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Resumo

A Esclerose Multipla (EM) é uma doenga neurodegenerativa cuja avalia¢ao clinica depende
fundamentalmente da identificacao e quantificacao de lesoes em exames de Ressonancia
Magnética (RM). Embora a segmentacao automética baseada em Aprendizado Profundo
(Deep Learning) tenha alcancado o estado da arte, sua eficacia é frequentemente limi-
tada pela escassez de dados médicos anotados e pela complexidade da obtencao de novos
exemplos. Este trabalho propoe e avalia um pipeline de Data Augmentation generativo
para mitigar esse problema, investigando o impacto de imagens sintéticas na qualidade de
modelos de segmentagao. O método desenvolvido combina um Variational Autoencoder
(VAE) para a geracao probabilistica de mascaras de lesoes e uma Rede Generativa Ad-
versarial Condicional (CGAN) para a sintese de texturas de RM realistas a partir dessas
mascaras. As imagens geradas foram integradas ao treinamento de uma rede SegResNet
para a tarefa de segmentacao supervisionada. Os resultados demonstraram que a inclusao
de dados sintéticos promoveu um aumento significativo na métrica Dice em comparagao ao
uso exclusivo de dados reais. Observou-se que a adigao de 750 imagens sintéticas propor-
cionou o melhor ganho de qualidade na segmentacao, indicando saturacao do aprendizado
em volumes superiores devido a limitacoes na sintese de lesoes de pequenas dimensoes.
Conclui-se que o uso de modelos generativos adversariais é uma estratégia promissora
para enriquecer bases de dados médicas e aprimorar a generalizacao de diagndsticos au-
tomatizados.

Palavras-chave: Esclerose Multipla; Segmentacao Automatica; Data Augmentation;

GAN; Variational Autoencoder.



Abstract

Multiple Sclerosis (MS) is a neurodegenerative disease where clinical assessment relies fun-
damentally on the identification and quantification of lesions in Magnetic Resonance Ima-
ging (MRI). Although Deep Learning-based automated segmentation has reached state-
of-the-art status, its effectiveness is often limited by the scarcity of annotated medical
data and the complexity of acquiring new samples. This work proposes and evaluates a
generative Data Augmentation pipeline to mitigate this issue, investigating the impact of
synthetic images on segmentation model quality. The developed methodology combines
a Variational Autoencoder (VAE) for the probabilistic generation of lesion masks and
a Conditional Generative Adversarial Network (CGAN) for synthesizing realistic MRI
textures from these masks. The generated images were integrated into the training of a
SegResNet network for the supervised segmentation task. Results showed that the inclu-
sion of synthetic data promoted a significant increase in the Dice metric compared to the
exclusive use of real data. It was observed that adding 750 synthetic images provided the
best performance gain, with learning saturation occurring at higher volumes due to limi-
tations in synthesizing small-dimension lesions. It is concluded that the use of generative
adversarial models is a promising strategy for enriching medical datasets and improving
the generalization of automated diagnoses.

Keywords: Multiple Sclerosis; Automated Segmentation; Data Augmentation; GAN;

Variational Autoencoder.
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1 Introducao

De acordo com a Organiza¢ao Mundial da Satide, a Esclerose Multipla (EM) é uma doenga
autoimune neurodegenerativa que afeta cerca de 1,8 milhoes de individuos globalmente
(WHO, 2025). A doenca é caracterizada por lesdes causadas pelo sistema imunolégico
a bainha de mielina, responsavel por auxiliar na propagacao de impulsos nervosos pelo
corpo.

O diagnostico da doenca é comumente estabelecido por meio da analise de imagens
de Ressonancia Magnética (Magnetic Resonance Imaging, MRI), especialmente quando as-
sociadas aos sintomas clinicos caracteristicos (BROWNLEE et al., 2017). A identificacao
e delimitacao das areas lesionadas no cérebro e na medula espinhal sao tradicionalmente
realizadas de forma manual por especialistas, utilizando ferramentas de segmentacao, o
que contribui nao apenas para o diagnostico, mas também para a avaliagao da progressao
da doenca e da eficacia dos tratamentos instituidos.

A segmentacao manual de imagens de Ressonancia Magnética é um processo de
notoéria complexidade, visto o elevado tempo demandado para sua realizacao e por estar su-
jeita a erros humanos, mesmo quando realizado por especialistas na tarefa. Nesse cenéario,
com o avanco de técnicas computacionais associadas ao processamento de imagens e visao
computacional, a segmentacao automatica de lesoes associadas a Esclerose Miultipla se
mostra uma ferramenta promissora no que tange o diagnéstico e avaliagao da progressao
da doencga e resposta do individuo as drogas que diminuem a degeneragao (LLADG et
al., 2012). Como demonstrado por Rosa et al. (2024), o uso de técnicas de aprendi-
zado profundo, especialmente aproveitando-se dos resultados de alta qualidade providos
por Redes Neurais Convolucionais (CNNs), permitiu avangos significativos nos algoritmos
para segmentacao automaética.

Contudo, para aumento da eficicia dos métodos de segmentacao automatica,
notoriamente aqueles que se baseiam em Aprendizado Profundo para seu funcionamento,
deve-se prover uma quantidade significativa de dados aos modelos, para obtencao de

métricas de qualidade satisfatorias. Entretanto, a obtencao desses dados é um processo
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arduo, devido a sensibilidade inerente as informacoes clinicas de pacientes acometidos pela
EM. Para contextos semelhantes, técnicas de Data Augmentation vém sendo aplicadas,
com o objetivo de utilizar métodos generativos para aumentar a disponibilidade dos dados
ja disponiveis.

O presente trabalho busca investigar o impacto de imagens geradas artificialmente
através de Redes Generativas Adversariais na qualidade de modelos de segmentagao de
imagens de Ressonancia Magnética de pacientes com Esclerose Miltipla. Para isso, foi
proposto um pipeline de geracao artificial composto por dois estagios. O primeiro uti-
liza um VAE(Variational Autoencoder) para geragao de mascaras bindrias de lesdes de
Esclerose Multipla que se assemelham as lesoes presentes em datasets reais. No segundo
estdgio, foi empregado uma cGAN (Conditional Generative Adversarial Network) para

sintese de texturas cerebrais sob o condicionamento de mascaras de lesoes.

1.1 Objetivos

Dada a relevancia dos estudos voltados ao entendimento da Esclerose Muiltipla, bem
como a elevada complexidade do processo de segmentacao manual das lesoes e a escassez
de bases de dados ptblicas de facil acesso, torna-se necessario investigar abordagens alter-
nativas. Nesse contexto, este trabalho tem como objetivo avaliar o impacto da inclusao
de imagens geradas artificialmente na qualidade de um modelo baseado na arquitetura
ResNet, adaptado para a segmentacao semantica de lesoes de Esclerose Multipla. Além

disso, esse trabalho tem como objetivos secundarios:

e Comparar métricas de precisdo (Dice) entre modelos treinados com bases puramente

reais versus bases hibridas (reais + sintéticas).

e Quantificar o overhead computacional introduzido pelo aumento do volume de da-

dos, analisando o tempo de convergéncia durante o treinamento.

e Mensurar a demanda de recursos de hardware (uso de VRAM e tempo desprendidos)

proporcional a inser¢ao gradual de volumes sintéticos no dataset.
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2 Fundamentos basicos

2.1 Sistema Imune

O sistema imune é uma organizacao de células e moléculas altamente especializadas em
combater infeccoes que acometem o organismo; ao combate dessas infeccoes é dado o nome
de resposta imune. Existem fundamentalmente duas principais formas de resposta imune
a antigenos invasores, denominadas Resposta Imune Inata e Resposta Imune Adquirida

(DELVES; ROITT, 2000).

