
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bacharelado em Ciência Da Computação

Otimização multiobjetivo para seleção de
materiais de construção

Alemilson Fabiano Silva

JUIZ DE FORA

JANEIRO, 2026



Otimização multiobjetivo para seleção de
materiais de construção

Alemilson Fabiano Silva

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Departamento de ciência da computação

Bacharelado em Ciência Da Computação

Orientadora: Luciana Conceição Dias Campos

Coorientadora: Júlia Castro Mendes
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Resumo

A industria da construção civil é um dos maiores contribuintes para às emissões de ga-

ses de efeito estufa (GEE) e consumo de recursos naturais. A seleção de materiais de

construção é uma etapa crucial no ciclo de vida de uma edificação, impactando direta-

mente seu custo, desempenho energético e pegada de carbono. Este trabalho desenvolveu

uma abordagem integrada para apoiar a seleção de sistemas construtivos com base em

desempenho térmico, custo e emissões de CO2 equivalente, combinando aprendizado de

máquina e otimização multiobjetivo. A abordagem proposta visa simular combinações

construtivas no EnergyPlus para alimentar um metamodelo baseado em XGBoost, o qual

é integrado a um processo de otimização multiobjetivo via R-NSGA-III. Dessa forma,

busca-se identificar as melhores combinações de sistemas de paredes, pisos e coberturas,

considerando diferentes preferências de avaliação e compromisso entre os objetivos ana-

lisados. A utilização dos metamodelos permitiu avaliar mais de 28.224 combinações de

paredes, pisos e coberturas. Foram considerados dois cenários de uso. No Cenário 1, 80%

dos pesos foram atribúıdos às métricas de conforto térmico. Já no Cenário 2, a priorização

foi direcionada ao custo (40%) e ao consumo energético (35%). No Cenário 1, as soluções

obtidas reduziram o desconforto térmico em até 17% e ampliaram em 7% as métricas

associadas ao conforto, em comparação ao espaço amostral. No Cenário 2, observou-se

maior convergência das soluções, com reduções no consumo energético entre 140 kWh e

180 kWh, considerando um consumo anual de referência de aproximadamente 2000 kWh.

A análise de recorrência indicou padrões distintos entre os climas: maior variabilidade em

Belém, convergência moderada em São Paulo e forte repetição em Curitiba. Conclui-se

que a ferramenta proposta é promissora para apoiar decisões construtivas considerando

cenários atuais e futuros, tornando análises complexas mais rápidas, acesśıveis e alinhadas

às demandas climáticas brasileiras.

Palavras-chave: Otimização multiobjetivo, seleção de materiais de construção, Energy-

Plus, aprendizado de máquina, eficiência energética, mudanças climáticas.



Abstract

The construction industry is one of the largest contributors to greenhouse gas (GHG)

emissions and natural resource consumption. The selection of building materials is a cru-

cial step in the life cycle of a building, directly impacting its cost, energy performance, and

carbon footprint. This work developed an integrated approach to support the selection

of building systems based on thermal performance, cost, and CO2 equivalent emissions,

combining machine learning and multi-objective optimization. The proposed approach

aims to simulate construction combinations in EnergyPlus to feed an XGBoost-based me-

tamodel, which is integrated into a multi-objective optimization process via R-NSGA-III.

In this way, the goal is to identify the best combinations of wall, floor, and roof systems,

considering different evaluation preferences and trade-offs between the analyzed objecti-

ves. The use of metamodels allowed the evaluation of more than 28,224 combinations

of walls, floors, and roofs. Two usage scenarios were considered. In Scenario 1, 80% of

the weights were assigned to thermal comfort metrics. In Scenario 2, prioritization was

directed towards cost (40%) and energy consumption (35%). In Scenario 1, the solutions

obtained reduced thermal discomfort by up to 17% and increased comfort-related metrics

by 7%, compared to the sample area. In Scenario 2, greater convergence of solutions was

observed, with reductions in energy consumption between 140 kWh and 180 kWh, con-

sidering an annual reference consumption of approximately 2000 kWh. The recurrence

analysis indicated distinct patterns between climates: greater variability in Belém, mo-

derate convergence in São Paulo, and strong repetition in Curitiba. It is concluded that

the proposed tool is promising for supporting constructive decisions considering current

and future scenarios, making complex analyses faster, more accessible, and aligned with

Brazilian climate demands.

Keywords: Multi-objective optimization, selection of building materials, EnergyPlus,

machine learning, energy efficiency, climate change.
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B.8 Faixas de hiperparâmetros obtidas pelo random search (representação Gray

Code). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
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1 Introdução

Globalmente, o setor de edificações consome cerca de 30% de toda a energia final e é um

dos principais emissores de gases de efeito estufa, destacando sua importância nas agendas

de mitigação climática (UN Environment Programme; Global Alliance for Buildings and

Construction (GlobalABC), 2023). A diversidade climática, agravada pelas mudanças

ambientais, torna essencial a compreensão sobre como as construções se comportam em

diferentes contextos climáticos, como é o caso do Brasil (KRELLING et al., 2024).

Projetar edificações que conciliem desempenho térmico e sustentabilidade, torna-

se, portanto, uma prioridade estratégica tanto para o setor público quanto para o privado.

O conforto térmico refere-se à percepção subjetiva de bem-estar dos ocupantes diante

das condições ambientais internas (ABNT, 2024a). Por sua vez, desempenho térmico

costuma ser tratado como a capacidade da edificação manter condições internas estáveis

e agradáveis, independentemente das variações climáticas externas, sendo um parâmetro

objetivo (ABNT, 2024b). Quando o conforto térmico é alcançado com baixo consumo

de energia, obtém-se a eficiência energética, que se configura como um dos pilares da

sustentabilidade no setor da construção civil (LAMBERTS et al., 2016).

Historicamente, a escolha de materiais de construção tem sido pautada por critérios

econômicos, disponibilidade e tradição de uso, deixando em segundo plano aspectos

como a questão térmica e o impacto ambiental. Essa abordagem, entretanto, mostra-

se insustentável diante dos desafios contemporâneos impostos pelas mudanças climáticas.

Projeções climáticas indicam o aumento da frequência e intensidade de eventos extremos,

como ondas de calor e variações bruscas de temperatura, que representam um desafio sig-

nificativo para o setor da construção civil (NTC Brasil, 2025). Nesse contexto, torna-se

indispensável considerar o conceito de resiliência térmica no processo de concepção da

edificação. A resiliência térmica é entendida como a capacidade das edificações de man-

ter condições adequadas de habitabilidade, conforto e desempenho energético mesmo sob

cenários climáticos futuros mais severos (IFSC Verifica, 2024).

