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Resumo

A Esclerose Múltipla (EM) é uma doença neurodegenerativa cuja avaliação cĺınica depende

fundamentalmente da identificação e quantificação de lesões em exames de Ressonância

Magnética (RM). Embora a segmentação automática baseada em Aprendizado Profundo

(Deep Learning) tenha alcançado o estado da arte, sua eficácia é frequentemente limi-

tada pela escassez de dados médicos anotados e pela complexidade da obtenção de novos

exemplos. Este trabalho propõe e avalia um pipeline de Data Augmentation generativo

para mitigar esse problema, investigando o impacto de imagens sintéticas na qualidade de

modelos de segmentação. O método desenvolvido combina um Variational Autoencoder

(VAE) para a geração probabiĺıstica de máscaras de lesões e uma Rede Generativa Ad-

versarial Condicional (CGAN) para a śıntese de texturas de RM realistas a partir dessas

máscaras. As imagens geradas foram integradas ao treinamento de uma rede SegResNet

para a tarefa de segmentação supervisionada. Os resultados demonstraram que a inclusão

de dados sintéticos promoveu um aumento significativo na métrica Dice em comparação ao

uso exclusivo de dados reais. Observou-se que a adição de 750 imagens sintéticas propor-

cionou o melhor ganho de qualidade na segmentação, indicando saturação do aprendizado

em volumes superiores devido a limitações na śıntese de lesões de pequenas dimensões.

Conclui-se que o uso de modelos generativos adversariais é uma estratégia promissora

para enriquecer bases de dados médicas e aprimorar a generalização de diagnósticos au-

tomatizados.

Palavras-chave: Esclerose Múltipla; Segmentação Automática; Data Augmentation;

GAN; Variational Autoencoder.



Abstract

Multiple Sclerosis (MS) is a neurodegenerative disease where clinical assessment relies fun-

damentally on the identification and quantification of lesions in Magnetic Resonance Ima-

ging (MRI). Although Deep Learning-based automated segmentation has reached state-

of-the-art status, its effectiveness is often limited by the scarcity of annotated medical

data and the complexity of acquiring new samples. This work proposes and evaluates a

generative Data Augmentation pipeline to mitigate this issue, investigating the impact of

synthetic images on segmentation model quality. The developed methodology combines

a Variational Autoencoder (VAE) for the probabilistic generation of lesion masks and

a Conditional Generative Adversarial Network (CGAN) for synthesizing realistic MRI

textures from these masks. The generated images were integrated into the training of a

SegResNet network for the supervised segmentation task. Results showed that the inclu-

sion of synthetic data promoted a significant increase in the Dice metric compared to the

exclusive use of real data. It was observed that adding 750 synthetic images provided the

best performance gain, with learning saturation occurring at higher volumes due to limi-

tations in synthesizing small-dimension lesions. It is concluded that the use of generative

adversarial models is a promising strategy for enriching medical datasets and improving

the generalization of automated diagnoses.

Keywords: Multiple Sclerosis; Automated Segmentation; Data Augmentation; GAN;

Variational Autoencoder.
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2.4 Segmentação automática . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Formato NIFTI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Formas de aquisição . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Geração de imagens e Data augmentation . . . . . . . . . . . . . . . . . . 18

3 Materiais e Métodos 21
3.1 Base de dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Ambiente computacional . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Modelo de segmentação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
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um paciente com lesões de Esclerose Múltipla identificadas. . . . . . . . . . 22

3.2 Exemplo de imagem fortemente dependente da posição ao longo do eixo y,
na qual a ausência de informação espacial volumétrica pode levar o modelo
a interpretações amb́ıguas, resultando em falhas de generalização ou colapso
do aprendizado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.1 Valores da função de perda total no conjunto de treino. . . . . . . . . . . . 35
4.2 Valores da função de perda de reconstrução no conjunto de treino. . . . . . 36
4.3 Valores da função de perda kl de reconstrução no conjunto de treino. . . . 36
4.4 Valores da função de perda total no conjunto de validação. . . . . . . . . . 37
4.5 Valores da função de perda de reconstrução no conjunto de validação. . . . 37
4.6 Valores da função de perda de reconstrução no conjunto de validação . . . 38
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1 Introdução

De acordo com a Organização Mundial da Saúde, a Esclerose Múltipla (EM) é uma doença

autoimune neurodegenerativa que afeta cerca de 1,8 milhões de indiv́ıduos globalmente

(WHO, 2025). A doença é caracterizada por lesões causadas pelo sistema imunológico

à bainha de mielina, responsável por auxiliar na propagação de impulsos nervosos pelo

corpo.

O diagnóstico da doença é comumente estabelecido por meio da análise de imagens

de Ressonância Magnética (Magnetic Resonance Imaging, MRI), especialmente quando as-

sociadas aos sintomas cĺınicos caracteŕısticos (BROWNLEE et al., 2017). A identificação

e delimitação das áreas lesionadas no cérebro e na medula espinhal são tradicionalmente

realizadas de forma manual por especialistas, utilizando ferramentas de segmentação, o

que contribui não apenas para o diagnóstico, mas também para a avaliação da progressão

da doença e da eficácia dos tratamentos institúıdos.

A segmentação manual de imagens de Ressonância Magnética é um processo de

notória complexidade, visto o elevado tempo demandado para sua realização e por estar su-

jeita a erros humanos, mesmo quando realizado por especialistas na tarefa. Nesse cenário,

com o avanço de técnicas computacionais associadas ao processamento de imagens e visão

computacional, a segmentação automática de lesões associadas à Esclerose Múltipla se

mostra uma ferramenta promissora no que tange o diagnóstico e avaliação da progressão

da doença e resposta do indiv́ıduo às drogas que diminuem a degeneração (LLADó et

al., 2012). Como demonstrado por Rosa et al. (2024), o uso de técnicas de aprendi-

zado profundo, especialmente aproveitando-se dos resultados de alta qualidade providos

por Redes Neurais Convolucionais (CNNs), permitiu avanços significativos nos algoritmos

para segmentação automática.

Contudo, para aumento da eficácia dos métodos de segmentação automática,

notoriamente aqueles que se baseiam em Aprendizado Profundo para seu funcionamento,

deve-se prover uma quantidade significativa de dados aos modelos, para obtenção de

métricas de qualidade satisfatórias. Entretanto, a obtenção desses dados é um processo
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árduo, devido à sensibilidade inerente às informações cĺınicas de pacientes acometidos pela

EM. Para contextos semelhantes, técnicas de Data Augmentation vêm sendo aplicadas,

com o objetivo de utilizar métodos generativos para aumentar a disponibilidade dos dados

já dispońıveis.

O presente trabalho busca investigar o impacto de imagens geradas artificialmente

através de Redes Generativas Adversáriais na qualidade de modelos de segmentação de

imagens de Ressonância Magnética de pacientes com Esclerose Múltipla. Para isso, foi

proposto um pipeline de geração artificial composto por dois estágios. O primeiro uti-

liza um VAE (Variational Autoencoder) para geração de máscaras binárias de lesões de

Esclerose Múltipla que se assemelham as lesões presentes em datasets reais. No segundo

estágio, foi empregado uma cGAN (Conditional Generative Adversarial Network) para

śıntese de texturas cerebrais sob o condicionamento de máscaras de lesões.

1.1 Objetivos

Dada a relevância dos estudos voltados ao entendimento da Esclerose Múltipla, bem

como a elevada complexidade do processo de segmentação manual das lesões e a escassez

de bases de dados públicas de fácil acesso, torna-se necessário investigar abordagens alter-

nativas. Nesse contexto, este trabalho tem como objetivo avaliar o impacto da inclusão

de imagens geradas artificialmente na qualidade de um modelo baseado na arquitetura

ResNet, adaptado para a segmentação semântica de lesões de Esclerose Múltipla. Além

disso, esse trabalho tem como objetivos secundários:

• Comparar métricas de precisão (Dice) entre modelos treinados com bases puramente

reais versus bases h́ıbridas (reais + sintéticas).

• Quantificar o overhead computacional introduzido pelo aumento do volume de da-

dos, analisando o tempo de convergência durante o treinamento.