2.1.1 Resposta Imune Inata

O sistema imune inato constitui a primeira linha de defesa do organismo contra agentes
patogénicos, atuando de forma rapida e inespecifica logo apds a transposicao das barreiras
fisicas e anatomicas. Esse sistema baseia-se em um repertorio limitado de receptores
de reconhecimento de padroes, capazes de identificar estruturas moleculares conservadas
compartilhadas por uma ampla gama de microrganismos invasores (TURVEY; BROIDE,
2010). Entre seus principais componentes estao células especializadas, como macréfagos e
neutréfilos, além de mediadores soliveis, incluindo citocinas, que coordenam e amplificam
a resposta inflamatoria inicial.

Além de sua atuacao direta na contencao de patdgenos, o sistema imune inato
desempenha papel fundamental na ativagao da resposta imune adaptativa, uma vez que,
apos a fagocitose, fragmentos antigénicos derivados dos invasores sao processados e apre-
sentados as células do sistema adaptativo, possibilitando o desenvolvimento de respostas

imunolégicas especificas.

2.1.2 Resposta Imune Adquirida

O sistema imune adquirido, por outro lado, produz uma resposta altamente especifica ao

patégeno invasor. Apods a apresentacao do antigeno por células do sistema imune inato,
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denominadas células apresentadoras de antigeno (APCs, do inglés Antigen-Presenting
Cells), os linfécitos B e T passam a atuar de forma coordenada na produgao de anticorpos
especificos capazes de reconhecer e neutralizar estruturas moleculares caracteristicas do
patogeno.

Nesse contexto, os linfécitos T desempenham papel central ao reconhecer comple-
xos formados por peptideos antigénicos associados as moléculas do Complexo Principal de
Histocompatibilidade (Major Histocompatibility Complex — MHC) expressas pelas APCs,
além de mediar mecanismos efetores direcionados a eliminacao do antigeno. Os linfécitos

T sao classicamente subdivididos em duas principais populagoes funcionais:

e CD4": células responsdveis pela coordenacao da resposta imune adquirida, ati-

vando outras células de defesa, como macréfagos e linfécitos T CD8*.

e CD8": células responsdveis pela eliminacao direta de células infectadas ou altera-
das, por meio do reconhecimento de antigenos apresentados por moléculas do MHC

classe 1.

2.2 Esclerose Multipla

Dobson e Giovannoni (2019) descrevem a Esclerose Miltipla como uma doenga autoimune
mediada por células T, caracterizada por inflamacao cronica do sistema nervoso central.
A patologia da EM envolve lesoes inflamatorias perivenulares que levam a desmielinizacao
e formagao de placas, predominantemente na substancia branca do cérebro e da medula
espinhal. A doenca manifesta-se quando o sistema imune, sobretudo por meio de linfécitos
T e B autorreativos, reconhece equivocadamente a bainha de mielina como um antigeno,
iniciando uma resposta imunoldgica patoldgica direcionada a esse tecido, sendo a bainha
de mielina uma membrana responsavel por otimizar a passagem de impulsos nervosos
pelas conexoes neurais. O ataque imunolégico contra a bainha de mielina gera placas
(ou escleroses) que dificultam a passagem dos impulsos nervosos pelas areas afetadas.
Embora a visao tradicional sugira uma doenca de duas fases, uma fase inflamatoria inicial
associada a forma remitente-recorrente e uma fase neurodegenerativa tardia associada as

formas progressivas, a eficacia de terapias direcionadas as células B desafia essa concepcao.



2.3 Redes Neurais 14

A EM ¢é considerada uma doenca que evolui ao longo de um espectro continuo, em que
inflamagao e neurodegeneragao coexistem desde os estégios iniciais. Cohen et al. (2010)
demonstram que os principais tratamentos para a doenca se concentram na reducao da
quantidade de surtos que produzem as lesoes, principalmente através de terapias injetaveis
como a Interferon Beta ou de medicacao oral como o Fingolimode, que vém se mostrando

ainda mais eficaz na contencao dos surtos da doenca.

2.3 Redes Neurais

Redes Neurais Artificiais (Redes Neuronais Artificiais do Portugués Europeu, ou Artificial
Neural Networks em Inglés) sao modelos computacionais inspirados no funcionamento
do sistema nervoso central de organismos bioldgicos, em especial do cérebro humano.
Esses modelos sao compostos por unidades matematicas interconectadas, denominadas
neuronios artificiais, capazes de receber sinais de entrada, processa-los por meio de com-
binagoes ponderadas seguidas da aplicacao de funcoes de ativacao, e produzir sinais de
saida. Quando organizados em camadas e conectados em grande nimero, esses neuronios
permitem que a rede aprenda representacoes complexas dos dados, viabilizando a re-
solugao de tarefas como classificacao, regressao, reconhecimento de padroes e tomada de
decisao.

As redes neurais podem ser organizadas segundo diferentes arquiteturas, que se
distinguem principalmente pela forma de conexao entre os neuronios, pela profundidade
do modelo e pelo tipo de dado que processam. Essa diversidade arquitetural possibilita
a aplicacao de redes neurais a uma ampla gama de problemas, desde dados estruturados
até imagens, sinais e sequéncias temporais. A escolha da arquitetura adequada esta
diretamente relacionada a natureza do problema, ao volume e a qualidade dos dados
disponiveis, bem como aos requisitos de desempenho e capacidade de generalizacao do
modelo.

Entre as arquiteturas mais conhecidas, destacam-se as Redes Neurais Convoluci-
onais (Convolutional Neural Networks, ou CNNs), introduzidas formalmente por LeCun
et al. (1989), que se tornaram amplamente utilizadas em tarefas de visdo computacional,

como classificagao, deteccao e segmentacao de imagens. As CNNs exploram operagoes
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de convolugao e compartilhamento de pesos, permitindo a extracao hierarquica de carac-
teristicas espaciais relevantes.

Outra classe importante de modelos s@o as Redes Neurais Recorrentes ( Recurrent
Neural Networks, ou RNNs), propostas por Rumelhart, Hinton e Williams (1986), proje-
tadas para o processamento de dados sequenciais e séries temporais. Essas redes possuem
conexoes recorrentes que permitem a incorporacao de informagoes de estados anteriores.
Variantes como as redes LSTM (Long Short-Term Memory) e GRU (Gated Recurrent
Unit) foram desenvolvidas para mitigar problemas relacionados ao desvanecimento e a
explosao do gradiente, ampliando a capacidade de modelar dependéncias de longo prazo.

Mais recentemente, arquiteturas baseadas no mecanismo de atencao, como os
Transformers, tém alcancado resultados expressivos, especialmente no processamento de
linguagem natural, devido a sua capacidade de modelar relagoes globais entre elementos de
uma sequéncia de forma paralela. Além dessas arquiteturas gerais, modelos especializados
como os Autoencoders e a U-Net sao amplamente empregados em tarefas de redugao
de dimensionalidade, aprendizado de representacoes latentes e segmentagao de imagens
médicas, respectivamente, sendo esta ultima particularmente relevante no contexto deste
trabalho. A escolha da arquitetura adequada esta diretamente relacionada a natureza do

problema, ao volume de dados disponiveis e aos requisitos de desempenho e generalizacao.

2.4 Segmentacao automatica

O diagnostico da Esclerose Multipla pode envolver diferentes abordagens clinicas e labo-
ratoriais; entretanto, exames de Ressonancia Magnética (RM) do encéfalo e da medula
espinhal, frequentemente associados ao uso de contraste a base de gadolinio, desempe-
nham papel central na identificacio de lesdes caracteristicas da doenca Omerhoca, Akkasg
e Icen (2018). Nesse contexto, a segmentacao das lesdes em imagens de RM constitui
uma etapa fundamental, nao apenas para o estabelecimento do diagnéstico, mas também
para o acompanhamento da progressao da doenca e para a avaliacao da resposta aos
tratamentos.