O desempenho térmico e energético das edificações pode ser avaliado por dife-
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rentes métricas, cada uma capturando aspectos complementares do desempenho térmico.

Neste trabalho, são adotados quatro indicadores amplamente utilizados na literatura: a

Carga Térmica (CT), associada ao consumo energético necessário para manter condições

internas de conforto por meio de sistemas de climatização; os Graus Hora (GH), que

quantificam a intensidade do desconforto térmico em condições de ventilação natural; a

Autonomia Térmica (AT), que expressa a frequência com que a edificação permanece

dentro da faixa de conforto sem o uso de sistemas ativos; e a Resiliência Térmica (RT),

voltada à avaliação do desempenho da edificação sob condições climáticas extremas. O

uso conjunto desses indicadores permite uma análise mais abrangente e representativa do

desempenho térmico da envoltória.

Para isso, softwares de simulação energética, como o EnergyPlus, são amplamente

utilizados para avaliar o comportamento térmico e energético das edificações em cenários

presentes e futuros, em diferentes localizações e climas, considerando tanto as condições

atuais quanto projeções futuras e as caracteŕısticas espećıficas de cada projeto (OLI-

VEIRA, 2025). O EnergyPlus é um software de simulação termoenergética de edificações

que utiliza como dados de entrada a geometria do edif́ıcio, propriedades termof́ısicas

dos materiais, padrões de ocupação, cargas internas e arquivos climáticos espećıficos da

localidade. A partir dessas informações, a ferramenta simula, em regime horário, o com-

portamento térmico das zonas internas e o consumo energético associado aos sistemas de

climatização, permitindo avaliar o desempenho térmico e energético ao longo do tempo

(U.S. Department of Energy, 2025). Entretanto, apesar de sua alta precisão, as simulações

completas apresentam elevado custo computacional e tempo de processamento, especial-

mente quando aplicadas a problemas de larga escala que envolvem múltiplas combinações

de materiais e configurações construtivas(MENDES, 2023).

Por essa razão, o uso de novas técnicas, surgem como uma alternativa viável para

reduzir o tempo de análise, permitindo obter resultados com boa precisão. A inteligência

artificial (IA) pode ser definida como o campo da ciência da computação que desenvolve

sistemas capazes de executar tarefas que normalmente exigiriam racioćınio, percepção e

aprendizado humano. Dentro desse campo, o aprendizado de máquina (Machine Learning

– ML) é um subconjunto que permite que algoritmos aprendam automaticamente a partir
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de dados, reconhecendo padrões e realizando previsões sem a necessidade de programação

expĺıcita (FACELI et al., 2011). No contexto da análise termoenergética de edificações,

o ML pode ser utilizado para prever o desempenho térmico de diferentes soluções cons-

trutivas com base em dados simulados ou experimentais, reduzindo o tempo e o custo de

análises complexas (OLIVEIRA, 2025; BAQER; RASHIDI-KHAZAEE, 2025; LI et al.,

2025).

Por sua vez, a otimização multiobjetivo é uma abordagem matemática voltada

para a resolução de problemas em que se busca equilibrar simultaneamente múltiplos

critérios conflitantes (VESIKAR; DEB; BLANK, 2018). Aplicada à análise térmica de

edificações, essa técnica permite identificar soluções de compromisso que conciliam desem-

penho térmico adequado e eficiência energética com viabilidade econômica e sustentabili-

dade ambiental, apoiando o processo decisório de projetistas e pesquisadores(as) (CURY;

ALVES; ALVES, 2024; ROKA et al., 2024; ROKA et al., 2025).

Com base nesse cenário, este trabalho propõe o desenvolvimento de um modelo

de otimização multiobjetivo, integrado a modelos preditivos de aprendizado de máquina,

aplicado à seleção de materiais de envoltória (pisos, paredes e cobertura) em edificações

residenciais. O método visa integrar o uso de técnicas de otimização multiobjetivo com

modelos de ML, possibilitando identificar soluções de compromisso entre critérios confli-

tantes: custo, desempenho térmico e impacto ambiental. Diferentemente de abordagens

convencionais, que geralmente consideram apenas um ou dois indicadores térmicos, este

trabalho adota uma análise multimétrica, incorporando simultaneamente quatro métricas

relevantes para a avaliação do desempenho passivo da edificação: CT, GH, AT e RT.

A integração conjunta dessas métricas constitui uma contribuição inovadora do estudo,

permitindo uma caracterização mais completa e realista do comportamento térmico da

envoltória em cenários presentes e futuros. Além disso, o modelo proposto é orientado por

preferências, permitindo que o usuário(a) (por exemplo, arquiteto(a) ou engenheiro(a))

direcione a busca para regiões espećıficas das soluções ótimas, conforme suas prioridades

de projeto. Dessa forma, o processo de otimização se torna interativo e mais alinhado

à prática profissional, fornecendo respostas personalizadas que conciliam desempenho e

viabilidade econômica.
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1.1 Objetivo geral

Desenvolver e avaliar uma abordagem integrada baseada em metamodelos preditivos e

otimização multiobjetivo para aprimorar a análise do desempenho térmico e energético

de edificações, incluindo também aspectos de custo e impacto ambiental.

1.1.1 Objetivos espećıficos

Os objetivos espećıficos deste estudo são:

1. Determinar a viabilidade de um método de otimização multiobjetivo orientado por

preferências capaz de explorar de forma eficiente os trade offs entre critérios de

projeto relacionados ao desempenho térmico, energético, econômico e ambiental.

2. Investigar o impacto da otimização de parâmetros do algoritmo evolutivo para três

formas distintas de representação da solução, discreta, binaria e Gray code avaliando

como essas escolhas influenciam a convergência, a diversidade e a qualidade final do

conjunto de soluções.

3. Analisar e comparar o impacto das diferentes condições climáticas sobre o desem-

penho térmico, energético e a seleção ótima de sistemas construtivos, identificando

padrões de recorrência, trade offs e estratégias de projeto mais adequadas para cada

contexto climático.
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2 Fundamentação Teórica

Aqui serão apresentados os principais fundamentos teóricos que sustentam este trabalho.

Inicialmente, discutem-se os conceitos essenciais de avaliação termoenergética, estabele-

cendo definições, indicadores e métodos de cálculo relevantes ao desempenho térmico e

energético. Na sequência, introduzem-se conceitos de aprendizado de máquina pertinentes

ao estudo, com ênfase em modelos e procedimentos de treinamento/validação aplicáveis

ao problema. Por fim, são expostos os prinćıpios de otimização multiobjetivo, destacando

a modelagem de funções-objetivo e restrições, bem como os critérios de Pareto, culmi-

nando na aplicação de um Algoritmo Genético como estratégia de busca para a solução

do problema proposto.