• Mensurar a demanda de recursos de hardware (uso de VRAM e tempo desprendidos)

proporcional à inserção gradual de volumes sintéticos no dataset.
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2 Fundamentos básicos

2.1 Sistema Imune

O sistema imune é uma organização de células e moléculas altamente especializadas em

combater infecções que acometem o organismo; ao combate dessas infecções é dado o nome

de resposta imune. Existem fundamentalmente duas principais formas de resposta imune

a ant́ıgenos invasores, denominadas Resposta Imune Inata e Resposta Imune Adquirida

(DELVES; ROITT, 2000).

2.1.1 Resposta Imune Inata

O sistema imune inato constitui a primeira linha de defesa do organismo contra agentes

patogênicos, atuando de forma rápida e inespećıfica logo após a transposição das barreiras

f́ısicas e anatômicas. Esse sistema baseia-se em um repertório limitado de receptores

de reconhecimento de padrões, capazes de identificar estruturas moleculares conservadas

compartilhadas por uma ampla gama de microrganismos invasores (TURVEY; BROIDE,

2010). Entre seus principais componentes estão células especializadas, como macrófagos e

neutrófilos, além de mediadores solúveis, incluindo citocinas, que coordenam e amplificam

a resposta inflamatória inicial.

Além de sua atuação direta na contenção de patógenos, o sistema imune inato

desempenha papel fundamental na ativação da resposta imune adaptativa, uma vez que,

após a fagocitose, fragmentos antigênicos derivados dos invasores são processados e apre-

sentados às células do sistema adaptativo, possibilitando o desenvolvimento de respostas

imunológicas espećıficas.

2.1.2 Resposta Imune Adquirida

O sistema imune adquirido, por outro lado, produz uma resposta altamente espećıfica ao

patógeno invasor. Após a apresentação do ant́ıgeno por células do sistema imune inato,
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denominadas células apresentadoras de ant́ıgeno (APCs, do inglês Antigen-Presenting

Cells), os linfócitos B e T passam a atuar de forma coordenada na produção de anticorpos

espećıficos capazes de reconhecer e neutralizar estruturas moleculares caracteŕısticas do

patógeno.

Nesse contexto, os linfócitos T desempenham papel central ao reconhecer comple-

xos formados por pept́ıdeos antigênicos associados às moléculas do Complexo Principal de

Histocompatibilidade (Major Histocompatibility Complex – MHC) expressas pelas APCs,

além de mediar mecanismos efetores direcionados à eliminação do ant́ıgeno. Os linfócitos

T são classicamente subdivididos em duas principais populações funcionais:

• CD4+: células responsáveis pela coordenação da resposta imune adquirida, ati-

vando outras células de defesa, como macrófagos e linfócitos T CD8+.

• CD8+: células responsáveis pela eliminação direta de células infectadas ou altera-

das, por meio do reconhecimento de ant́ıgenos apresentados por moléculas do MHC

classe I.

2.2 Esclerose Múltipla

Dobson e Giovannoni (2019) descrevem a Esclerose Múltipla como uma doença autoimune

mediada por células T, caracterizada por inflamação crônica do sistema nervoso central.

A patologia da EM envolve lesões inflamatórias perivenulares que levam à desmielinização

e formação de placas, predominantemente na substância branca do cérebro e da medula

espinhal. A doença manifesta-se quando o sistema imune, sobretudo por meio de linfócitos

T e B autorreativos, reconhece equivocadamente a bainha de mielina como um ant́ıgeno,

iniciando uma resposta imunológica patológica direcionada a esse tecido, sendo a bainha

de mielina uma membrana responsável por otimizar a passagem de impulsos nervosos

pelas conexões neurais. O ataque imunológico contra a bainha de mielina gera placas

(ou escleroses) que dificultam a passagem dos impulsos nervosos pelas áreas afetadas.

Embora a visão tradicional sugira uma doença de duas fases, uma fase inflamatória inicial

associada à forma remitente-recorrente e uma fase neurodegenerativa tardia associada às

formas progressivas, a eficácia de terapias direcionadas às células B desafia essa concepção.
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A EM é considerada uma doença que evolui ao longo de um espectro cont́ınuo, em que

inflamação e neurodegeneração coexistem desde os estágios iniciais. Cohen et al. (2010)

demonstram que os principais tratamentos para a doença se concentram na redução da

quantidade de surtos que produzem as lesões, principalmente através de terapias injetáveis

como a Interferon Beta ou de medicação oral como o Fingolimode, que vêm se mostrando

ainda mais eficaz na contenção dos surtos da doença.

2.3 Redes Neurais

Redes Neurais Artificiais (Redes Neuronais Artificiais do Português Europeu, ou Artificial

Neural Networks em Inglês) são modelos computacionais inspirados no funcionamento

do sistema nervoso central de organismos biológicos, em especial do cérebro humano.

Esses modelos são compostos por unidades matemáticas interconectadas, denominadas

neurônios artificiais, capazes de receber sinais de entrada, processá-los por meio de com-

binações ponderadas seguidas da aplicação de funções de ativação, e produzir sinais de

sáıda. Quando organizados em camadas e conectados em grande número, esses neurônios

permitem que a rede aprenda representações complexas dos dados, viabilizando a re-

solução de tarefas como classificação, regressão, reconhecimento de padrões e tomada de

decisão.

As redes neurais podem ser organizadas segundo diferentes arquiteturas, que se

distinguem principalmente pela forma de conexão entre os neurônios, pela profundidade

do modelo e pelo tipo de dado que processam. Essa diversidade arquitetural possibilita

a aplicação de redes neurais a uma ampla gama de problemas, desde dados estruturados

até imagens, sinais e sequências temporais. A escolha da arquitetura adequada está

diretamente relacionada à natureza do problema, ao volume e à qualidade dos dados

dispońıveis, bem como aos requisitos de desempenho e capacidade de generalização do

modelo.

Entre as arquiteturas mais conhecidas, destacam-se as Redes Neurais Convoluci-

onais (Convolutional Neural Networks, ou CNNs), introduzidas formalmente por LeCun

et al. (1989), que se tornaram amplamente utilizadas em tarefas de visão computacional,

como classificação, detecção e segmentação de imagens. As CNNs exploram operações
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de convolução e compartilhamento de pesos, permitindo a extração hierárquica de carac-

teŕısticas espaciais relevantes.

Outra classe importante de modelos são as Redes Neurais Recorrentes (Recurrent

Neural Networks, ou RNNs), propostas por Rumelhart, Hinton e Williams (1986), proje-

tadas para o processamento de dados sequenciais e séries temporais. Essas redes possuem

conexões recorrentes que permitem a incorporação de informações de estados anteriores.

Variantes como as redes LSTM (Long Short-Term Memory) e GRU (Gated Recurrent

Unit) foram desenvolvidas para mitigar problemas relacionados ao desvanecimento e à

explosão do gradiente, ampliando a capacidade de modelar dependências de longo prazo.

Mais recentemente, arquiteturas baseadas no mecanismo de atenção, como os

Transformers, têm alcançado resultados expressivos, especialmente no processamento de

linguagem natural, devido à sua capacidade de modelar relações globais entre elementos de

uma sequência de forma paralela. Além dessas arquiteturas gerais, modelos especializados

como os Autoencoders e a U-Net são amplamente empregados em tarefas de redução

de dimensionalidade, aprendizado de representações latentes e segmentação de imagens

médicas, respectivamente, sendo esta última particularmente relevante no contexto deste

trabalho. A escolha da arquitetura adequada está diretamente relacionada à natureza do

problema, ao volume de dados dispońıveis e aos requisitos de desempenho e generalização.

2.4 Segmentação automática

O diagnóstico da Esclerose Múltipla pode envolver diferentes abordagens cĺınicas e labo-

ratoriais; entretanto, exames de Ressonância Magnética (RM) do encéfalo e da medula

espinhal, frequentemente associados ao uso de contraste à base de gadoĺınio, desempe-

nham papel central na identificação de lesões caracteŕısticas da doença Ömerhoca, Akkaş

e İçen (2018). Nesse contexto, a segmentação das lesões em imagens de RM constitui

uma etapa fundamental, não apenas para o estabelecimento do diagnóstico, mas também

para o acompanhamento da progressão da doença e para a avaliação da resposta aos

tratamentos.