Mais recentemente, Gabr et al. (2020) apresentaram um método de segmentagao

automatica baseado em redes neurais convolucionais profundas, especificamente uma rede
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totalmente convolucional (Fully Convolutional Neural Network, ou FCNN), aplicado a seg-
mentacao de tecidos cerebrais e lesoes de Esclerose Multipla em um amplo conjunto de
dados de Ressonancia Magnética. Os resultados indicaram que a abordagem fundamen-
tada em Deep Learning alcancou elevada acuracia, com coeficientes de similaridade de
Dice superiores a 0,95 para tecidos cerebrais e em torno de 0,70 para lesoes, validando a

eficacia do método em cendrios multicéntricos.

2.5 Formato NIFTI

O formato Neuroimaging Informatics Technology Initiative (NIfTI) é amplamente empre-
gado no armazenamento e processamento de imagens médicas e neuroimagem, especial-
mente em estudos envolvendo Ressonancia Magnética. Arquivos no formato NIfTT (.nii
ou .nii.gz) permitem a representagao eficiente de dados volumétricos tridimensionais,
possibilitando a codificacao de informacoes espaciais provenientes de exames como Tomo-
grafia Computadorizada, Ressonancia Magnética e técnicas avangadas de neuroimagem
funcional e estrutural.

Uma das principais caracteristicas do formato NIfTT é a incorporacao de um
cabecalho estruturado que armazena metadados essenciais para a correta interpretacao
do volume de imagem. Esses metadados incluem informagoes sobre dimensoes do volume,
resolucao espacial dos vozels, orientacao no espaco fisico, tipo de dado armazenado, além
de matrizes de transformacao que relacionam o espaco do vozel ao sistema de coordenadas
do mundo real. Tais propriedades tornam o formato particularmente adequado para
analises quantitativas e comparagoes intersujeitos.

Além disso, o formato NIfTT oferece suporte nativo a representagao de imagens
4D, permitindo o armazenamento de séries temporais, como aquelas obtidas em estudos
de Ressonancia Magnética funcional (fMRI) ou sequéncias dinamicas. Essa flexibilidade
facilita a integragao do formato com ferramentas computacionais amplamente utilizadas
em neuroimagem, incluindo bibliotecas e softwares de andlise estatistica, visualizacao e
segmentacao automatica de estruturas anatomicas e lesoes.

Devido a sua padronizacao, simplicidade e ampla compatibilidade com diferen-

tes plataformas e linguagens de programacao, o formato NIfTT tornou-se um padrao em
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pesquisas em neuroimagem, sendo amplamente adotado em pipelines de processamento

automatico e em bases de dados publicas utilizadas para fins cientificos.

2.6 Formas de aquisicao

No contexto da Ressonancia Magnética (RM), existem diferentes formas de aquisi¢ao de
imagens, também denominadas sequéncias de aquisicao. Essas sequéncias correspondem
a diferentes configuragoes dos parametros fisicos do equipamento, como tempos de re-
peticao e eco, que resultam em variacoes no contraste entre os tecidos biolégicos. Dessa
forma, uma mesma estrutura anatomica pode apresentar intensidades de sinal distintas,
permitindo a énfase de caracteristicas especificas dos tecidos e de alteracoes patologicas.

No estudo da Esclerose Multipla, a utilizacao de multiplas sequéncias de RM é
fundamental, uma vez que diferentes tipos de lesoes e estagios da doenca sao melhor evi-
denciados por contrastes especificos. As sequéncias mais comumente empregadas nesse
contexto sao T1, T2 e FLAIR, cada uma fornecendo informacoes complementares rele-
vantes tanto para o diagnostico quanto para o acompanhamento da progressao da doenca.

A Tabela 2.1 apresenta uma comparacao entre essas sequéncias, destacando suas
principais caracteristicas e aplicacoes no contexto da Esclerose Multipla. Adicionalmente,
a Figura 2.1 ilustra um exemplo de um mesmo corte axial adquirido nas sequéncias T1,

T2 e FLAIR, evidenciando as diferencgas de contraste observadas entre elas.

Sequéncia | Principais caracteristicas | Aplicagao em EM
LCR escuro Visualizagao da anatomia
T1 . A ~ 2. ..
Boa defini¢ao anatomica Lesoes cronicas (com gadolinio)
T2 LCR claro Identificacao de lesoes
Alta sensibilidade a agua Destaca areas desmielinizantes
FLAIR Baseada em T2 Deteccao de lesoes periventriculares
Sinal do LCR suprimido Sequéncia mais usada na EM

Tabela 2.1: Comparagao entre as sequéncias de RM T1, T2 e FLAIR no contexto da
Esclerose Miultipla (EM).
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Comparagado T1, T2 e Flair: P2
FLAIR

Figura 2.1: Exemplo das diferentes formas de aquisicao de um paciente presente no dataset
de Esclerose Miiltipla utilizado nesse trabalho.

2.7 Geracao de imagens e Data augmentation

Técnicas de Data Augmentation consistem na aplicacao de transformagoes sistematicas e
controladas sobre os dados originais com o objetivo de ampliar artificialmente o conjunto
de treinamento. Essa estratégia visa aumentar a diversidade amostral, melhorar a ca-
pacidade de generalizacao dos modelos e reduzir o risco de overfitting, especialmente em
cenarios caracterizados pela escassez de dados rotulados. No contexto de imagens, tais
técnicas tradicionalmente envolvem transformacgoes geométricas e fotométricas relativa-
mente simples, como rotacoes, translacoes, inversoes, escalonamentos e recortes. Apesar
de sua simplicidade, essas abordagens continuam amplamente empregadas em trabalhos
recentes, em razao do baixo custo computacional e da facilidade de implementacao (CE-
TIN et al., 2025).

Com o avanco de métodos modernos de aprendizado de maquina, em particular
aqueles baseados em aprendizado profundo, modelos generativos passaram a desempe-
nhar um papel relevante no aumento artificial de dados. Diferentemente das abordagens
tradicionais, esses modelos sao capazes de aprender a distribuigao subjacente dos dados
de treinamento e sintetizar novas amostras com caracteristicas estatisticas semelhantes
as dos dados reais. Entre essas abordagens, destacam-se as Redes Generativas Adversa-
riais (Generative Adversarial Networks, on GANs), amplamente utilizadas na geragao de
imagens sintéticas em diversos dominios.

Conforme ilustrado na Figura 2.2, uma GAN é composta por dois modelos trei-
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nados simultaneamente: o Gerador e o Discriminador. O Gerador recebe como entrada
um vetor de ruido amostrado de um espago latente e tem como objetivo produzir amos-
tras sintéticas que se aproximem da distribuicao dos dados reais. O Discriminador, por
sua vez, atua como um classificador binario, geralmente implementado por meio de uma
rede neural convolucional, cuja funcao é distinguir entre amostras reais e aquelas geradas
artificialmente.

Esse arranjo estabelece um processo de otimizacao adversarial, formulado como
um jogo de soma zero, no qual o Gerador é treinado para maximizar a probabilidade
de enganar o Discriminador, enquanto este busca minimizar sua taxa de erro. Ao longo
do treinamento, espera-se que o Gerador aprenda representacoes cada vez mais fiéis da
distribuicao dos dados, resultando na geracao de amostras sintéticas visual e estatisti-
camente coerentes com o conjunto original. (IMRAN; TERZOPOULOS, 2021) utilizou
uma arquitetura de rede que incorpora um conjunto de discriminadores em uma rede
VAE-GAN, usando conjuntos de dados dos dominios de visao computacional e imagens
médicas, para gerar novas imagens realistas de dados médicos. (BARILE et al., 2021)
demonstra a capacidade de GAN’s para Data Augmentation em tarefas de classificacao

de Esclerose Multipla.
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Figura 2.2: Estrutura padrao de uma GAN.
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3 Materiais e Métodos

3.1 Base de dados

O artigo de Guarnera et al. (2025) apresenta o MSLesSeg, um novo banco de dados de
acesso publico projetado para avancar na pesquisa de segmentacao de lesoes de Escle-
rose Multipla (EM). O conjunto de dados contém 115 exames de ressonancia magnética
(RM) de 75 pacientes, incluindo sequéncias T'1, T2 e FLAIR, além de dados clinicos com-
plementares. As imagens foram adquiridas em diferentes scanners com intensidades de
campo de 1.5 e 3 Tesla. Apds o pré-processamento, que converteu os arquivos do formato
DICOM original, todas as sequéncias de imagem e as mascaras de segmentagao foram
disponibilizadas no formato NIFTI.