2.1 Avaliação Termoenergética

2.1.1 Conceitos Fundamentais

O conforto térmico se refere à condição subjetiva de satisfação de um indiv́ıduo em relação

às condições climáticas do ambiente ao seu redor (LAMBERTS et al., 2016). Segundo

Lamberts et al. (2016), as variáveis que condicionam o conforto térmico são classificadas

em dois grupos principais:

1. Ambientais: como temperatura do ar, velocidade do vento, umidade relativa do ar,

radiação solar, entre outros fatores f́ısicos que atuam diretamente sobre o corpo

humano.

2. Humanas: como ńıvel de atividade metabólica, a resistência térmica das vestimentas,

bem como caracteŕısticas fisiológicas individuais, tais como sexo, idade, raça e estado

de saúde.

O desempenho térmico, por sua vez, refere-se a uma caracteŕıstica objetiva e

quantificável da edificação, representando sua capacidade de manter condições inter-

nas estáveis e agradáveis, independentemente das variações climáticas externas (ABNT,
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2024b). Segundo ABNT (2024a), entre os principais fatores que influenciam o desempenho

térmico estão:

1. Caracteŕısticas construtivas: propriedades termof́ısicas da vedação, aberturas para

ventilação, pé-direito1, orientação solar e layout.

2. Caracteŕısticas externas: incidência solar, umidade, topografia, poluição atmosférica,

amplitude térmica, sombreamento, vegetação, urbanização e clima.

3. Fontes de calor: ocupação e aparelhos emissores de calor.

Por fim, eficiência energética é a capacidade da edificação entregar o desempenho

e as funcionalidades requeridas com o menor consumo posśıvel de energia (LAMBERTS;

DUTRA; PEREIRA, 2014). Na prática, envolve estratégias de projeto e operação que

reduzem custos e impactos ambientais, como adotar um projeto bioclimático integrado

(orientação, layout, aberturas, ventilação e proteção solar), minimizar as cargas térmicas

associadas às trocas de calor pela envoltória da edificação, especificar equipamentos e

controles eficientes (BALARAS, 2021).

No âmbito da eficiência energética, são empregadas duas categorias principais de

estratégias para controle climático: passivas e ativas. Estratégias passivas não gastam

energia, são baseadas em projeto arquitetônico e ciência dos materiais, operam em har-

monia com o clima local para reduzir a necessidade de intervenção mecânica (SADINENI;

MADALA; BOEHM, 2011). Como exemplo, podem-se citar Gosain (2025) a orientação

do edif́ıcio para controle de ganhos solares em regiões frias; o uso de inércia térmica (ex.

concreto ou rocha) para absorver e liberar calor vagarosamente no ambiente; adotar al-

tos ńıveis de isolamento na envoltória, a fim de tornar o interior mais independente do

exterior; usar envidraçamentos de alto desempenho para modular o ganho de calor por

radiação solar; e promover a ventilação natural efetiva para resfriar os ambientes.

Já as estratégias ativas empregam sistemas mecânicos e elétricos para gerenciar o

ambiente interno, incluindo, por exemplo (GOSAIN, 2025): os sistemas de aquecimento,

ventilação e ar-condicionado (AVAC); os controles e automação predial inteligentes para

1Pé-direito: Distância vertical livre entre o piso acabado e a face inferior do teto (ou forro) de um
compartimento.
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regular o uso de energia de forma eficiente e manter as condições de conforto térmico;

os sensores de presença ou ocupação para modular a iluminação e a temperatura; e as

tecnologias de recuperação de energia, visando tratar a carga térmica remanescente com

maior eficiência.

2.1.2 Envoltória da Edificação

Um dos principais fatores que influenciam o desempenho térmico das edificações é a

envoltória (ou sistema de vedação), composta por pisos, paredes, coberturas e esquadrias

(portas e janelas) (RIBAS, 2007). Como pode ser visto na Figura 2.1, esses elementos são

responsáveis por controlar o fluxo de calor entre o ambiente interno e externo (ou o inverso)

por condução, convecção e radiação térmica(LAMBERTS; DUTRA; PEREIRA, 2014). O

bom desempenho da vedação da edificação contribui para manter o conforto térmico dos

ocupantes e reduz a dependência de sistemas artificiais de climatização, melhorando a

eficiência energética da construção (BACHRUN; ZHEN; GANI, 2019).

Figura 2.1: Fluxo de calor proveniente da radiação solar que incide em uma parede
(esquerda) e uma janela (direita)

Fonte: (MENDES, 2021).

Nos elementos opacos da envoltória (paredes, pisos e coberturas), que não per-

mitem a passagem direta de luz, o mecanismo dominante de troca térmica é a condução,

acionada pela diferença entre as temperaturas interna e externa (LAMBERTS; DUTRA;

PEREIRA, 2014). Já nos translúcidos (ex. janelas, fachadas de vidro e claraboias), que
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permitem a entrada de luz, podem ocorrer trocas térmicas por condução e convecção,

mas, principalmente, por radiação (LAMBERTS; DUTRA; PEREIRA, 2014).

As propriedades termof́ısicas dos materiais que compõem o sistema de vedação

exercem influência significativa sobre esse fluxo de calor e, consequentemente, no desempe-

nho térmico da edificação (ALMEIDA; BRASILEIRO; SILVOSO, 2018). Sua magnitude

decorre de uma combinação complexa e inter-relacionada desses parâmetros, como condu-

tividade, capacidade térmica e massa espećıfica, ao longo das camadas (MENDES, 2023).

A Tabela 2.1 apresenta as definições e efeitos das principais propriedades termof́ısicas

dos materiais. Neste trabalho, o foco será sobre a transmitância térmica (U), e a capa-

cidade térmica (Ct), que sintetiza grande parte da colaboração dos sistemas opacos do

fechamento o desempenho térmico da edificação(ABNT, 2024b).

Tabela 2.1: Propriedades termof́ısicas

Propriedade Definição Efeito na
edificação em
dias quentes

Efeito na
edificação em dias
frios

Calor
espećıfico (c)
[kJ/(kg·K)] Facilidade do material em se

aquecer ou resfriar quando
recebe ou perde energia
(INCROPERA et al., 2008).
Sendo Q a quantidade de
calor, m a massa e ∆T a
variação de temperatura:
c = Q

m·∆T .

Alto c absorve
mais energia até
aquecerem,
atrasando picos de
temperatura
interna. Porém, o
material, uma vez
aquecido, pode
demorar a resfriar.

Alto c pode ajudar a
reter calor interno
por mais tempo,
reduzindo variações
bruscas de
temperatura e
tornando o ambiente
mais estável.

Massa
espećıfica (ρ)
[kg/m3] Relação entre a massa m e o

volume V de um material:
ρ = m

V .