Mais recentemente, Gabr et al. (2020) apresentaram um método de segmentação

automática baseado em redes neurais convolucionais profundas, especificamente uma rede
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totalmente convolucional (Fully Convolutional Neural Network, ou FCNN), aplicado à seg-

mentação de tecidos cerebrais e lesões de Esclerose Múltipla em um amplo conjunto de

dados de Ressonância Magnética. Os resultados indicaram que a abordagem fundamen-

tada em Deep Learning alcançou elevada acurácia, com coeficientes de similaridade de

Dice superiores a 0,95 para tecidos cerebrais e em torno de 0,70 para lesões, validando a

eficácia do método em cenários multicêntricos.

2.5 Formato NIFTI

O formato Neuroimaging Informatics Technology Initiative (NIfTI) é amplamente empre-

gado no armazenamento e processamento de imagens médicas e neuroimagem, especial-

mente em estudos envolvendo Ressonância Magnética. Arquivos no formato NIfTI (.nii

ou .nii.gz) permitem a representação eficiente de dados volumétricos tridimensionais,

possibilitando a codificação de informações espaciais provenientes de exames como Tomo-

grafia Computadorizada, Ressonância Magnética e técnicas avançadas de neuroimagem

funcional e estrutural.

Uma das principais caracteŕısticas do formato NIfTI é a incorporação de um

cabeçalho estruturado que armazena metadados essenciais para a correta interpretação

do volume de imagem. Esses metadados incluem informações sobre dimensões do volume,

resolução espacial dos voxels, orientação no espaço f́ısico, tipo de dado armazenado, além

de matrizes de transformação que relacionam o espaço do voxel ao sistema de coordenadas

do mundo real. Tais propriedades tornam o formato particularmente adequado para

análises quantitativas e comparações intersujeitos.

Além disso, o formato NIfTI oferece suporte nativo à representação de imagens

4D, permitindo o armazenamento de séries temporais, como aquelas obtidas em estudos

de Ressonância Magnética funcional (fMRI) ou sequências dinâmicas. Essa flexibilidade

facilita a integração do formato com ferramentas computacionais amplamente utilizadas

em neuroimagem, incluindo bibliotecas e softwares de análise estat́ıstica, visualização e

segmentação automática de estruturas anatômicas e lesões.

Devido à sua padronização, simplicidade e ampla compatibilidade com diferen-

tes plataformas e linguagens de programação, o formato NIfTI tornou-se um padrão em
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pesquisas em neuroimagem, sendo amplamente adotado em pipelines de processamento

automático e em bases de dados públicas utilizadas para fins cient́ıficos.

2.6 Formas de aquisição

No contexto da Ressonância Magnética (RM), existem diferentes formas de aquisição de

imagens, também denominadas sequências de aquisição. Essas sequências correspondem

a diferentes configurações dos parâmetros f́ısicos do equipamento, como tempos de re-

petição e eco, que resultam em variações no contraste entre os tecidos biológicos. Dessa

forma, uma mesma estrutura anatômica pode apresentar intensidades de sinal distintas,

permitindo a ênfase de caracteŕısticas espećıficas dos tecidos e de alterações patológicas.

No estudo da Esclerose Múltipla, a utilização de múltiplas sequências de RM é

fundamental, uma vez que diferentes tipos de lesões e estágios da doença são melhor evi-

denciados por contrastes espećıficos. As sequências mais comumente empregadas nesse

contexto são T1, T2 e FLAIR, cada uma fornecendo informações complementares rele-

vantes tanto para o diagnóstico quanto para o acompanhamento da progressão da doença.

A Tabela 2.1 apresenta uma comparação entre essas sequências, destacando suas

principais caracteŕısticas e aplicações no contexto da Esclerose Múltipla. Adicionalmente,

a Figura 2.1 ilustra um exemplo de um mesmo corte axial adquirido nas sequências T1,

T2 e FLAIR, evidenciando as diferenças de contraste observadas entre elas.

Sequência Principais caracteŕısticas Aplicação em EM

T1
LCR escuro
Boa definição anatômica

Visualização da anatomia
Lesões crônicas (com gadoĺınio)

T2
LCR claro
Alta sensibilidade à água

Identificação de lesões
Destaca áreas desmielinizantes

FLAIR
Baseada em T2
Sinal do LCR suprimido

Detecção de lesões periventriculares
Sequência mais usada na EM

Tabela 2.1: Comparação entre as sequências de RM T1, T2 e FLAIR no contexto da
Esclerose Múltipla (EM).
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Figura 2.1: Exemplo das diferentes formas de aquisição de um paciente presente no dataset
de Esclerose Múltipla utilizado nesse trabalho.

2.7 Geração de imagens e Data augmentation

Técnicas de Data Augmentation consistem na aplicação de transformações sistemáticas e

controladas sobre os dados originais com o objetivo de ampliar artificialmente o conjunto

de treinamento. Essa estratégia visa aumentar a diversidade amostral, melhorar a ca-

pacidade de generalização dos modelos e reduzir o risco de overfitting, especialmente em

cenários caracterizados pela escassez de dados rotulados. No contexto de imagens, tais

técnicas tradicionalmente envolvem transformações geométricas e fotométricas relativa-

mente simples, como rotações, translações, inversões, escalonamentos e recortes. Apesar

de sua simplicidade, essas abordagens continuam amplamente empregadas em trabalhos

recentes, em razão do baixo custo computacional e da facilidade de implementação (CE-

TIN et al., 2025).

Com o avanço de métodos modernos de aprendizado de máquina, em particular

aqueles baseados em aprendizado profundo, modelos generativos passaram a desempe-

nhar um papel relevante no aumento artificial de dados. Diferentemente das abordagens

tradicionais, esses modelos são capazes de aprender a distribuição subjacente dos dados

de treinamento e sintetizar novas amostras com caracteŕısticas estat́ısticas semelhantes

às dos dados reais. Entre essas abordagens, destacam-se as Redes Generativas Adversa-

riais (Generative Adversarial Networks, ou GANs), amplamente utilizadas na geração de

imagens sintéticas em diversos domı́nios.

Conforme ilustrado na Figura 2.2, uma GAN é composta por dois modelos trei-
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nados simultaneamente: o Gerador e o Discriminador. O Gerador recebe como entrada

um vetor de rúıdo amostrado de um espaço latente e tem como objetivo produzir amos-

tras sintéticas que se aproximem da distribuição dos dados reais. O Discriminador, por

sua vez, atua como um classificador binário, geralmente implementado por meio de uma

rede neural convolucional, cuja função é distinguir entre amostras reais e aquelas geradas

artificialmente.

Esse arranjo estabelece um processo de otimização adversarial, formulado como

um jogo de soma zero, no qual o Gerador é treinado para maximizar a probabilidade

de enganar o Discriminador, enquanto este busca minimizar sua taxa de erro. Ao longo

do treinamento, espera-se que o Gerador aprenda representações cada vez mais fiéis da

distribuição dos dados, resultando na geração de amostras sintéticas visual e estatisti-

camente coerentes com o conjunto original. (IMRAN; TERZOPOULOS, 2021) utilizou

uma arquitetura de rede que incorpora um conjunto de discriminadores em uma rede

VAE-GAN, usando conjuntos de dados dos domı́nios de visão computacional e imagens

médicas, para gerar novas imagens realistas de dados médicos. (BARILE et al., 2021)

demonstra a capacidade de GAN’s para Data Augmentation em tarefas de classificação

de Esclerose Múltipla.
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Figura 2.2: Estrutura padrão de uma GAN. Adaptado de Aggarwal, Mittal e Battineni
(2021)
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3 Materiais e Métodos

3.1 Base de dados

O artigo de Guarnera et al. (2025) apresenta o MSLesSeg, um novo banco de dados de

acesso público projetado para avançar na pesquisa de segmentação de lesões de Escle-

rose Múltipla (EM). O conjunto de dados contém 115 exames de ressonância magnética

(RM) de 75 pacientes, incluindo sequências T1, T2 e FLAIR, além de dados cĺınicos com-

plementares. As imagens foram adquiridas em diferentes scanners com intensidades de

campo de 1.5 e 3 Tesla. Após o pré-processamento, que converteu os arquivos do formato

DICOM original, todas as sequências de imagem e as máscaras de segmentação foram

disponibilizadas no formato NIFTI.