Um protocolo de anotacao manual, validado por especialistas, foi utilizado para
gerar mascaras de segmentacao das lesoes, estabelecendo um conjunto de dados de re-
feréncia confidvel para avaliagao de algoritmos. O dataset foi dividido em conjuntos de
treinamento e teste. O conjunto de treinamento é composto por 53 pacientes e o de teste
por 22 pacientes. O objetivo é fornecer um recurso para o desenvolvimento e a avaliagao
comparativa (benchmarking) de novas solugoes de segmentagao automatica baseadas em
Inteligéncia Artificial.

A mascara atua sobre a MRI, classificando cada pizel como pertencente ou nao
a regiao de interesse (lesdo). A Figura 3.1 mostra um recorte axial de uma das res-
sonancias presentes no dataset, exibindo a anotacao pizel a pizel feita pelos especialistas
e a sobreposicao entre a mascara e as lesoes.

Na etapa de pré-processamento, optou-se pela decomposicao dos volumes 3D em
cortes 2D axiais. Tal estratégia visa mitigar a alta demanda por recursos computacionais
associada a arquiteturas tridimensionais, bem como reduzir a complexidade na sintese de
estruturas anatomicas, facilitando a convergéncia da rede generativa. Em contrapartida,
ao nao utilizar de um processamento volumétrico completo, o método possui a limitacao

intrinseca de nao preservar a continuidade espacial entre fatias adjacentes (coeréncia inter-
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Figura 3.1: Exemplo de sobreposicao de mascara e imagem de um corte no eixo z de um
paciente com lesoes de Esclerose Muiltipla identificadas.

slice), priorizando a qualidade da sintese intra-slice em detrimento da consisténcia global
do eixo z.

Também optou-se por utilizar a forma de aquisicao em T2, devido a um equilibrio
de quantidade de imagens presentes no dataset e a capacidade de fornecer ao modelo
informagoes robustas sobre as lesoes.

Nesta etapa, também foram excluidas imagens com forte dependéncia do eixo
y, que correspondem a cerca de 17% da base de dados original, uma vez que, como
demonstrado na Figura 3.2, estas apresentam posicionamentos oculares ou recortes ce-
rebrais substancialmente distintos do padrao predominante no conjunto de dados. Tais
variacoes introduzem discrepancias anatomicas relevantes que, na auséncia de informacgoes
volumétricas tridimensionais, podem comprometer significativamente a capacidade de ge-

neralizacao do modelo generativo.

3.2 Ambiente computacional

No estagio de pré-processamento dos dados, empregaram-se as bibliotecas NiBabel e

NumPy para a leitura e manipulagao dos arquivos no formato NIFTI, possibilitando a
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Figura 3.2: Exemplo de imagem fortemente dependente da posi¢ao ao longo do eixo y, na
qual a auséncia de informacao espacial volumétrica pode levar o modelo a interpretagoes
ambiguas, resultando em falhas de generalizagao ou colapso do aprendizado
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extracao e a conversao de cortes bidimensionais em imagens PNG. Para todas as instancias
do conjunto, selecionou-se o corte central no eixo z, tanto para as imagens quanto para
as mascaras, as quais também foram convertidas para o formato PNG.

O desenvolvimento dos modelos foi conduzido utilizando as linguagens Python
(versao 3.9.12) e Triton (versdo 3.2.0), em conjunto com as bibliotecas PyTorch (versao
2.6) e MONAI (versao 2.4). Os experimentos foram realizados em um ambiente compu-
tacional com uma CPU Intel 17-11500 com 16 nticleos e uma GPU V100 com 32GB de
VRAM.

3.3 Modelo de segmentacao

Nos ultimos anos, diversas arquiteturas de redes neurais tém sido investigadas para tarefas
de segmentacao de imagens médicas, impulsionadas pela necessidade de diagnésticos au-
tomatizados precisos e andlises quantitativas de estruturas anatomicas. Nesse cenario, as
abordagens derivadas da U-Net, uma rede convolucional baseada no paradigma encoder-
decoder introduzida por Ronneberger, Fischer e Brox (2015), consolidaram-se como o
estado da arte. Trabalhos como os de Pinto et al. (2024) e Alom et al. (2018) evidenciam
a eficacia dessa topologia na segmentacao de imagens médicas em variados subdominios.

Neste trabalho, adotou-se a arquitetura SegResNet, proposta por Myronenko
(2018). Trata-se de uma rede encoder-decoder otimizada para segmentacao de alto de-
sempenho, que integra os principios das Redes Residuais (ResNets). Diferentemente da
U-Net convencional, a SegResNet estrutura seus estagios de codificacao e decodificacao
através de blocos residuais (residual blocks). Essa abordagem beneficia-se das conexdes
de atalho internas em cada bloco, facilitando o fluxo de gradientes durante o treinamento
e viabilizando a construcao de redes mais profundas sem a degradacao de desempenho
tipica de modelos convolucionais extensos.

Adicionalmente, a SegResNet emprega a Normalizagao de Grupo (Group Nor-
malization) em detrimento da Normalizagao de Lote (Batch Normalization). Essa é uma
escolha estratégica para a segmentagao médica 3D, onde o tamanho do lote (batch size) é
frequentemente restringido pela memoria disponivel na GPU. As conexdes de salto (skip

connections) entre o codificador e o decodificador sdo preservadas, garantindo a retengao
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de detalhes espaciais e combinando a robustez na extracao de caracteristicas da ResNet
com a precisao de localizacao essencial para o delineamento de estruturas anatomicas
complexas. A Tabela 3.3 mostra a configuracao utilizada para o modelo e uma breve

explicacao de cada parametro.

Parametro Valor Descricao

spatial dims 2 Dimensao espacial dos volumes (2D)

in_channels 1 Nimero de canais da entrada (Escala de cinza)
out_channels 2 Nimero de classes de saida (Lesdo 4+ Fundo)
init_filters 56 Numero de filtros na primeira camada de convolucao

dropout_prob 0,2  Probabilidade de dropout

Tabela 3.1: Configuracao do modelo de segmentacao através da biblioteca MONAT.

3.3.1 Aumento de dados classico

Considerando a elevada variabilidade anatomica interpaciente e a limitada disponibilidade
de anotagoes densas pizel-a-pizel, foi implementado um pipeline classico de aumento de
dados estocastico (data augmentation), aplicado dinamicamente durante o treinamento.
Inicialmente, as imagens passam por um processo de normalizacao de intensidade, no qual
os valores dos wvozels sao reescalonados para o intervalo [0, 1], com aplicacao de clipping
baseado em percentis para reduzir a influéncia de valores extremos.

Para mitigar o severo desequilibrio entre regioes lesionadas e tecido saudavel,
adotou-se uma estratégia de amostragem balanceada por patches. Foram extraidos patches
bidimensionais de dimensao 128 x 128, utilizando-se uma razao de amostragem de 7:1
entre centros localizados em regioes de lesao (foreground) e regices de fundo (background),
favorecendo a apresentagao de exemplos informativos ao modelo durante o treinamento.