Alta ρ tende a aumentar a capacidade
térmica dos sistema (propriedade
definida a seguir).

Espessura (e)
[m] Dimensão associada à

profundidade do elemento
no que tange à transmissão
de calor.

A e influencia na capacidade térmica,
resistência térmica e transmitância
térmica (propriedades definidas a
seguir).
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(continuação) Propriedades termof́ısicas

Propriedade Definição Efeito na
edificação em
dias quentes

Efeito na
edificação em dias
frios

Capacidade
térmica (Ct)
[J/(m2·K)] Potencial do elemento em

variar sua temperatura
frente a um aporte de calor
(ABNT, 2024b). Para uma
camada homogênea:
Ct = e · ρ · c.

Alta Ct ajuda a
retardar variações
bruscas de
temperatura, mas
pode acumular
calor excessivo em
regiões de baixa
amplitude térmica
diária (quentes
durante o dia e
quentes durante a
noite).

Alta Ct funciona
como “reservatório”
de calor, evitando
oscilações bruscas de
temperatura e
mantendo o
ambiente aquecido
por mais tempo.
Isso é especialmente
útil em regiões de
alta amplitude
térmica diária
(quentes durante o
dia e frios durante a
noite).

Resistência
térmica (R)
[(m2·K)/W] Capacidade do elemento em

reduzir a troca de calor por
condução. Para camada
homogênea: R = e

λ .

Alta R inibe a
entrada de calor,
evitando o
superaquecimento
da edificação.

Alta R impede a
sáıda de calor,
ajudando a manter o
ambiente interno
aquecido.

Transmitância
térmica (U)
[W/(m2·K)] Taxa de transferência de

calor induzida por diferença
de temperatura entre
superf́ıcies (ABNT, 2024b).
Para elementos planos:
U = 1

R .

Baixa U contribui
para impedir a
entrada de calor
do exterior para o
interior a
edificação.

Baixa U contribui
para reter calor na
edificação.

Fonte: (MENDES, 2023), adaptado.

2.1.3 Métodos de avaliação por simulação energética

Os softwares de simulação computacional possibilitam a análise do desempenho termoe-

nergético das edificações. Entre eles, o EnergyPlus destaca-se como o software gratuito

mais amplamente utilizado no mundo (MENDES et al., 2024). Desenvolvido pelo De-

partamento de Energia dos Estados Unidos, o programa tem como objetivo estimar as

trocas térmicas, os ńıveis de iluminação e o consumo energético das edificações modeladas

(LAMBERTS et al., 2010). Dessa forma, é posśıvel realizar simulações para diferentes

tipologias construtivas a partir da modelagem tridimensional do edif́ıcio, considerando
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ainda as condições bioclimáticas locais por meio de arquivos meteorológicos espećıficos de

cada cidade.

As simulações no EnergyPlus são realizadas através de arquivos de entrada pre-

viamente configurados com os parâmetros f́ısicos e operacionais, como as propriedades

dos sistemas construtivos, especificação das aberturas para ventilação natural (janelas

e portas), o modelo geométrico da edificação, os padrões de ocupação, as condições de

sombreamento, a divisão em zonas térmicas, configurações do sistemas de aquecimento,

ventilação e ar-Condicionado (AVAC) entre outros fatores que influenciam o desempenho

energético (EnergyPlus, 2025). O EnergyPlus possui diversas variáveis de sáıda, e cada

método de avaliação possúı outputs distintos. Dentre esses métodos, quatro se destacam:

Carga Térmica (CT), Graus-hora (GH), Autonomia Térmica (AT) e Resiliência Térmica

(RT).

O método da Carga Térmica (CT) mede a energia consumida pelo sistema AVAC

para controle climático ativo da temperatura interna da edificação. Para isso é preciso

definir os setpoints (temperaturas em que os(as) usuários(as) ligam ar condicionado ou

aquecedor) de temperatura do sistema de AVAC, a partir de recomendações de normas

ou preferências locais. Esses setpoints podem ser definidos pelo(a) usuário(a), pelos(as)

projetistas ou por normas. Sempre que a temperatura interna excede o limite superior

ou cai abaixo do inferior, o sistema AVAC é acionado para resfriar ou aquecer o ambiente

e mantê-lo dentro da faixa estipulada. Assim, quanto menor a energia requerida para

manter a temperatura no intervalo-alvo, menor o CT, melhor o desempenho térmico

e maior a eficiência energética da edificação (HOYT; ARENS; ZHANG, 2015; WU et

al., 2023). A Figura 2.2 apresenta um exemplo de aplicação do método. O intervalo

setpoint foi configurado entre 21◦C e 23◦C, e as colunas em vermelho e azul, representam,

respectivamente, a carga térmica de aquecimento (CTa) e de resfriamento (CTr), que se

acumulam ao longo do ano de referência, somando toda vez que o aquecedor ou o ar

condicionado são colocados em funcionamento.
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Figura 2.2: Esquema de funcionamento de Carga Térmica CT

Fonte: (MENDES et al., 2024).

No geral, os estudos consideram ambientes de longa permanência da edificação

(como quartos, salas) ao longo de um ano de referência, de modo a abranger todas as

estações do ano, mantendo as janelas e portas permanentemente fechadas (somente com a

infiltração do ar entre as frestas) (MENDES, 2023). Naturalmente, essa métrica exige que

a edificação seja projetada com um sistema AVAC em mente. O cálculo do método segue

a equação (2.1), que soma as cargas térmicas anuais de aquecimento e de resfriamento:

CTtotal =
∑

ano de referência

(
CTa + CTr

)
(2.1)

onde:

� CTtotal é a soma das cargas térmicas de aquecimento e de resfriamento ao longo de

um ano;

� CTa é a carga térmica de aquecimento;

� CTr é a carga térmica de resfriamento.

O método Graus-Hora (GH) considera o uso da ventilação natural como estratégia

passiva de resfriamento no controle climático interno (sem uso do sistema AVAC). Ele
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acumula a diferença entre a temperatura interna e os limites de conforto térmico (tempe-

raturas operativas de referência) (MENDES et al., 2024). O Graus-Hora de aquecimento

(GHa) se refere a uma necessidade de aquecer o ambiente, correspondendo à soma das

diferenças entre a temperatura de conforto inferior e a temperatura interna sempre que

esta se encontra abaixo do limite. Já o Graus-Hora de resfriamento (GHr) se refere à

necessidade de resfriar o espaço, sendo obtido a partir das diferenças entre a temperatura

interna e a temperatura de conforto superior quando o limite é excedido. Mais uma vez,

os limites dos intervalos de conforto são definidos com base em normas locais ou conforme

a convenção adotada pela equipe de pesquisa (MENDES et al., 2024). O GH também se

dá pela análise do peŕıodo de um ano, e também em ambientes de longa permanência.