Um protocolo de anotação manual, validado por especialistas, foi utilizado para

gerar máscaras de segmentação das lesões, estabelecendo um conjunto de dados de re-

ferência confiável para avaliação de algoritmos. O dataset foi dividido em conjuntos de

treinamento e teste. O conjunto de treinamento é composto por 53 pacientes e o de teste

por 22 pacientes. O objetivo é fornecer um recurso para o desenvolvimento e a avaliação

comparativa (benchmarking) de novas soluções de segmentação automática baseadas em

Inteligência Artificial.

A máscara atua sobre a MRI, classificando cada pixel como pertencente ou não

à região de interesse (lesão). A Figura 3.1 mostra um recorte axial de uma das res-

sonâncias presentes no dataset, exibindo a anotação pixel a pixel feita pelos especialistas

e a sobreposição entre a máscara e as lesões.

Na etapa de pré-processamento, optou-se pela decomposição dos volumes 3D em

cortes 2D axiais. Tal estratégia visa mitigar a alta demanda por recursos computacionais

associada a arquiteturas tridimensionais, bem como reduzir a complexidade na śıntese de

estruturas anatômicas, facilitando a convergência da rede generativa. Em contrapartida,

ao não utilizar de um processamento volumétrico completo, o método possui a limitação

intŕınseca de não preservar a continuidade espacial entre fatias adjacentes (coerência inter-
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Figura 3.1: Exemplo de sobreposição de máscara e imagem de um corte no eixo z de um
paciente com lesões de Esclerose Múltipla identificadas.

slice), priorizando a qualidade da śıntese intra-slice em detrimento da consistência global

do eixo z.

Também optou-se por utilizar a forma de aquisição em T2, devido a um equiĺıbrio

de quantidade de imagens presentes no dataset e a capacidade de fornecer ao modelo

informações robustas sobre as lesões.

Nesta etapa, também foram exclúıdas imagens com forte dependência do eixo

y, que correspondem a cerca de 17% da base de dados original, uma vez que, como

demonstrado na Figura 3.2, estas apresentam posicionamentos oculares ou recortes ce-

rebrais substancialmente distintos do padrão predominante no conjunto de dados. Tais

variações introduzem discrepâncias anatômicas relevantes que, na ausência de informações

volumétricas tridimensionais, podem comprometer significativamente a capacidade de ge-

neralização do modelo generativo.

3.2 Ambiente computacional

No estágio de pré-processamento dos dados, empregaram-se as bibliotecas NiBabel e

NumPy para a leitura e manipulação dos arquivos no formato NIFTI, possibilitando a
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Figura 3.2: Exemplo de imagem fortemente dependente da posição ao longo do eixo y, na
qual a ausência de informação espacial volumétrica pode levar o modelo a interpretações
amb́ıguas, resultando em falhas de generalização ou colapso do aprendizado
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extração e a conversão de cortes bidimensionais em imagens PNG. Para todas as instâncias

do conjunto, selecionou-se o corte central no eixo z, tanto para as imagens quanto para

as máscaras, as quais também foram convertidas para o formato PNG.

O desenvolvimento dos modelos foi conduzido utilizando as linguagens Python

(versão 3.9.12) e Triton (versão 3.2.0), em conjunto com as bibliotecas PyTorch (versão

2.6) e MONAI (versão 2.4). Os experimentos foram realizados em um ambiente compu-

tacional com uma CPU Intel I7-11500 com 16 núcleos e uma GPU V100 com 32GB de

VRAM.

3.3 Modelo de segmentação

Nos últimos anos, diversas arquiteturas de redes neurais têm sido investigadas para tarefas

de segmentação de imagens médicas, impulsionadas pela necessidade de diagnósticos au-

tomatizados precisos e análises quantitativas de estruturas anatômicas. Nesse cenário, as

abordagens derivadas da U-Net, uma rede convolucional baseada no paradigma encoder-

decoder introduzida por Ronneberger, Fischer e Brox (2015), consolidaram-se como o

estado da arte. Trabalhos como os de Pinto et al. (2024) e Alom et al. (2018) evidenciam

a eficácia dessa topologia na segmentação de imagens médicas em variados subdomı́nios.

Neste trabalho, adotou-se a arquitetura SegResNet, proposta por Myronenko

(2018). Trata-se de uma rede encoder-decoder otimizada para segmentação de alto de-

sempenho, que integra os prinćıpios das Redes Residuais (ResNets). Diferentemente da

U-Net convencional, a SegResNet estrutura seus estágios de codificação e decodificação

através de blocos residuais (residual blocks). Essa abordagem beneficia-se das conexões

de atalho internas em cada bloco, facilitando o fluxo de gradientes durante o treinamento

e viabilizando a construção de redes mais profundas sem a degradação de desempenho

t́ıpica de modelos convolucionais extensos.

Adicionalmente, a SegResNet emprega a Normalização de Grupo (Group Nor-

malization) em detrimento da Normalização de Lote (Batch Normalization). Essa é uma

escolha estratégica para a segmentação médica 3D, onde o tamanho do lote (batch size) é

frequentemente restringido pela memória dispońıvel na GPU. As conexões de salto (skip

connections) entre o codificador e o decodificador são preservadas, garantindo a retenção
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de detalhes espaciais e combinando a robustez na extração de caracteŕısticas da ResNet

com a precisão de localização essencial para o delineamento de estruturas anatômicas

complexas. A Tabela 3.3 mostra a configuração utilizada para o modelo e uma breve

explicação de cada parâmetro.

Parâmetro Valor Descrição
spatial dims 2 Dimensão espacial dos volumes (2D)
in channels 1 Número de canais da entrada (Escala de cinza)
out channels 2 Número de classes de sáıda (Lesão + Fundo)
init filters 56 Número de filtros na primeira camada de convolução
dropout prob 0,2 Probabilidade de dropout

Tabela 3.1: Configuração do modelo de segmentação através da biblioteca MONAI.

3.3.1 Aumento de dados clássico

Considerando a elevada variabilidade anatômica interpaciente e a limitada disponibilidade

de anotações densas pixel -a-pixel, foi implementado um pipeline clássico de aumento de

dados estocástico (data augmentation), aplicado dinamicamente durante o treinamento.

Inicialmente, as imagens passam por um processo de normalização de intensidade, no qual

os valores dos voxels são reescalonados para o intervalo [0, 1], com aplicação de clipping

baseado em percentis para reduzir a influência de valores extremos.

Para mitigar o severo desequiĺıbrio entre regiões lesionadas e tecido saudável,

adotou-se uma estratégia de amostragem balanceada por patches. Foram extráıdos patches

bidimensionais de dimensão 128 × 128, utilizando-se uma razão de amostragem de 7:1

entre centros localizados em regiões de lesão (foreground) e regiões de fundo (background),

favorecendo a apresentação de exemplos informativos ao modelo durante o treinamento.