Adicionalmente, aplicaram-se transformacoes geométricas aleatérias com o obje-
tivo de aumentar a invariancia espacial do modelo. Essas transformacoes incluem rotacoes
discretas de multiplos de 90 graus, espelhamentos horizontais e verticais, bem como trans-
formagdes afins continuas (como rotagao, translacao e escala) aplicadas com probabilidade
de 0,3. Por fim, foram introduzidas perturbacoes fotométricas para simular variagoes
de aquisigao, incluindo a injecao de ruido Gaussiano com média zero e desvio padrao

o = 0,01, além de variacoes aleatorias de intensidade e escala de brilho.
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3.3.2 Formulacao da Funcao de Perda

O treinamento do modelo foi conduzido por meio da minimizagao de uma funcgao de
perda hibrida, denotada por L;.., projetada especificamente para lidar com o severo
desequilibrio de classes caracteristico da segmentacao de lesdes pequenas em imagens
de Ressonancia Magnética. Essa func¢ao combina a perda Dice, sensivel a sobreposicao
espacial, com a perda Focal, que enfatiza exemplos de dificil classificacao. Formalmente,

a funcao de perda total é definida como:

Ltoml (ya Z)) = LDiC@(y7 :&) + ’CFOCal(y7 :&) (31>

Perda Dice (Lpi.) Na tarefa de segmentagdo, o objetivo central consiste em maxi-
mizar a sobreposicao entre o mapa de predicao P produzido pelo modelo e a mascara
de referéncia G (ground truth). Para essa finalidade, adotou-se como métrica principal o
Coeficiente de Dice, originalmente proposto em Dice (1945) e posteriormente consolidado
no contexto de segmentacao de lesoes médicas em Zijdenbos et al. (1994). Essa métrica

quantifica a similaridade entre dois conjuntos de pizels, sendo definida como:

2-|PNG|
[Pl+IGl

Dice(P,G) =
onde |P| representa o nimero de pizels classificados como pertencentes a classe positiva
pelo modelo, |G| corresponde ao numero de pizels positivos na mascara verdadeira, e
|P N G| denota a interse¢ao entre ambos, isto é, os pizels corretamente segmentados.

Para viabilizar o uso do Coeficiente de Dice como funcao de perda no treinamento
de redes neurais profundas, empregou-se uma formulacao continua e diferencidvel. Seja

pi € [0,1] a probabilidade predita para o pizel i e g; € {0,1} o valor correspondente na

mascara de referéencia. O Dice suavizado é entao expresso por:

23N pigi +e
Zi]\ilpi + Zz]\;l gi + €

em que N denota o nimero total de pizels da imagem e ¢ é um termo de regularizacao

Dice(P,G) =

introduzido para evitar instabilidades numéricas decorrentes de divisoes por zero.
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Como o processo de treinamento visa a minimizacao de uma funcao objetivo, a

perda Dice é definida como o complemento do coeficiente de similaridade, isto é:

Lpice(P,G) =1 — Dice(P,G).

Dessa forma, valores de perda proximos de zero indicam elevada sobreposigao en-
tre predicao e mascara verdadeira, enquanto valores mais elevados refletem discrepancias

significativas entre ambas.

Perda Focal (Lpe) Com o objetivo de lidar explicitamente com o desequilibrio de
classes e reduzir a influéncia de exemplos facilmente classificados, foi incorporada a funcao
de perda a perda Focal. Essa abordagem atribui maior peso aos exemplos de dificil clas-
sificacao (hard examples), atenuando a contribuicdo de pizels corretamente classificados
com alta confianca. A formulacao empregada inclui um fator de ponderacao de classe «,
calculado dinamicamente a partir da razao entre o nimero de pizels negativos e positivos
no conjunto de treinamento, wyes = Npeg/Npos, bem como um parametro de foco fixado

em v = 2,0. A perda Focal é definida como:

LFocal = _a(]- - gt)’y IOg(gt)a (32)

onde 7; representa a probabilidade predita associada a classe verdadeira do pixel em

analise.

3.4 (eracao artificial de imagens

A abordagem proposta para geracao artificial de imagens baseia-se na combinacao de um
gerador condicional do tipo ResNet, com o objetivo de sintetizar imagens de Ressonancia
Magnética (MRI) a partir de mapas de segmentagao de lesées. O pipeline é formulado
como um modelo de image-to-image translation, no qual a entrada consiste em um mapa
semantico bindrio que codifica a presenca e a localizacao espacial das lesoes, enquanto
a saida corresponde a uma fatia de MRI sintética, apresentando contraste e texturas

coerentes com a anatomia condicionada.
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Essa formulacao permite controlar explicitamente a distribuicao espacial das
lesoes geradas, ao mesmo tempo em que preserva caracteristicas anatomicas realistas,
tornando o método particularmente adequado para aplicagoes de aumento de dados em

tarefas de segmentacao supervisionada.

3.4.1 Variational Autoencoder

Para a modelagem generativa das mascaras bindrias de lesoes e o aprendizado de sua
distribuigao subjacente, foi empregado um Variational Autoencoder (VAE) de natureza
convolucional. O modelo é composto por duas sub-redes principais: um codificador proba-
bilistico, também denominado Inference Network, que aproxima a distribuicao posterior

¢s(2|7), e um decodificador gerador responsavel por modelar a distribuigdo condicional

po(z|2).

A rede codificadora recebe como entrada uma méscara bindria x € RT*XWxC ¢

a
processa por meio de uma sequéncia hierarquica de blocos convolucionais. Em contraste
com abordagens baseadas em operagoes de pooling deterministicas, optou-se pelo uso
de convolugoes estratificadas (strided convolutions) com stride igual a 2, permitindo a
redugao progressiva da resolucao espacial de forma aprendivel. Cada bloco convolucional
¢ composto por uma convolugao 2D com kernel 3 x 3 e padding unitario, seguida de uma
camada de Batch Normalization, responsavel por estabilizar a distribuicao interna das
ativagoes, e por uma funcao de ativacao LeakyReLU com coeficiente o = 0,2, adotada
para mitigar o problema conhecido como dying ReL U.

Ao final do processo de codificacao, o mapa de caracteristicas é linearizado e
projetado em duas camadas densas paralelas, responsaveis por estimar os parametros da
distribuigao latente: o vetor de médias u e o vetor de log-variancias log(c?). O espago
latente z é modelado como uma distribuicao Gaussiana multivariada, o que permite uma
representacao continua e regularizada das mascaras de entrada.

Para possibilitar a retropropagacao do erro através do processo estocastico de
amostragem do espago latente, foi empregado o truque de reparametrizacao (reparamete-
rization trick). Considerando um ruido auxiliar € amostrado de uma distribui¢ao normal

padrao N(0, I), a varidvel latente é obtida segundo a seguinte expressao:
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z2=pu+0o0e (3.3)

O decodificador realiza o mapeamento inverso, projetando o vetor latente z de
volta para uma representacao espacial de caracteristicas profundas e, em seguida, apli-
cando uma sequéncia de convolugoes transpostas (transposed convolutions) para recuperar
gradualmente a resolucao original da imagem. A arquitetura do decodificador espelha a
do codificador, fazendo uso de Batch Normalization e fungoes de ativacao LeakyReLU. A
camada final aplica uma convolucao transposta que projeta as caracteristicas aprendidas
para o numero de canais original, produzindo [ogits nao normalizados, os quais represen-
tam os parametros de uma distribuicao de Bernoulli associada a cada pizel da mascara

reconstruida.