A Figura 2.3 apresenta um exemplo de aplicação do método GH para um inter-

valo de temperatura entre 18◦C e 26◦C. e a equação (2.2) apresenta a sua formulação

matemática. Assim como no CT, quanto menor o valor da métrica (GH, no caso), melhor

o desempenho da edificação.

Figura 2.3: Esquema de funcionamento de Graus-Hora (GH)
Fonte: (MENDES et al., 2024).

GH =
∑

ano ref.

[
max

(
0, To − Tmax,base

)
+max

(
0, Tmin,base − To

)]
. (2.2)

onde:



2.1 Avaliação Termoenergética 24

� GH: Graus hora (◦C·h);

� GHr: Graus hora de calor (◦C·h);

� GHa: Graus hora de frio (◦C·h);

� To: temperatura operativa interna (◦C);

� Tmax,base: limite superior de temperatura operativa (◦C);

� Tmin,base: limite inferior de temperatura operativa (◦C).

No método da Autonomia Térmica (AT), calcula-se a porcentagem de horas de

ocupação em que a temperatura interna da edificação se mantém dentro dos limites da

faixa de conforto térmico definidos (MENDES et al., 2024). Esses limites de tempera-

tura operativa podem ser estabelecidos com base em normas técnicas, recomendações da

literatura ou definidos pela equipe de pesquisa e preferências do(da) usuário(a), conforme

o contexto da análise. Por isso, esse método também é chamado de percentual de horas

dentro da faixa de temperatura operativa (PHFT)(ABNT, 2024b). Ele está relacionado

com o GH, ao passo em que se verifica o desempenho térmico da edificação com o uso

de ventilação natural (sem uso de estratégias ativas) e se analisa o desempenho térmico

por meio da comparação de temperaturas. Contudo, o GH está mais relacionado à in-

tensidade de desconforto térmico proporcionada pela edificação, enquanto a AT está mais

relacionada à frequência desse conforto térmico. A Figura 2.4 apresenta um exemplo de

aplicação do método AT para um intervalo de 18◦C e 26◦C e a equação (2.3) apresenta a

sua formulação matemática. Observe que, sempre que a temperatura operativa ultrapassa

os limites estabelecidos, ocorre uma redução no valor da métrica, ao passo que, dentro

da faixa de conforto térmico, o indicador permanece constante. Entende-se que, quanto

maior for o PHFT obtido, melhor será o desempenho térmico da edificação.
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Figura 2.4: Método de Autonomia Térmica (AT)

Fonte: (MENDES et al., 2024).

O cálculo do método segue a equação (2.3):

PHFT =

∑
ano de ref. δ(Tmin,base ≤ To ≤ Tmax,base)

total de horas ocupadas
× 100 (2.3)

δ =


1, se To está dentro da faixa [Tmin,base, Tmax,base]

0, caso contrário

(2.4)

onde:

� PHFT : percentual de horas de ocupação dentro de uma faixa de temperatura

operativa (%);

� To: temperatura operativa interna (◦C);

� Tmin,base: limite inferior de temperatura operativa (◦C);

� Tmax,base: limite superior de temperatura operativa (◦C);

Por fim, a Resiliência Térmica (RT) de uma edificação pode ser definida como

a capacidade de manter ou recuperar condições internas adequadas perante variações

térmicas extremas (por exemplo, ondas de calor ou frio intenso) e, por consequência,
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pode ser medida de diversas formas (APOLONIO; CALLEJAS; ROSETA, 2024). Uma

delas é a partir do indicador Graus-Hora SET (GH SET) (ASHRAE, 2020). Essa métrica

também se espelha no método GH, pois se contabiliza o acumulado da diferença de tempe-

ratura nas ocasiões de desconforto térmico (APOLONIO; CALLEJAS; ROSETA, 2024).

Contudo, a faixa de temperatura de controle é referente à temperatura efetiva padrão

(Standard Effective Temperature, i.e., SET). SET é um ı́ndice que considera a tempe-

ratura do ar, temperatura radiante, umidade, velocidade do ar e fatores do ocupante,

como o metabolismo e a vestimenta (GAGGE; NISHI; GONZALEZ, 1972). No cálculo

do GH SET, a condição térmica interna da edificação é representada pela temperatura

operativa interna (To), que corresponde à sensação térmica percebida pelo ocupante. Essa

variável considera não apenas a temperatura do ar, mas também o calor trocado com as

superf́ıcies do ambiente, como paredes, piso e cobertura, que podem estar mais quen-

tes ou mais frias e influenciar diretamente o conforto térmico. Nesse método, avalia-se

o desempenho térmico da edificação sob condições extremas, como apagões prolongados

ou escassez de combust́ıvel para climatização de uma edificação projetada para o uso de

estratégias ativas de controle climático (AVAC). A análise é feita para temporadas de

extremo frio ou extremo calor na dada região, considerando os sete dias mais cŕıticos do

ano (de frio ou calor).

A Figura 2.5 apresenta um exemplo de aplicação do método, com intervalo de

temperatura SET configurado entre 12◦C e 30◦C. Já a equação (2.5) apresenta o cálculo

embutido no método. Entende-se que, quanto menor o valor de GH SET calculado,

melhor o desempenho térmico e a resiliência térmica da edificação. O sistema Leadership

in Energy and Environmental Design (LEED) determina uma faixa de temperatura SET

entre 12◦C e 30◦C, sendo que, em edificações residenciais, os valores de GH SET não

devem ultrapassar 120◦C h SET.
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Figura 2.5: Método de Resiliência Térmica (RT)

Fonte: (MENDES et al., 2024).

GHSET =
∑

semana cŕıtica

(GHc,SET +GHf,SET)

=
∑

semana cŕıtica

[
max(0, To − Tmax,base) + max(0, Tmin,base − To)

]
.

(2.5)

onde:

� GHSET: Graus-Hora SET total (◦C·hSET);

� GHr,SET: Graus-Hora SET de calor (◦C·hSET);

� GHa,SET: Graus-Hora SET de frio (◦C·hSET);

� To: temperatura operativa interna (◦C);

� Tmax,base: limite superior de temperatura efetiva (◦C);

� Tmin,base: limite inferior de temperatura efetiva (◦C).

A precisão dos resultados e a ampla aceitação da comunidade cient́ıfica consolidam

softwares de simulação energética, como o EnergyPlus, como referência no campo da
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simulação termoenergética de edif́ıcios (MUSLIM, 2021). Contudo, sua aplicação ainda

impõe desafios práticos, sobretudo o tempo de processamento, que pode ultrapassar, em

muitos casos, vários minutos por modelo (MENDES, 2023). Em avaliações isoladas esse

tempo pode parecer modesto, porém, em estudos de otimização o tempo pode ser uma

limitação, devido à quantidade de simulações requeridas, que podem chegar à casa das

dezenas ou centenas de milhares (KUBWIMANA; NAJAFI, 2023).