Adicionalmente, aplicaram-se transformações geométricas aleatórias com o obje-

tivo de aumentar a invariância espacial do modelo. Essas transformações incluem rotações

discretas de múltiplos de 90 graus, espelhamentos horizontais e verticais, bem como trans-

formações afins cont́ınuas (como rotação, translação e escala) aplicadas com probabilidade

de 0,3. Por fim, foram introduzidas perturbações fotométricas para simular variações

de aquisição, incluindo a injeção de rúıdo Gaussiano com média zero e desvio padrão

σ = 0,01, além de variações aleatórias de intensidade e escala de brilho.
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3.3.2 Formulação da Função de Perda

O treinamento do modelo foi conduzido por meio da minimização de uma função de

perda h́ıbrida, denotada por Ltotal, projetada especificamente para lidar com o severo

desequiĺıbrio de classes caracteŕıstico da segmentação de lesões pequenas em imagens

de Ressonância Magnética. Essa função combina a perda Dice, senśıvel à sobreposição

espacial, com a perda Focal, que enfatiza exemplos de dif́ıcil classificação. Formalmente,

a função de perda total é definida como:

Ltotal(y, ŷ) = LDice(y, ŷ) + LFocal(y, ŷ). (3.1)

Perda Dice (LDice) Na tarefa de segmentação, o objetivo central consiste em maxi-

mizar a sobreposição entre o mapa de predição P produzido pelo modelo e a máscara

de referência G (ground truth). Para essa finalidade, adotou-se como métrica principal o

Coeficiente de Dice, originalmente proposto em Dice (1945) e posteriormente consolidado

no contexto de segmentação de lesões médicas em Zijdenbos et al. (1994). Essa métrica

quantifica a similaridade entre dois conjuntos de pixels, sendo definida como:

Dice(P,G) =
2 · |P ∩G|
|P |+ |G|

,

onde |P | representa o número de pixels classificados como pertencentes à classe positiva

pelo modelo, |G| corresponde ao número de pixels positivos na máscara verdadeira, e

|P ∩G| denota a interseção entre ambos, isto é, os pixels corretamente segmentados.

Para viabilizar o uso do Coeficiente de Dice como função de perda no treinamento

de redes neurais profundas, empregou-se uma formulação cont́ınua e diferenciável. Seja

pi ∈ [0, 1] a probabilidade predita para o pixel i e gi ∈ {0, 1} o valor correspondente na

máscara de referência. O Dice suavizado é então expresso por:

Dice(P,G) =
2
∑N

i=1 pigi + ϵ∑N
i=1 pi +

∑N
i=1 gi + ϵ

,

em que N denota o número total de pixels da imagem e ϵ é um termo de regularização

introduzido para evitar instabilidades numéricas decorrentes de divisões por zero.
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Como o processo de treinamento visa à minimização de uma função objetivo, a

perda Dice é definida como o complemento do coeficiente de similaridade, isto é:

LDice(P,G) = 1−Dice(P,G).

Dessa forma, valores de perda próximos de zero indicam elevada sobreposição en-

tre predição e máscara verdadeira, enquanto valores mais elevados refletem discrepâncias

significativas entre ambas.

Perda Focal (LFocal) Com o objetivo de lidar explicitamente com o desequiĺıbrio de

classes e reduzir a influência de exemplos facilmente classificados, foi incorporada à função

de perda a perda Focal. Essa abordagem atribui maior peso aos exemplos de dif́ıcil clas-

sificação (hard examples), atenuando a contribuição de pixels corretamente classificados

com alta confiança. A formulação empregada inclui um fator de ponderação de classe α,

calculado dinamicamente a partir da razão entre o número de pixels negativos e positivos

no conjunto de treinamento, wpos = Nneg/Npos, bem como um parâmetro de foco fixado

em γ = 2,0. A perda Focal é definida como:

LFocal = −α(1− ŷt)
γ log(ŷt), (3.2)

onde ŷt representa a probabilidade predita associada à classe verdadeira do pixel em

análise.

3.4 Geração artificial de imagens

A abordagem proposta para geração artificial de imagens baseia-se na combinação de um

gerador condicional do tipo ResNet, com o objetivo de sintetizar imagens de Ressonância

Magnética (MRI) a partir de mapas de segmentação de lesões. O pipeline é formulado

como um modelo de image-to-image translation, no qual a entrada consiste em um mapa

semântico binário que codifica a presença e a localização espacial das lesões, enquanto

a sáıda corresponde a uma fatia de MRI sintética, apresentando contraste e texturas

coerentes com a anatomia condicionada.
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Essa formulação permite controlar explicitamente a distribuição espacial das

lesões geradas, ao mesmo tempo em que preserva caracteŕısticas anatômicas realistas,

tornando o método particularmente adequado para aplicações de aumento de dados em

tarefas de segmentação supervisionada.

3.4.1 Variational Autoencoder

Para a modelagem generativa das máscaras binárias de lesões e o aprendizado de sua

distribuição subjacente, foi empregado um Variational Autoencoder (VAE) de natureza

convolucional. O modelo é composto por duas sub-redes principais: um codificador proba-

biĺıstico, também denominado Inference Network, que aproxima a distribuição posterior

qϕ(z|x), e um decodificador gerador responsável por modelar a distribuição condicional

pθ(x|z).

A rede codificadora recebe como entrada uma máscara binária x ∈ RH×W×C e a

processa por meio de uma sequência hierárquica de blocos convolucionais. Em contraste

com abordagens baseadas em operações de pooling determińısticas, optou-se pelo uso

de convoluções estratificadas (strided convolutions) com stride igual a 2, permitindo a

redução progressiva da resolução espacial de forma aprend́ıvel. Cada bloco convolucional

é composto por uma convolução 2D com kernel 3× 3 e padding unitário, seguida de uma

camada de Batch Normalization, responsável por estabilizar a distribuição interna das

ativações, e por uma função de ativação LeakyReLU com coeficiente α = 0,2, adotada

para mitigar o problema conhecido como dying ReLU.

Ao final do processo de codificação, o mapa de caracteŕısticas é linearizado e

projetado em duas camadas densas paralelas, responsáveis por estimar os parâmetros da

distribuição latente: o vetor de médias µ e o vetor de log-variâncias log(σ2). O espaço

latente z é modelado como uma distribuição Gaussiana multivariada, o que permite uma

representação cont́ınua e regularizada das máscaras de entrada.

Para possibilitar a retropropagação do erro através do processo estocástico de

amostragem do espaço latente, foi empregado o truque de reparametrização (reparamete-

rization trick). Considerando um rúıdo auxiliar ϵ amostrado de uma distribuição normal

padrão N(0, I), a variável latente é obtida segundo a seguinte expressão:
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z = µ+ σ ⊙ ϵ. (3.3)

O decodificador realiza o mapeamento inverso, projetando o vetor latente z de

volta para uma representação espacial de caracteŕısticas profundas e, em seguida, apli-

cando uma sequência de convoluções transpostas (transposed convolutions) para recuperar

gradualmente a resolução original da imagem. A arquitetura do decodificador espelha a

do codificador, fazendo uso de Batch Normalization e funções de ativação LeakyReLU. A

camada final aplica uma convolução transposta que projeta as caracteŕısticas aprendidas

para o número de canais original, produzindo logits não normalizados, os quais represen-

tam os parâmetros de uma distribuição de Bernoulli associada a cada pixel da máscara

reconstrúıda.

3.4.2 Otimização Variacional e Termos de Regularização

O processo de treinamento do modelo generativo foi formulado como um problema de

maximização do limite inferior variacional da log-verossimilhança dos dados, conhecido

como Evidence Lower Bound (ELBO). Nesse contexto, a função objetivo busca equilibrar a

fidelidade de reconstrução das amostras observadas com a regularização do espaço latente,

garantindo propriedades desejáveis de generalização e amostragem. A função de perda

total L é composta por um termo de reconstrução, um termo de divergência de Kullback–

Leibler e um termo adicional de regularização baseado em conhecimento de domı́nio,

conforme definido a seguir:

L(x, ϕ, θ) = Lrec + β · LKL + λarea · Larea. (3.4)

O termo de reconstrução Lrec quantifica o grau de similaridade entre a amostra

gerada pelo decodificador e a entrada original. Considerando que os dados de entrada

são máscaras binárias, a sáıda do modelo foi interpretada como os parâmetros de uma

distribuição de Bernoulli multivariada, sendo a perda de reconstrução calculada por meio

da Binary Cross-Entropy (BCE) aplicada aos logits produzidos pelo decodificador. For-

malmente, esse termo é definido como:



3.4 Geração artificial de imagens 30

Lrec = −
N∑
i=1

[xi log(σ(yi)) + (1− xi) log(1− σ(yi))] , (3.5)

onde σ(·) denota a função sigmoide, yi corresponde aos logits de sáıda do decodificador e

N representa o número total de pixels da máscara.