3.4.2 Otimizacao Variacional e Termos de Regularizacao

O processo de treinamento do modelo generativo foi formulado como um problema de
maximizacao do limite inferior variacional da log-verossimilhan¢a dos dados, conhecido
como Fvidence Lower Bound (ELBO). Nesse contexto, a fungao objetivo busca equilibrar a
fidelidade de reconstrucao das amostras observadas com a regularizacao do espaco latente,
garantindo propriedades desejaveis de generalizacao e amostragem. A funcao de perda
total £ é composta por um termo de reconstrucao, um termo de divergéncia de Kullback—
Leibler e um termo adicional de regularizacao baseado em conhecimento de dominio,

conforme definido a seguir:

L(.T, (b? 0) = Lrec + 5 : LKL + )\area : Larea- (34>

O termo de reconstrucao L, quantifica o grau de similaridade entre a amostra
gerada pelo decodificador e a entrada original. Considerando que os dados de entrada
sao mascaras bindrias, a saida do modelo foi interpretada como os parametros de uma
distribuicao de Bernoulli multivariada, sendo a perda de reconstrucao calculada por meio
da Binary Cross-Entropy (BCE) aplicada aos logits produzidos pelo decodificador. For-

malmente, esse termo é definido como:



3.4 Geragao artificial de imagens 30

rec = Z T lOg + (1 - xz) log(l - U(Z/l))] ) (35>

onde o(+) denota a fungao sigmoide, y; corresponde aos logits de saida do decodificador e
N representa o nimero total de pizels da mascara.

O termo de divergéencia de Kullback—Leibler £ atua como um mecanismo de
regularizagdo do espaco latente, forgando a distribuicdo posterior aproximada g,(z|z) a
se aproximar de uma distribuicao a priori Gaussiana isotrépica N(0,I). No entanto, em
arquiteturas variacionais profundas, é comum a ocorréncia do fendomeno conhecido como
posterior collapse, no qual o decodificador passa a ignorar o cédigo latente e a divergéncia
KL tende prematuramente a zero. Para mitigar esse problema, foi empregada a técnica
de Free Bits, que impoe um limite inferior Ay, a contribui¢ao da divergéncia KL em cada

dimensao latente j. Assim, o termo é definido como:

Lrer =Y max (Dirds(z|2) |(2)); Asree) (3.6)

j=1
garantindo que cada dimensao do vetor latente retenha uma quantidade minima de in-
formacao, expressa em nats, e incentivando o uso efetivo de todo o espago latente.

Além dos termos cléssicos do ELBO, foi incorporada uma regularizacao adicio-
nal baseada em conhecimento de dominio, representada pelo termo £,..,. Esse termo
visa evitar a geracao de mascaras degeneradas, como mapas completamente vazios ou
excessivamente preenchidos, penalizando desvios em relacao a uma fracao de area alvo
previamente definida. A penalizagao é calculada por meio da norma L1 entre a média das
probabilidades previstas e o valor de referéncia estabelecido, atuando como um mecanismo

de controle estatistico da extensao espacial das lesoes sintetizadas.

3.4.3 Estratégia de Treinamento

A otimizagao dos parametros do modelo foi realizada utilizando o algoritmo Adam W, que
combina momentos adaptativos de primeira e segunda ordem com um termo explicito
de weight decay, promovendo regularizacao L2 mais eficaz em redes profundas. Com o

objetivo de aumentar a estabilidade do treinamento e favorecer a convergéncia do modelo
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variacional, duas estratégias adicionais foram adotadas.

A primeira consiste no uso de (-scheduling, também conhecido como annealing
do termo KL. Nessa estratégia, o coeficiente § associado a divergéncia KL ¢ inicialmente
definido como zero e incrementado de forma linear até o valor unitario ao longo das épocas
iniciais de treinamento. Esse procedimento permite que o modelo priorize a aprendizagem
da reconstrucao dos dados nas fases iniciais, antes de ser progressivamente forcado a
estruturar o espaco latente de acordo com a distribuicao a priori.

A segunda estratégia envolve a aplicacdo de gradient norm clipping, na qual a
norma dos gradientes é limitada a um valor maximo pré-definido durante a retropro-
pagacao. Essa técnica reduz o risco de explosao de gradientes, um problema recorrente
em arquiteturas gerativas profundas, contribuindo para maior estabilidade numérica ao

longo do processo de otimizagao.

3.5 Modelo Generativo Adversarial

Para a tarefa de traducao imagem-a-imagem, na qual mapas de segmentacao binarios x
sao mapeados para imagens sintéticas de Ressonancia Magnética y, foi empregada uma
Rede Generativa Adversarial Condicional (Conditional Generative Adversarial Network —
cGAN). Essa abordagem ¢ formulada como um jogo adversarial de soma zero entre dois
modelos: um gerador GG, responsavel por sintetizar imagens que sigam a distribuigao dos
dados reais condicionadas as mascaras de entrada, e um discriminador D, treinado para
distinguir entre pares reais (z,y) e pares sintéticos (z, G(x)).

O gerador adota uma arquitetura baseada em ResNet, organizada em trés estagios
principais: codificacao, transformacgao e decodificagao. No estdgio de codificacao, a re-
solugao espacial da entrada é progressivamente reduzida por meio de convolucoes com
stride igual a 2, seguidas de Normalizacao de Instancia (Instance Normalization) e fungdes
de ativacao ReLLU. O ntcleo da rede é composto por nove blocos residuais em sequéncia,
0s quais permitem o aprendizado de dependéncias globais profundas sem degradacgao do
gradiente, favorecendo a estabilidade do treinamento. O estigio de decodificagao em-
prega convolugoes transpostas para restaurar a resolucao original da imagem, fixada em

256 x 256, sendo a camada final seguida por uma funcao de ativacao Tanh, responsavel
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por mapear os valores de saida para o intervalo [—1,1]. Com o objetivo de estabilizar o
processo de inferéncia e reduzir oscilagoes durante o treinamento adversarial, foi aplicada
a técnica de Média Mdvel Exponencial (Ezponential Moving Average — EMA) aos pesos
do gerador, utilizando um fator de decaimento p = 0,999.

O discriminador emprega uma arquitetura multiescala, composta por trés discri-
minadores estruturalmente idénticos que operam sobre diferentes resolucoes da imagem de
entrada, correspondentes a resolugao original, a metade e a um quarto da resolugao origi-
nal. Cada um desses discriminadores segue o paradigma PatchGAN, no qual regioes locais
da imagem sao classificadas como reais ou sintéticas, incentivando a coeréncia de texturas
e detalhes de alta frequéncia. Para garantir a estabilidade do treinamento adversarial e
mitigar problemas como colapso de modo, todas as camadas convolucionais do discrimi-
nador foram regularizadas por meio de Normalizacao Espectral (Spectral Normalization),

assegurando o controle da constante de Lipschitz da funcao discriminadora.

3.5.1 Funcao Objetivo Composta

A otimizacao do modelo adversarial é conduzida por uma funcao de perda composta,
que combina o objetivo adversarial com termos adicionais de fidelidade de reconstrucao e

coeréncia perceptual. A funcao de perda total associada ao gerador é definida como:

Ltotal - /\adeadv + )‘char'cchar + )\percLVGG + )\fm’CFM (37>

O termo adversarial £,4, foi formulado a partir da Hinge Loss, em substituicao a
entropia cruzada tradicional, uma vez que essa formulagao penaliza apenas amostras que
violam a margem de decisao, resultando em gradientes mais estaveis e robustos durante

o treinamento. A funcao de perda do discriminador é dada por:

Lp = E(y max(0,1 — D(z,y))] + E; [max(0,1 + D(x, G(x)))], (3.8)

enquanto a perda adversarial associada ao gerador é definida como:
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Lo = —E, [D(z,G(x))]. (3.9)

Para garantir fidelidade no nivel de pizel, foi incluida a Perda de Charbonnier
L ehar, uma variante suavizada e diferenciavel da norma /1, reconhecida por sua robustez
a outliers e por evitar instabilidades numéricas em regioes proximas de zero. Esse termo

é definido como:

Lanar(G) = Egayy [VIy = G@)E+ €], (3.10)

onde € = 1073 é um parametro de suavizacao.