Nesses cenários, o tempo total de execução torna-se um gargalo relevante, exi-

gindo maior capacidade computacional (CPU/GPU, paralelização, filas de jobs) e um

planejamento rigoroso do experimento para viabilizar análises de grande escala. Diante

disso, métodos de aprendizado de máquina (Machine Learning, ML) têm sido adotados.

Cada vez mais, torna-se comum a utilização de metamodelos que emulam a resposta de

softwares de simulação energética (CRUZ et al., 2024). Esses métodos, aliados a outras

ferramentas de inteligência artificial (IA), permitem varrer espaços de projeto amplos,

realizar otimização e quantificação de incertezas com menos custo computacional, sem

abrir mão do suporte do modelo f́ısico subjacente.

2.2 Aprendizado de Máquina

A IA é um campo da ciência da computação dedicado ao desenvolvimento de sistemas

capazes de realizar tarefas que, tradicionalmente, exigiriam inteligência humana. Esses

sistemas buscam reproduzir aspectos do racioćınio, da percepção e da aprendizagem, per-

mitindo que máquinas tomem decisões de forma autônoma com base em dados e padrões

observados no ambiente (RUSSELL; NORVIG, 2020).

No contexto computacional, a IA difere dos sistemas convencionais por não de-

pender de regras fixas programadas manualmente. Em vez de depender exclusivamente da

codificação manual do conhecimento humano, os algoritmos de aprendizado de máquina

são capazes de extrair automaticamente relações complexas entre variáveis, tornando se

especialmente úteis em domı́nios nos quais o comportamento do sistema é dinâmico, in-

certo ou dif́ıcil de modelar por meio de regras expĺıcitas. Em vez disso, baseia-se em

modelos capazes de “aprender” com experiências passadas e melhorar seu desempenho

progressivamente (FACELI et al., 2011). Essa capacidade de aprendizado é o que funda-
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menta o subcampo conhecido como aprendizado de máquina, em inglês, Machine Learning

(ML), responsável por permitir que os sistemas ajustem seus comportamentos com base

em dados emṕıricos (RUSSELL; NORVIG, 2016).

O ML pode ser entendido como o conjunto de métodos e algoritmos que permi-

tem que um sistema melhore automaticamente seu desempenho em determinada tarefa

por meio da experiência (RUSSELL; NORVIG, 2016). Em outras palavras, o computador

não é explicitamente programado para realizar cada ação, mas sim treinado a partir de

dados que representam o comportamento esperado. Essa abordagem tem se mostrado fun-

damental em aplicações como reconhecimento facial, análise de sentimentos, diagnóstico

médico, sistemas de recomendação e previsão de demanda energética (GÉRON, 2019).

Géron (2019), define que um programa é considerado capaz de aprendizado de

máquina quando seu desempenho em uma tarefa T melhora com a experiência E, medida

por uma métrica de desempenho P . Essa formulação, embora datada, continua sendo útil

porque explicita o caráter iterativo do processo de aprendizado: o modelo é sucessivamente

exposto a pares de entrada e sáıda esperada e, cada iteração, ajusta seus parâmetros

interno para reduzir o erro e, assim, ampliar sua capacidade preditiva. É justamente

esse prinćıpio que permanece na base dos algoritmos contemporâneos de ML. De forma

complementar,Russell e Norvig (2016), ressaltam que o ML constitui a espinha dorsal

das aplicações modernas de IA, pois oferece os mecanismos necessários para transformar

grandes volumes de dados em conhecimento.

No âmbito do aprendizado de máquina, os métodos podem ser classificados, de

forma geral, de acordo com a natureza dos dados dispońıveis e do tipo de tarefa envolvida.

As abordagens mais difundidas incluem o aprendizado supervisionado, no qual o modelo

é treinado a partir de exemplos rotulados, isto é, pares de entrada e sáıda desejada; o

aprendizado não supervisionado, que busca identificar padrões, estruturas ou agrupamen-

tos em dados não rotulados; e, em menor escala, o aprendizado por reforço, baseado na

interação cont́ınua com o ambiente por meio de recompensas e penalidades (FACELI et

al., 2011; GÉRON, 2019). Essa distinção é fundamental para compreender o escopo e as

limitações de cada técnica, bem como o tipo de problema ao qual elas se aplicam.

O foco desta seção recai sobre o Extreme Gradient Boosting (XGBoost), modelo
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preditivo adotado nas análises, pertencente à classe dos algoritmos de ML supervisionado

baseados em árvores de decisão. A seguir, apresentam-se seus fundamentos teóricos e os

principais elementos necessários à sua aplicação no contexto deste estudo.

2.2.1 Aprendizado Não Supervisionado

No aprendizado não supervisionado, o modelo é treinado a partir de um conjunto de dados

não rotulado, isto é, as amostras de entrada não estão associadas a sáıdas ou rótulos pre-

viamente definidos. Nesse contexto, o objetivo principal não é realizar previsões diretas,

mas identificar padrões, agrupamentos ou regularidades presentes nos dados, explorando

exclusivamente as relações internas entre as variáveis de entrada (ALPAYDIN, 2020; FA-

CELI et al., 2011).

Diferentemente do aprendizado supervisionado, em que existe uma variável alvo

expĺıcita, o aprendizado não supervisionado busca compreender a organização intŕınseca

do conjunto de dados. Essa abordagem é particularmente útil em situações nas quais o

processo de rotulagem é inviável, custoso ou subjetivo, bem como em etapas exploratórias

de análise de dados, redução de dimensionalidade e segmentação de amostras (GÉRON,

2022).

Entre as principais categorias de aprendizado não supervisionado destacam-se

os métodos de agrupamento (clustering), que têm como objetivo particionar o conjunto

de dados em grupos de amostras semelhantes entre si e distintas das demais, segundo

algum critério de similaridade ou distância (RUSSELL; NORVIG, 2016). Nesses métodos,

espera-se que amostras pertencentes a um mesmo grupo compartilhem caracteŕısticas

comuns, enquanto amostras de grupos diferentes apresentem maior dissimilaridade.

Um dos algoritmos de agrupamento mais amplamente utilizados na literatura é

o k-means. Esse algoritmo visa particionar o conjunto de dados em k grupos previamente

definidos, denominados clusters, de modo a minimizar a soma das distâncias quadráticas

entre cada amostra e o centroide do grupo ao qual ela foi atribúıda (AHMED; SERAJ;

ISLAM, 2020). Formalmente, o k-means busca minimizar a variância intra-cluster, pro-

movendo agrupamentos compactos e bem definidos no espaço de atributos.

