g(x) − f(x). Hence, the problem is reduced to a

linear non-homogeneous equation on the form:

dy

dx
+ P (x)y = Q(x),

for which solution is:

y = e−
∫
P (x)dx[

∫
e
∫
P (x)dxQ(x)dx+ c1].

Considering now the general equation for unidimensional movement:

dh

dx
+ h

f ′(x)

f(x)
= 1− g(x)

f(x)

Let P (x) = f ′(x)
f(x)

, Q(x) = 1− g(x)
f(x)

:

h(x) = e−
∫ f ′(x)

f(x)
dx[

∫
e
∫ f ′(x)

f(x)
dx(1− g(x)

f(x)
)dx+ c1]

but
∫ f ′(x)

f(x)
dx =

∫ df(x)
dx

1
f(x)

dx =
∫ df(x)

f(x)
= lnf(x) + c2

h(x) = e−(lnf(x)+c2)[
∫
e(lnf(x)+c3)(1− g(x)

f(x)
)dx+ c1]

h(x) = elnf(x)(−1)

ec2
[
∫
ec3elnf(x)(1− g(x)

f(x)
)dx+ c1]

h(x) = 1
ec2

1
f(x)

[
∫
ec3f(x)(1− g(x)

f(x)
)dx+ c1]

h(x) = 1
ec2

1
f(x)

[
∫
ec3 [f(x)− g(x)]dx+ c1]

h(x) =
c1+ec3 [

∫
(f(x)−g(x))dx]

ec2f(x)
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