Adicionalmente, foram incorporados termos de perda perceptual e de feature
matching com o objetivo de melhorar a qualidade visual das imagens geradas e redu-
zir o efeito de borramento associado a perdas puramente pizel-a-pizel. A Perda Percep-
tual Ly ge é calculada como a distancia L1 entre mapas de caracteristicas extraidos de
diferentes camadas de uma rede VGG-19 pré-treinada no conjunto ImageNet. Comple-
mentarmente, a Perda de Feature Matching £ gy minimiza a discrepancia estatistica entre
as ativagoes intermediarias do discriminador para imagens reais e sintéticas, forcando o
gerador a produzir estruturas cujas estatisticas sejam consistentes com as observadas nos
dados reais em multiplas escalas.

A Tabela 3.5.1 apresenta os pesos (hiperparametros \) utilizados para ponderar a
contribuicao de cada componente na func¢ao de perda total da Rede Generativa Adversarial
(GAN). Estes valores foram definidos empiricamente para balancear a qualidade visual,

a consisténcia estrutural e a estabilidade do treinamento.

Componente da Perda Simbolo | Peso
Reconstrugao (L;/Charbonnier) Achar 20.0
Feature Matching Afm 5.0
Adversarial Aado 5.0
Perceptual (VGG) Apere 1.0

Tabela 3.2: Pesos utilizados para as funcoes de perda do modelo Generativo Adversarial
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3.5.2 Detalhes de Implementacao

O treinamento do modelo foi conduzido utilizando o otimizador Adam sob a regra de
atualizacdo em duas escalas de tempo ( Two-Time-Scale Update Rule — TTUR), adotando-
se uma taxa de aprendizado de 1 x 10~ para o gerador e de 2 x 10~* para o discriminador.
Para reduzir o consumo de memdéria e acelerar o treinamento, foi empregada precisao
mista automética (Automatic Mized Precision). O aumento de dados aplicado durante o
treinamento incluiu transformagoes geométricas, como rotacoes, espelhamentos e recortes,
bem como perturbacoes nao lineares de intensidade, aplicadas exclusivamente as imagens
reais com o objetivo de aumentar a robustez do modelo frente a variagoes de contraste e

condicoes de aquisicao.
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4 Resultados

Esse capitulo apresenta os resultados obtidos para cada um dos modelos que compoem
o pipeline, bem como o modelo de segmentacao que ira ser utilizado para verificagao do

impacto da metodologia de aumento de dados proposta no treinamento desse modelo.

4.1 Variational Autoencoder

O modelo foi treinado por 600 épocas,batch size utilizado foi 4. As Figuras 4.1, 4.2 e
4.3 mostram as perdas associadas ao conjunto de treino fornecido ao modelo. O melhor
modelo contudo é definido pela menor loss em relacao ao conjunto de validagao, devido
a possibilidade de overfitting em relagao ao conjunto de treino disponivel, isto é, a nao

generalizagao em relagao a outras possiveis entradas.

Funcao de perda total no conjunto de treino
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Figura 4.1: Valores da funcao de perda total no conjunto de treino.
Os resultados em relagao ao conjunto de validagao presente nas Figuras 4.4, 4.5 e

4.6 demonstram esse comportamento, visto que apds certa época, mesmo com a redugao

da perda dentro do conjunto de treino ha um aumento dentro do conjunto de validacao,
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Funcao de perda de reconstrucao no conjunto de treino
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Figura 4.2: Valores da funcao de perda de reconstrugao no conjunto de treino.
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Figura 4.3: Valores da funcao de perda kl de reconstrucao no conjunto de treino.

evidenciando que a melhora em relagao ao conjunto de treino se deve a um ajuste excessivo
em relacao a esses dados.

Com o modelo do VAE foi possivel gerar mascaras falsas que se aproximem em
forma e distribuicao espacial das méscaras reais feitas pelos especialistas, a Figura 4.7
mostra trés mascaras geradas pelo método proposto, que poderiam servir de entrada para

a inferéncia da Rede Generativa.
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Figura 4.4: Valores da funcao de perda total no conjunto de validacao.
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Figura 4.5: Valores da funcao de perda de reconstrucao no conjunto de validacao.
4.2 GAN

As Figuras 4.8 e 4.9 apresentam, respectivamente, a evolucao das fungoes de perda total
do Gerador e do Discriminador ao longo das épocas. Observa-se uma tendéncia con-
sistente de minimizacao na perda do Gerador, evidenciando sua capacidade progressiva

de sintetizar amostras verossimeis, indistinguiveis das reais. Simultaneamente, a esta-
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Figura 4.6: Valores da funcao de perda de reconstrugao no conjunto de validagao

Figura 4.7: Exemplo de mascaras falsas geradas pelo Variational Autoencoder

bilidade observada na perda do Discriminador indica que o modelo adversario mantém
sua robustez, nao sendo superado trivialmente. A partir da época 170, o sistema exibe
um comportamento de convergéncia, sugerindo que o treinamento atingiu um ponto de
estabilidade competitiva entre as redes.

A Figura 4.10 demonstra a comparacao da textura cerebral criada pela GAN com
a respectiva imagem real em relagdo a uma mesma maéascara. Ja a figura demonstra um
conjunto de texturas produzidas a partir de mascaras artificiais de lesao, bem como a
sobreposicao da lesao na textura.

Os resultados também demonstram que o Gerador tende a se confundir mais
quando as areas de interesse sao muito pequenas, produzindo alguns artefatos na textura

final, artefatos esses que podem ser identificados na imagem 4.12. O fené6meno observado
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Funcao de perda do Gerador
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Figura 4.8: Perda total do Gerador ao longo das épocas.
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Figura 4.9: Perda total do discriminador ao longo das épocas.

¢é inerente a arquitetura de geragao condicional proposta. Devido as operacoes de down-
sampling, a representacao espacial de lesoes diminutas tende a se dissipar nos mapas de
caracteristicas mais profundos. Consequentemente, o discriminador falha em penalizar
a auséncia dessas estruturas, validando a textura gerada com base na coeréncia global
da imagem, uma vez que a contribuicao da lesao para a distribuicao estatistica total é

marginal.
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Figura 4.10: Comparagao de texturas reais do cérebro com texturas geradas pela Rede
Generativa Adversarial, sendo, a primeira linha a méscara (vinda diretamente do dataset
original), segunda linha a textura falsa e a terceira o corte real.

Figura 4.11: Comparacao de textura gerada a partir de mascaras falsas produzidas através
do Variational Autoencoder.

4.3 Modelo de segmentacao

O modelo de segmentacao foi treinado utilizando 2600 épocas de treinamento, com um
batch size de 32, onde a cada 65 épocas foi executada uma etapa de validacao. O alto
nimero de épocas foi utilizado para compensar o batch size menor, visto limitagoes na
VRAM da GPU. Os resultados do modelo treinado em cima da base de dados padrao
estao apresentados na figura 4.13, esses resultados demonstram que o treinamento com os
dados previamente disponiveis demonstram ja uma capacidade de generalizacao préxima

do esperado para tarefas de segmentacao de Esclerose Miiltipla, como descrito por (COM-



4.3 Modelo de segmentacao 41

Figura 4.12: Imagens com artefatos visuais devido ao pequeno tamanho das lesoes contidas
na mascara de condicionamento

MOWICK et al., 2018)

A incorporacao de imagens sintéticas geradas pela Rede Generativa resultou em
um incremento consideravel na métrica Dice final, conforme evidenciado no grafico da
Figura 4.16. Outra métrica relevante a ser avaliada é o niimero de lesoes falsas marcadas
na imagem, que seria a precisao(ou precision), a Tabela 4.1 mostra o resultado geral dessa
métrica para cada modelo, bem como o resultado separado por quartis. Ressalta-se que
a avaliagao utilizou o mesmo conjunto de validagao empregado no modelo treinado ape-
nas com o dataset original, garantindo a comparabilidade dos resultados. A Tabela 4.2
sumariza o desempenho obtido com diferentes volumes de data augmentation. O melhor
resultado foi alcancado com a adi¢ao de 750 imagens; volumes superiores nao resultaram
em ganho de desempenho, sugerindo uma saturagao no aprendizado. Isso ocorre, pri-
mordialmente, devido a persisténcia da dificuldade em segmentar lesoes pequenas. Tal
limitagao ¢é ilustrada nos boxplots e andlises graficas das Figura 4.15, que evidenciam a
dificuldade de generalizacao do modelo para estruturas menores. Esse comportamento
corrobora os achados da Secao 4.2, onde observou-se que a incapacidade da GAN em
sintetizar fielmente lesoes mintusculas impede que os dados artificiais contribuam para a
resolucao deste problema especifico.