O funcionamento do k-means ocorre de forma iterativa. Inicialmente, são seleci-
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onados k centroides, que podem ser definidos aleatoriamente ou por métodos espećıficos

de inicialização. Em seguida, cada amostra do conjunto de dados é atribúıda ao cluster

cujo centroide apresenta a menor distância, geralmente medida pela distância euclidiana.

Após essa etapa de atribuição, os centroides são recalculados como a média das amostras

pertencentes a cada cluster. Esse processo de atribuição e atualização é repetido até que

não haja mais mudanças significativas nos centroides ou nas associações das amostras

(GÉRON, 2022).

Apesar de sua simplicidade e eficiência computacional, o k-means apresenta al-

gumas limitações relevantes. O número de clusters k deve ser definido previamente, o

que nem sempre é trivial e pode influenciar significativamente os resultados. Além disso,

o algoritmo é senśıvel à inicialização dos centroides e à presença de outliers, podendo

convergir para mı́nimos locais (FACELI et al., 2011). Ainda assim, devido à sua in-

terpretabilidade e baixo custo computacional, o k-means é amplamente empregado em

diversas áreas, como segmentação de clientes, análise exploratória de dados, agrupamento

de materiais, identificação de padrões climáticos e organização de grandes bases de dados

multidimensionais.

2.2.2 Aprendizado Supervisionado

No aprendizado supervisionado o modelo é treinado a partir de um conjunto de dados

rotulado, no qual cada amostra de entrada está associada a uma sáıda desejada. O

objetivo é aprender uma função capaz de generalizar o relacionamento entre variáveis de

entrada (features) e sáıdas (targets), de modo que o modelo consiga realizar previsões

precisas quando exposto a novos dados (ALPAYDIN, 2020).

De forma geral, os problemas supervisionados podem ser divididos em duas gran-

des categorias: classificação e regressão. A classificação é empregada quando a variável

de sáıda é discreta, representando classes ou categorias. O objetivo, nesse caso, é atri-

buir uma classe correta a cada nova amostra com base em padrões aprendidos durante

o treinamento (RUSSELL; NORVIG, 2016; LITJENS et al., 2017; PHUA et al., 2010;

LESSMANN et al., 2015). Exemplos t́ıpicos incluem o reconhecimento de imagens, a

detecção de fraudes bancárias, a identificação de doenças em exames médicos e a previsão



2.2 Aprendizado de Máquina 32

de aprovação de crédito. Em todos esses casos, o modelo deve distinguir entre categorias

distintas, como “fraude” ou “não fraude”, “positivo” ou “negativo”, “baixo risco” ou “alto

risco”.

Por outro lado, a regressão é aplicada quando a variável de sáıda é cont́ınua,

ou seja, assume valores numéricos dentro de um intervalo (RUSSELL; NORVIG, 2016).

Nesses casos, o modelo busca prever quantidades, tendências ou intensidades com base nas

caracteŕısticas de entrada. Exemplos incluem a previsão de preços de imóveis, o consumo

de energia, a temperatura ambiente, a resistência de um concreto, a produção agŕıcola

e a carga térmica de uma edificação (GÉRON, 2022). A regressão, portanto, é essencial

em estudos que envolvem estimativas quantitativas e relações f́ısicas ou econômicas entre

variáveis.

Em termos genéricos, os modelos de regressão supervisionada aprendem a mini-

mizar o erro entre os valores previstos e os valores reais, utilizando métricas de avaliação

que quantificam o desempenho do modelo (Elastic, 2025). Quanto menor for o erro ob-

tido durante o treinamento e a validação, mais adequado tende a ser o modelo de ML ao

problema em análise. No entanto, é preciso cautela quanto ao sobreajuste (overfitting),

situação em que o modelo apresenta desempenho aparentemente excelente nos dados de

treinamento, mas baixa capacidade de generalização ao ser aplicado a novos casos (FA-

CELI et al., 2011). Para mitigar esse efeito, recomenda se a divisão do conjunto de dados

em amostras distintas de treinamento, validação e teste. Entretanto, essa estratégia só é

efetiva quando os subconjuntos são representativos da distribuição dos dados e não exces-

sivamente homogêneos, uma vez que conjuntos enviesados podem conduzir ao sobreajuste

e a uma avaliação excessivamente otimista do desempenho do modelo (ALPAYDIN, 2020;

FACELI et al., 2011). Nessa estrutura, o conjunto de treinamento é usado para ajustar

os parâmetros do modelo, o de validação serve para calibrar hiperparâmetros e preve-

nir o sobreajuste, e o de teste é reservado para avaliar a capacidade de generalização

(ALPAYDIN, 2020).

Outra abordagem amplamente empregada é a validação cruzada (cross-validation),

em que o conjunto de dados é dividido em múltiplas partições (ou folds), alternando-se

as amostras utilizadas para treino e validação a cada iteração (ALPAYDIN, 2020; FA-
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CELI et al., 2011). Em aplicações práticas, é comum realizar previamente uma separação

do conjunto de dados em duas partes: uma parcela destinada ao conjunto de teste, ti-

picamente correspondente a 20% das amostras, mantida isolada durante o processo de

treinamento, e a parcela restante (80%), utilizada na etapa de validação cruzada. Esse

procedimento permite estimar de forma mais confiável o desempenho médio do modelo,

reduzindo a dependência de uma única divisão dos dados e mitigando posśıveis vieses

amostrais (ALPAYDIN, 2020). A Figura 2.6 apresenta o funcionamento do método k

fold cross-validation, com k = 5, sendo reiterado 5 vezes de modo que, em cada iteração,

um fold diferente é utilizado para validação e os demais 4 folds compõem o conjunto

de treinamento. Ao final das 5 execuções, obtém-se uma estimativa média mais estável

do desempenho do modelo, reduzindo sua sensibilidade a uma única divisão dos dados e

mitigando potenciais vieses amostrais.

Figura 2.6: Banco de dados dividido em subconjuntos de treino e teste por meio do
método k-fold para k=5

Fonte: (MENDES et al., 2025)

Entre as métricas mais utilizadas em problemas de regressão estão o erro absoluto

médio (Mean Absolute Error, MAE), o erro percentual absoluto médio (Mean Absolute

Percentage Error, MAPE), o erro quadrático médio (Root Mean Squared Error, RMSE),

e o coeficiente de determinação (R2)(MENDES et al., 2025).

O erro absoluto médio (Mean Absolute Error, MAE), calcula a média das dife-
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renças absolutas entre os valores previstos (ŷi) e os valores observados (yi) na quantidade

de dados analisados, sendo expressa na equação (2.6):

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.6)

O MAE é expresso na mesma unidade da variável de interesse, uma vez que

representa a média das diferenças absolutas entre valores observados e previstos. Quanto

menor o valor do MAE, melhor o desempenho do modelo, pois menores são, em média,

os desvios entre as previsões e os valores reais.