O termo de divergência de Kullback–Leibler LKL atua como um mecanismo de

regularização do espaço latente, forçando a distribuição posterior aproximada qϕ(z|x) a

se aproximar de uma distribuição a priori Gaussiana isotrópica N(0, I). No entanto, em

arquiteturas variacionais profundas, é comum a ocorrência do fenômeno conhecido como

posterior collapse, no qual o decodificador passa a ignorar o código latente e a divergência

KL tende prematuramente a zero. Para mitigar esse problema, foi empregada a técnica

de Free Bits, que impõe um limite inferior λfree à contribuição da divergência KL em cada

dimensão latente j. Assim, o termo é definido como:

LKL =
D∑
j=1

max (DKL(qϕ(zj|x) || p(zj)), λfree) , (3.6)

garantindo que cada dimensão do vetor latente retenha uma quantidade mı́nima de in-

formação, expressa em nats, e incentivando o uso efetivo de todo o espaço latente.

Além dos termos clássicos do ELBO, foi incorporada uma regularização adicio-

nal baseada em conhecimento de domı́nio, representada pelo termo Larea. Esse termo

visa evitar a geração de máscaras degeneradas, como mapas completamente vazios ou

excessivamente preenchidos, penalizando desvios em relação a uma fração de área alvo

previamente definida. A penalização é calculada por meio da norma L1 entre a média das

probabilidades previstas e o valor de referência estabelecido, atuando como um mecanismo

de controle estat́ıstico da extensão espacial das lesões sintetizadas.

3.4.3 Estratégia de Treinamento

A otimização dos parâmetros do modelo foi realizada utilizando o algoritmo AdamW, que

combina momentos adaptativos de primeira e segunda ordem com um termo expĺıcito

de weight decay, promovendo regularização L2 mais eficaz em redes profundas. Com o

objetivo de aumentar a estabilidade do treinamento e favorecer a convergência do modelo
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variacional, duas estratégias adicionais foram adotadas.

A primeira consiste no uso de β-scheduling, também conhecido como annealing

do termo KL. Nessa estratégia, o coeficiente β associado à divergência KL é inicialmente

definido como zero e incrementado de forma linear até o valor unitário ao longo das épocas

iniciais de treinamento. Esse procedimento permite que o modelo priorize a aprendizagem

da reconstrução dos dados nas fases iniciais, antes de ser progressivamente forçado a

estruturar o espaço latente de acordo com a distribuição a priori.

A segunda estratégia envolve a aplicação de gradient norm clipping, na qual a

norma dos gradientes é limitada a um valor máximo pré-definido durante a retropro-

pagação. Essa técnica reduz o risco de explosão de gradientes, um problema recorrente

em arquiteturas gerativas profundas, contribuindo para maior estabilidade numérica ao

longo do processo de otimização.

3.5 Modelo Generativo Adversarial

Para a tarefa de tradução imagem-a-imagem, na qual mapas de segmentação binários x

são mapeados para imagens sintéticas de Ressonância Magnética y, foi empregada uma

Rede Generativa Adversarial Condicional (Conditional Generative Adversarial Network –

cGAN). Essa abordagem é formulada como um jogo adversarial de soma zero entre dois

modelos: um gerador G, responsável por sintetizar imagens que sigam a distribuição dos

dados reais condicionadas às máscaras de entrada, e um discriminador D, treinado para

distinguir entre pares reais (x, y) e pares sintéticos (x,G(x)).

O gerador adota uma arquitetura baseada em ResNet, organizada em três estágios

principais: codificação, transformação e decodificação. No estágio de codificação, a re-

solução espacial da entrada é progressivamente reduzida por meio de convoluções com

stride igual a 2, seguidas de Normalização de Instância (Instance Normalization) e funções

de ativação ReLU. O núcleo da rede é composto por nove blocos residuais em sequência,

os quais permitem o aprendizado de dependências globais profundas sem degradação do

gradiente, favorecendo a estabilidade do treinamento. O estágio de decodificação em-

prega convoluções transpostas para restaurar a resolução original da imagem, fixada em

256 × 256, sendo a camada final seguida por uma função de ativação Tanh, responsável
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por mapear os valores de sáıda para o intervalo [−1, 1]. Com o objetivo de estabilizar o

processo de inferência e reduzir oscilações durante o treinamento adversarial, foi aplicada

a técnica de Média Móvel Exponencial (Exponential Moving Average – EMA) aos pesos

do gerador, utilizando um fator de decaimento µ = 0,999.

O discriminador emprega uma arquitetura multiescala, composta por três discri-

minadores estruturalmente idênticos que operam sobre diferentes resoluções da imagem de

entrada, correspondentes à resolução original, à metade e a um quarto da resolução origi-

nal. Cada um desses discriminadores segue o paradigma PatchGAN, no qual regiões locais

da imagem são classificadas como reais ou sintéticas, incentivando a coerência de texturas

e detalhes de alta frequência. Para garantir a estabilidade do treinamento adversarial e

mitigar problemas como colapso de modo, todas as camadas convolucionais do discrimi-

nador foram regularizadas por meio de Normalização Espectral (Spectral Normalization),

assegurando o controle da constante de Lipschitz da função discriminadora.

3.5.1 Função Objetivo Composta

A otimização do modelo adversarial é conduzida por uma função de perda composta,

que combina o objetivo adversarial com termos adicionais de fidelidade de reconstrução e

coerência perceptual. A função de perda total associada ao gerador é definida como:

Ltotal = λadvLadv + λcharLchar + λpercLV GG + λfmLFM . (3.7)

O termo adversarial Ladv foi formulado a partir da Hinge Loss, em substituição à

entropia cruzada tradicional, uma vez que essa formulação penaliza apenas amostras que

violam a margem de decisão, resultando em gradientes mais estáveis e robustos durante

o treinamento. A função de perda do discriminador é dada por:

LD = E(x,y) [max(0, 1−D(x, y))] + Ex [max(0, 1 +D(x,G(x)))] , (3.8)

enquanto a perda adversarial associada ao gerador é definida como:
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LG = −Ex [D(x,G(x))] . (3.9)

Para garantir fidelidade no ńıvel de pixel, foi inclúıda a Perda de Charbonnier

Lchar, uma variante suavizada e diferenciável da norma ℓ1, reconhecida por sua robustez

a outliers e por evitar instabilidades numéricas em regiões próximas de zero. Esse termo

é definido como:

Lchar(G) = E(x,y)

[√
∥y −G(x)∥2 + ϵ2

]
, (3.10)

onde ϵ = 10−3 é um parâmetro de suavização.

Adicionalmente, foram incorporados termos de perda perceptual e de feature

matching com o objetivo de melhorar a qualidade visual das imagens geradas e redu-

zir o efeito de borramento associado a perdas puramente pixel -a-pixel. A Perda Percep-

tual LV GG é calculada como a distância L1 entre mapas de caracteŕısticas extráıdos de

diferentes camadas de uma rede VGG-19 pré-treinada no conjunto ImageNet. Comple-

mentarmente, a Perda de Feature Matching LFM minimiza a discrepância estat́ıstica entre

as ativações intermediárias do discriminador para imagens reais e sintéticas, forçando o

gerador a produzir estruturas cujas estat́ısticas sejam consistentes com as observadas nos

dados reais em múltiplas escalas.

A Tabela 3.5.1 apresenta os pesos (hiperparâmetros λ) utilizados para ponderar a

contribuição de cada componente na função de perda total da Rede Generativa Adversarial

(GAN). Estes valores foram definidos empiricamente para balancear a qualidade visual,

a consistência estrutural e a estabilidade do treinamento.

Componente da Perda Śımbolo Peso
Reconstrução (L1/Charbonnier) λchar 20.0
Feature Matching λfm 5.0
Adversarial λadv 5.0
Perceptual (VGG) λperc 1.0

Tabela 3.2: Pesos utilizados para as funções de perda do modelo Generativo Adversarial



3.5 Modelo Generativo Adversarial 34

3.5.2 Detalhes de Implementação

O treinamento do modelo foi conduzido utilizando o otimizador Adam sob a regra de

atualização em duas escalas de tempo (Two-Time-Scale Update Rule – TTUR), adotando-

se uma taxa de aprendizado de 1×10−4 para o gerador e de 2×10−4 para o discriminador.