Além disso, avaliou-se também o custo computacional associado a inclusao de
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Figura 4.13: Métrica de Dice associadas ao modelo treinado com conjunto de dados padrao
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Figura 4.14: Comparacao entre diferentes modelos, onde o default é o treinado no dataset
padrao, um com 500 entradas extras e outro com 1000 entradas extras
novas imagens no dataset, a Tabela 4.3 demonstra que, embora o tempo de treinamento
nao mude consideravelmente entre cada suite de treinos, o custo de memoéria se expande
conforme aumenta-se o nimero de imagens presentes na base de treino.

O tempo de treinamento, como demonstrado na Tabela 4.3 nao teve um aumento

significativo porque nesse trabalho optou-se por definir o critério de parada do treinamento
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Modelo Ruido Médio Global Ruido Q1 Ruido Q2 Ruido Q3 Ruido Q4

Padrio 23,44% 52,21% 27.91% 20,40% 11,83%
+500 22,68% 50,25% 28,38% 19,22% 10,86%
+750 21,41% 44,66% 26,11% 19,69% 11,11%
+1000 23,31% 50,33% 29,60% 21,44% 11,13%

Tabela 4.1: Precisao em relagao as lesdes demarcadas em porcentagem(Ruido), sendo a
taxa de lesoes segmentadas que nao existe nenhuma correspondencia na méascara real.

Modelo Dice Dice Global Médio Ruido Total Médio

Padrao  62,028% 80,85% 23,44%
+500 64,034% 82,14% 22,68%
+750 65,012% 82,51% 21,41%
-+1000 64,038% 81,33% 23,31%

Tabela 4.2: Valores obtidos para o as principais métricas nas diferentes configuragoes de
treino
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Figura 4.15: Boxplot da métrica de dice médio dos quartis do conjunto de validacao,
avaliado no melhor modelo obtido

com base em um numero fixo de iteragoes globais, em detrimento de um nimero fixo de
épocas completas. Dessa forma, a carga computacional total permaneceu constante, uma
vez que o numero de atualizacoes de pesos da rede independe do tamanho total do conjunto
de dados.

O consumo de memoria, por sua vez, comporta-se de maneira distinta em relacao

a disponibilidade de dados. Observa-se que o aumento na aloca¢ao de recursos nao ocorre
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Figura 4.16: Grafico do dice médio de cada item no conjunto de validagao separado por
quartis relacionados ao tamanho das lesoes, grafico avaliado no melhor modelo obtido

Modelo Tempo de Treinamento(s) Quantidade de VRAM alocada(GB)

Default 2342 28.567
+500 2358 29.293
+750 2374 29.567
+1000 2386 29.878

Tabela 4.3: Recursos computacionais necessarios para execucao de cada modelo

de forma proporcional a expansao da base de imagens, visto que o armazenamento dos
dados brutos nao representa o fator preponderante no uso de VRAM. O custo principal
estd associado a alocacao de buffers para o cdlculo de gradientes durante o processo de
backpropagation. A Figura 4.17 evidencia que os picos de utilizacdo de VRAM nao sao
constantes, apresentando variabilidade conforme a etapa de treinamento. Ressalta-se que
a incorporagao de volumes maiores de imagens sintéticas foi inviabilizada pela exaustao da
memoria disponivel para o cache interno da biblioteca Pytorch, resultando na interrupcao

do processo.
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Figura 4.17: Grafico do PICO de uso de VRAM durante cada etapa do treinamento,
esse grafico desconsidera o cache utilizado pelo Pytorch devido a alta volatilidade dessa
informacao durante diversos momentos no treinamento
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5 Conclusao

O presente trabalho envolveu a implementacao de um pipeline completo de data augmen-
tation para segmentacao de texturas relacionadas a identificagao de lesoes no contexto da
Esclerose Multipla. O primeiro passo envolveu a construcao e utilizacao de um Variational
Autoencoder para capturar a representacao de imagens de lestes mapeadas por especialis-
tas e converter essa representacao em um espagco continuo e probabilistico, sendo capaz de
gerar novas mascaras de lesoes proximas as reais. A partir disso foi construida uma Rede
Generativa Adversarial (GAN) que recebe como entrada uma mascara e é capaz de a par-
tir dessa entrada construir a textura cerebral correspondente. Os novos dados produzidos
pela GAN foram entao utilizados no treinamento de um modelo de segmentacao de lesoes
de Esclerose Mtltipla a fim de verificar a possibilidade de melhora na segmentagao de um
conjunto de validacao padrao com a utilizacao de dados produzidos artificialmente.
Dessa forma, diferentemente de trabalhos que avaliam modelos generativos ape-
nas sob o aspecto visual ou perceptual, este trabalho propoe um protocolo experimental
sistematico para investigar o impacto da inclusao de imagens sintéticas, geradas de forma
condicional, no desempenho de um modelo de segmentacao de lesoes de Esclerose Miiltipla.
A contribuicao reside na analise controlada do efeito da quantidade de dados sintéticos,
considerando tanto métricas de segmentacao quanto o custo computacional associado.
Os diversos experimentos apresentados demonstraram a capacidade de genera-
lizagdo dos modelos propostos. A inclusao de dados artificiais no treinamento, embora
aumentem o custo computacional do mesmo, aumentaram de maneira significativa a qua-
lidade das segmentagoes automaticas. No entanto, considerando que o foco deste trabalho
como sendo a andlise do impacto de dados sintéticos em um cenario 2D, mais proximo de
aplicagoes com restricao computacional ou disponibilidade de dados 3D limitada, a com-
paracao com a literatura, que majoritariamente se concentra em segmentacao volumétrica,

se torna restrita.
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5.1 Trabalhos futuros

Trabalhos futuros devem priorizar a mitigagao das limitagoes inerentes a geracao con-
dicional, especificamente no que tange a baixa capacidade de generalizacao do modelo
generativo em cenarios com lesoes de pequenas dimensoes — um dos maiores desafios
na segmentacao de Esclerose Multipla. Uma estratégia promissora consiste na inclusao
de imagens de individuos saudaveis (controles) ao conjunto de treinamento da GAN. Tal
abordagem visa refinar a representacao de tecidos normais, auxiliando o modelo a discri-
minar melhor casos com baixa carga lesional e reduzindo a ocorréncia de artefatos nas
imagens.

Outra possibilidade envolve a utilizacao de modelos Generativos baseados em
difusao, como modelos de Flow Matching, que sao amplamente suportados pela literatura
moderna como mais simples de treinar em relacao a Redes Generativas Adversariais,
embora dependam, em muitos casos, de uma quantidade mais ampla de dados.

Adicionalmente, deve-se investigar o potencial das Redes Generativas na mi-
tigacao de outros desafios inerentes a Ressonancia Magnética, notadamente a baixa ge-
neralizacao frente a variabilidade inter-scanner. Uma abordagem promissora envolve o
treinamento de modelos capazes de realizar a adaptacao de dominio, sintetizando ima-
gens que mimetizem as caracteristicas de aquisicao de equipamentos distintos da base
original.

Além disso, também deve-se buscar um pipeline que consiga se aproveitar da
informacao volumétrica presente em grande parte das bases de dados. Permitindo assim, a

comparagcao direta com literatura moderna na area de Segmentacgao de Esclerose Miltipla.
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