Para reduzir o consumo de memória e acelerar o treinamento, foi empregada precisão

mista automática (Automatic Mixed Precision). O aumento de dados aplicado durante o

treinamento incluiu transformações geométricas, como rotações, espelhamentos e recortes,

bem como perturbações não lineares de intensidade, aplicadas exclusivamente às imagens

reais com o objetivo de aumentar a robustez do modelo frente a variações de contraste e

condições de aquisição.
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4 Resultados

Esse caṕıtulo apresenta os resultados obtidos para cada um dos modelos que compõem

o pipeline, bem como o modelo de segmentação que irá ser utilizado para verificação do

impacto da metodologia de aumento de dados proposta no treinamento desse modelo.

4.1 Variational Autoencoder

O modelo foi treinado por 600 épocas,batch size utilizado foi 4. As Figuras 4.1, 4.2 e

4.3 mostram as perdas associadas ao conjunto de treino fornecido ao modelo. O melhor

modelo contudo é definido pela menor loss em relação ao conjunto de validação, devido

a possibilidade de overfitting em relação ao conjunto de treino dispońıvel, isto é, a não

generalização em relação a outras posśıveis entradas.

Figura 4.1: Valores da função de perda total no conjunto de treino.

Os resultados em relação ao conjunto de validação presente nas Figuras 4.4, 4.5 e

4.6 demonstram esse comportamento, visto que após certa época, mesmo com a redução

da perda dentro do conjunto de treino há um aumento dentro do conjunto de validação,
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Figura 4.2: Valores da função de perda de reconstrução no conjunto de treino.

Figura 4.3: Valores da função de perda kl de reconstrução no conjunto de treino.

evidenciando que a melhora em relação ao conjunto de treino se deve a um ajuste excessivo

em relação a esses dados.

Com o modelo do VAE foi posśıvel gerar máscaras falsas que se aproximem em

forma e distribuição espacial das máscaras reais feitas pelos especialistas, a Figura 4.7

mostra três máscaras geradas pelo método proposto, que poderiam servir de entrada para

a inferência da Rede Generativa.



4.2 GAN 37

Figura 4.4: Valores da função de perda total no conjunto de validação.

Figura 4.5: Valores da função de perda de reconstrução no conjunto de validação.

4.2 GAN

As Figuras 4.8 e 4.9 apresentam, respectivamente, a evolução das funções de perda total

do Gerador e do Discriminador ao longo das épocas. Observa-se uma tendência con-

sistente de minimização na perda do Gerador, evidenciando sua capacidade progressiva

de sintetizar amostras verosśımeis, indistingúıveis das reais. Simultaneamente, a esta-
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Figura 4.6: Valores da função de perda de reconstrução no conjunto de validação

Figura 4.7: Exemplo de máscaras falsas geradas pelo Variational Autoencoder

bilidade observada na perda do Discriminador indica que o modelo adversário mantém

sua robustez, não sendo superado trivialmente. A partir da época 170, o sistema exibe

um comportamento de convergência, sugerindo que o treinamento atingiu um ponto de

estabilidade competitiva entre as redes.

A Figura 4.10 demonstra a comparação da textura cerebral criada pela GAN com

a respectiva imagem real em relação a uma mesma máscara. Já a figura demonstra um

conjunto de texturas produzidas a partir de máscaras artificiais de lesão, bem como a

sobreposição da lesão na textura.

Os resultados também demonstram que o Gerador tende a se confundir mais

quando as áreas de interesse são muito pequenas, produzindo alguns artefatos na textura

final, artefatos esses que podem ser identificados na imagem 4.12. O fenômeno observado
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Figura 4.8: Perda total do Gerador ao longo das épocas.

Figura 4.9: Perda total do discriminador ao longo das épocas.

é inerente à arquitetura de geração condicional proposta. Devido às operações de down-

sampling, a representação espacial de lesões diminutas tende a se dissipar nos mapas de

caracteŕısticas mais profundos. Consequentemente, o discriminador falha em penalizar

a ausência dessas estruturas, validando a textura gerada com base na coerência global

da imagem, uma vez que a contribuição da lesão para a distribuição estat́ıstica total é

marginal.
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Figura 4.10: Comparação de texturas reais do cérebro com texturas geradas pela Rede
Generativa Adversarial, sendo, a primeira linha a máscara (vinda diretamente do dataset
original), segunda linha a textura falsa e a terceira o corte real.

Figura 4.11: Comparação de textura gerada a partir de máscaras falsas produzidas através
do Variational Autoencoder.

4.3 Modelo de segmentação

O modelo de segmentação foi treinado utilizando 2600 épocas de treinamento, com um

batch size de 32, onde a cada 65 épocas foi executada uma etapa de validação. O alto

número de épocas foi utilizado para compensar o batch size menor, visto limitações na

VRAM da GPU. Os resultados do modelo treinado em cima da base de dados padrão

estão apresentados na figura 4.13, esses resultados demonstram que o treinamento com os

dados previamente dispońıveis demonstram já uma capacidade de generalização próxima

do esperado para tarefas de segmentação de Esclerose Múltipla, como descrito por (COM-
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Figura 4.12: Imagens com artefatos visuais devido ao pequeno tamanho das lesões contidas
na máscara de condicionamento

MOWICK et al., 2018)

A incorporação de imagens sintéticas geradas pela Rede Generativa resultou em

um incremento considerável na métrica Dice final, conforme evidenciado no gráfico da

Figura 4.16. Outra métrica relevante a ser avaliada é o número de lesões falsas marcadas

na imagem, que seria a precisão(ou precision), a Tabela 4.1 mostra o resultado geral dessa

métrica para cada modelo, bem como o resultado separado por quartis. Ressalta-se que

a avaliação utilizou o mesmo conjunto de validação empregado no modelo treinado ape-

nas com o dataset original, garantindo a comparabilidade dos resultados. A Tabela 4.2

sumariza o desempenho obtido com diferentes volumes de data augmentation. O melhor

resultado foi alcançado com a adição de 750 imagens; volumes superiores não resultaram

em ganho de desempenho, sugerindo uma saturação no aprendizado. Isso ocorre, pri-

mordialmente, devido à persistência da dificuldade em segmentar lesões pequenas. Tal

limitação é ilustrada nos boxplots e análises gráficas das Figura 4.15, que evidenciam a

dificuldade de generalização do modelo para estruturas menores. Esse comportamento

corrobora os achados da Seção 4.2, onde observou-se que a incapacidade da GAN em

sintetizar fielmente lesões minúsculas impede que os dados artificiais contribuam para a

resolução deste problema espećıfico.

Além disso, avaliou-se também o custo computacional associado a inclusão de
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Figura 4.13: Métrica de Dice associadas ao modelo treinado com conjunto de dados padrão

Figura 4.14: Comparação entre diferentes modelos, onde o default é o treinado no dataset
padrão, um com 500 entradas extras e outro com 1000 entradas extras

novas imagens no dataset, a Tabela 4.3 demonstra que, embora o tempo de treinamento

não mude consideravelmente entre cada súıte de treinos, o custo de memória se expande

conforme aumenta-se o número de imagens presentes na base de treino.

O tempo de treinamento, como demonstrado na Tabela 4.3 não teve um aumento

significativo porque nesse trabalho optou-se por definir o critério de parada do treinamento
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Modelo Rúıdo Médio Global Rúıdo Q1 Rúıdo Q2 Rúıdo Q3 Rúıdo Q4
Padrão 23,44% 52,21% 27,91% 20,40% 11,83%
+500 22,68% 50,25% 28,38% 19,22% 10,86%
+750 21,41% 44,66% 26,11% 19,69% 11,11%
+1000 23,31% 50,33% 29,60% 21,44% 11,13%

Tabela 4.1: Precisão em relação as lesões demarcadas em porcentagem(Rúıdo), sendo a
taxa de lesões segmentadas que não existe nenhuma correspondencia na máscara real.

Modelo Dice Dice Global Médio Rúıdo Total Médio
Padrão 62,028% 80,85% 23,44%
+500 64,034% 82,14% 22,68%
+750 65,012% 82,51% 21,41%
+1000 64,038% 81,33% 23,31%

Tabela 4.2: Valores obtidos para o as principais métricas nas diferentes configurações de
treino

Figura 4.15: Boxplot da métrica de dice médio dos quartis do conjunto de validação,
avaliado no melhor modelo obtido

com base em um número fixo de iterações globais, em detrimento de um número fixo de

épocas completas. Dessa forma, a carga computacional total permaneceu constante, uma

vez que o número de atualizações de pesos da rede independe do tamanho total do conjunto

de dados.

O consumo de memória, por sua vez, comporta-se de maneira distinta em relação

à disponibilidade de dados. Observa-se que o aumento na alocação de recursos não ocorre
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Figura 4.16: Gráfico do dice médio de cada item no conjunto de validação separado por
quartis relacionados ao tamanho das lesões, gráfico avaliado no melhor modelo obtido

Modelo Tempo de Treinamento(s) Quantidade de VRAM alocada(GB)
Default 2342 28.567
+500 2358 29.293
+750 2374 29.567
+1000 2386 29.878

Tabela 4.3: Recursos computacionais necessários para execução de cada modelo

de forma proporcional à expansão da base de imagens, visto que o armazenamento dos

dados brutos não representa o fator preponderante no uso de VRAM. O custo principal

está associado à alocação de buffers para o cálculo de gradientes durante o processo de

backpropagation. A Figura 4.17 evidencia que os picos de utilização de VRAM não são

constantes, apresentando variabilidade conforme a etapa de treinamento. Ressalta-se que

a incorporação de volumes maiores de imagens sintéticas foi inviabilizada pela exaustão da

memória dispońıvel para o cache interno da biblioteca Pytorch, resultando na interrupção

do processo.
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Figura 4.17: Gráfico do PICO de uso de VRAM durante cada etapa do treinamento,
esse gráfico desconsidera o cache utilizado pelo Pytorch devido a alta volatilidade dessa
informação durante diversos momentos no treinamento
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5 Conclusão

O presente trabalho envolveu a implementação de um pipeline completo de data augmen-

tation para segmentação de texturas relacionadas a identificação de lesões no contexto da

Esclerose Múltipla. O primeiro passo envolveu a construção e utilização de um Variational

Autoencoder para capturar a representação de imagens de lesões mapeadas por especialis-

tas e converter essa representação em um espaço cont́ınuo e probabiĺıstico, sendo capaz de

gerar novas máscaras de lesões próximas as reais. A partir disso foi constrúıda uma Rede

Generativa Adversarial (GAN) que recebe como entrada uma máscara e é capaz de a par-

tir dessa entrada construir a textura cerebral correspondente. Os novos dados produzidos

pela GAN foram então utilizados no treinamento de um modelo de segmentação de lesões

de Esclerose Múltipla a fim de verificar a possibilidade de melhora na segmentação de um

conjunto de validação padrão com a utilização de dados produzidos artificialmente.

Dessa forma, diferentemente de trabalhos que avaliam modelos generativos ape-

nas sob o aspecto visual ou perceptual, este trabalho propõe um protocolo experimental

sistemático para investigar o impacto da inclusão de imagens sintéticas, geradas de forma

condicional, no desempenho de um modelo de segmentação de lesões de Esclerose Múltipla.

A contribuição reside na análise controlada do efeito da quantidade de dados sintéticos,

considerando tanto métricas de segmentação quanto o custo computacional associado.

Os diversos experimentos apresentados demonstraram a capacidade de genera-

lização dos modelos propostos. A inclusão de dados artificiais no treinamento, embora

aumentem o custo computacional do mesmo, aumentaram de maneira significativa a qua-

lidade das segmentações automáticas. No entanto, considerando que o foco deste trabalho

como sendo a análise do impacto de dados sintéticos em um cenário 2D, mais próximo de

aplicações com restrição computacional ou disponibilidade de dados 3D limitada, a com-

paração com a literatura, que majoritáriamente se concentra em segmentação volumétrica,

se torna restrita.
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5.1 Trabalhos futuros

Trabalhos futuros devem priorizar a mitigação das limitações inerentes à geração con-

dicional, especificamente no que tange à baixa capacidade de generalização do modelo

generativo em cenários com lesões de pequenas dimensões — um dos maiores desafios

na segmentação de Esclerose Múltipla. Uma estratégia promissora consiste na inclusão

de imagens de indiv́ıduos saudáveis (controles) ao conjunto de treinamento da GAN. Tal

abordagem visa refinar a representação de tecidos normais, auxiliando o modelo a discri-

minar melhor casos com baixa carga lesional e reduzindo a ocorrência de artefatos nas

imagens.

Outra possibilidade envolve a utilização de modelos Generativos baseados em

difusão, como modelos de Flow Matching, que são amplamente suportados pela literatura

moderna como mais simples de treinar em relação a Redes Generativas Adversariais,

embora dependam, em muitos casos, de uma quantidade mais ampla de dados.

Adicionalmente, deve-se investigar o potencial das Redes Generativas na mi-

tigação de outros desafios inerentes à Ressonância Magnética, notadamente a baixa ge-

neralização frente à variabilidade inter-scanner. Uma abordagem promissora envolve o

treinamento de modelos capazes de realizar a adaptação de domı́nio, sintetizando ima-

gens que mimetizem as caracteŕısticas de aquisição de equipamentos distintos da base

original.

Além disso, também deve-se buscar um pipeline que consiga se aproveitar da

informação volumétrica presente em grande parte das bases de dados. Permitindo assim, a

comparação direta com literatura moderna na área de Segmentação de Esclerose Múltipla.
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//esajournals.onlinelibrary.wiley.com/doi/10.2307/1932409⟩.

DOBSON, R.; GIOVANNONI, G. Multiple sclerosis – a review. European Journal of
Neurology, v. 26, n. 1, p. 27–40, 2019. Dispońıvel em: ⟨https://onlinelibrary.wiley.com/
doi/abs/10.1111/ene.13819⟩.

GABR, R. E. et al. Brain and lesion segmentation in multiple sclerosis using fully con-
volutional neural networks: A large-scale study. Mult. Scler., SAGE Publications, v. 26,
n. 10, p. 1217–1226, set. 2020.

https://linkinghub.elsevier.com/retrieve/pii/S2667096820300045
https://linkinghub.elsevier.com/retrieve/pii/S2667096820300045
https://arxiv.org/abs/1802.06955
https://arxiv.org/abs/1802.06955
https://linkinghub.elsevier.com/retrieve/pii/S0169260721001887
https://linkinghub.elsevier.com/retrieve/pii/S0169260721001887
https://doi.org/10.1016/S0140-6736(16)30959-X
https://linkinghub.elsevier.com/retrieve/pii/S2666956025000030
https://linkinghub.elsevier.com/retrieve/pii/S2666956025000030
http://www.nejm.org/doi/abs/10.1056/NEJMoa0907839
http://www.nejm.org/doi/abs/10.1056/NEJMoa0907839
https://www.nature.com/articles/s41598-018-31911-7
https://www.nature.com/articles/s41598-018-31911-7
http://www.nejm.org/doi/10.1056/NEJM200007063430107
http://www.nejm.org/doi/10.1056/NEJM200007063430107
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/1932409
https://esajournals.onlinelibrary.wiley.com/doi/10.2307/1932409
https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.13819
https://onlinelibrary.wiley.com/doi/abs/10.1111/ene.13819


BIBLIOGRAFIA 49

GUARNERA, F. et al. MSLesSeg: baseline and benchmarking of a new Multiple Sclerosis
Lesion Segmentation dataset. Scientific Data, v. 12, n. 1, p. 920, maio 2025. ISSN 2052-
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Dispońıvel em: ⟨https://doi.org/10.1007/978-981-15-6759-9 11⟩.

LECUN, Y. et al. Backpropagation Applied to Handwritten Zip Code Recognition. Neural
Computation, v. 1, n. 4, p. 541–551, dez. 1989. ISSN 0899-7667, 1530-888X. Dispońıvel
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