O erro percentual absoluto médio (Mean Absolute Percentage Error, MAPE) re-

presenta o erro relativo em termos percentuais, permitindo avaliar o desvio médio pro-

porcional entre as previsões e os valores reais, sendo expressa na equação (2.7):

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.7)

O MAPE é uma métrica adimensional, expressa em termos percentuais, o que

facilita a interpretação do erro de forma relativa à magnitude dos valores observados.

Valores mais baixos de MAPE indicam maior precisão preditiva do modelo. Contudo,

essa métrica pode apresentar limitações quando os valores observados yi se aproximam de

zero, situação na qual o erro percentual tende a ser amplificado.

Já o erro quadrático médio (Root Mean Squared Error, RMSE) dá maior peso a

erros mais altos, sendo amplamente empregado quando grandes desvios têm maior impacto

no desempenho do modelo, sendo expressa na Eq. (2.8):

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.8)

O RMSE é expresso na mesma unidade da variável de interesse, assim como o

MAE, porém atribui maior penalização a erros de maior magnitude devido à elevação ao

quadrado das diferenças. Dessa forma, valores menores de RMSE indicam melhor desem-

penho do modelo, sendo essa métrica especialmente adequada quando grandes desvios

entre valores previstos e observados são indesejáveis.

Por fim, o coeficiente de determinação (Coefficient of Determination, R2) mede
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a proporção da variabilidade dos dados que é explicada pelo modelo, indicando sua qua-

lidade de ajuste, sendo expressa na Eq. (2.9):

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.9)

O coeficiente de determinação R2 é uma métrica adimensional que pode assumir

valores variando de -∞ a 1. Valores próximos de 1 indicam que o modelo explica grande

parte da variabilidade dos dados observados, enquanto valores próximos de zero indicam

desempenho semelhante ao de um modelo que utiliza apenas a média dos dados como

predição. Valores negativos de R2 indicam que o modelo apresenta desempenho inferior

a esse preditor médio, caracterizando um ajuste inadequado.

Essas métricas permitem quantificar a precisão e a robustez dos modelos predi-

tivos, sendo ferramentas fundamentais para a comparação de diferentes algoritmos e o

refinamento de seus hiperparâmetros.

2.2.3 Árvores de Decisão

As árvores de decisão (Decision Trees, em inglês) constituem um dos modelos mais in-

tuitivos e amplamente utilizados no aprendizado supervisionado, tanto para tarefas de

classificação quanto de regressão (ABDULQADER; ABDULAZEEZ, 2024). Sua popu-

laridade advém da simplicidade conceitual e da capacidade de representar relações não

lineares entre variáveis de entrada e sáıda de maneira interpretável.

A Figura 2.7 ilustra uma árvore de decisão para resolver um problema de re-

gressão. A construção da árvore segue uma abordagem de cima para baixo, em que o

nó raiz contém todo o conjunto de dados. A cada iteração, as divisões são realizadas até

que se atinja um critério de parada, como a profundidade máxima, o número mı́nimo de

amostras por nó ou a ausência de ganho informacional significativo. O resultado final

é uma estrutura hierárquica composta por nós de decisão e nós folha, nos quais cada

folha representa uma previsão ou valor médio associado às amostras pertencentes àquele

subconjunto.
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Divisão 1

X1 ≤ 0,35?

(MSE = 12,8)

Folha L

ŷ = 12,3

n = 85

Sim

Divisão 2

X2 ≤ 18?

(MSE = 6,4)

Folha M

ŷ = 7,8

n = 40

Sim

Folha R

ŷ = 4,1

n = 32

Não

Não

Nós de decisão: regra de divisão (Xj e limiar).

Folhas: predição do nó (ŷ) e tamanho da amostra (n).

Figura 2.7: Exemplo de árvore de decisão para regressão. Os nós de decisão exibem a
regra de divisão e uma métrica de erro (MSE); as folhas apresentam a previsão média ŷ
e o número de amostras n.

Fonte: Baseado em (STANKEVIX, 2020).

Nota-se que o funcionamento de uma árvore de decisão baseia-se na divisão recur-

siva do conjunto de dados em subconjuntos progressivamente mais homogêneos, segundo

critérios de decisão definidos por métricas estat́ısticas (BLOCKEEL et al., 2023). Em

cada nó da árvore, escolhe-se uma variável e um ponto de divisão que melhor separam as

amostras de acordo com o objetivo de predição. Para problemas de classificação, medidas

como a impureza de Gini e a entropia são comumente utilizadas para avaliar a qualidade

das divisões (BLOCKEEL et al., 2023). Já em problemas de regressão, o critério mais

adotado é a minimização do erro quadrático médio (Mean Squared Error, MSE) entre os

valores previstos e observados (BLOCKEEL et al., 2023).

Uma das principais vantagens das árvores de decisão é a facilidade de inter-

pretação. A estrutura hierárquica permite compreender de forma direta como o modelo

chega a uma decisão (ABDULQADER; ABDULAZEEZ, 2024). Essas caracteŕısticas são

úteis em aplicações que demandam transparência, como diagnósticos médicos, crédito

bancário ou avaliação de desempenho energético de edificações. No entanto, árvores in-

dividuais tendem a apresentar limitações em termos de generalização, podendo sofrer de

sobreajuste (overfitting) quando o modelo se torna excessivamente complexo e ajustado

aos dados de treinamento (ZHANG, 2024), fazendo valer a etapa de validação e teste do
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modelo para avaliar esse problema.

Para contornar essas limitações de overfitting, surgiram os chamados métodos de

ensemble, que combinam modelos em que múltiplas árvores que são treinadas de forma

sequencial, como o Random Forest e o Gradient Boosting, que combinam múltiplas árvores

para aumentar a precisão e a robustez do modelo (ABDULQADER; ABDULAZEEZ,

2024). Dentre esses métodos, destaca-se o Extreme Gradient Boosting (XGBoost), que é

apresentado na subseção seguinte.

2.2.4 Extreme Gradient Boosting (XGBoost)

O Extreme Gradient Boosting (XGBoost) é um modelo de aprendizado supervisionado

baseado em árvores de decisão que utiliza o prinćıpio do boosting de gradiente para apri-

morar progressivamente a capacidade preditiva do modelo (XGBoost Developers, 2025).

Desenvolvido por Chen e Guestrin (2016), ele é amplamente reconhecido por sua alta

eficiência computacional, desempenho preditivo robusto e flexibilidade de aplicação em

problemas de regressão e classificação (CHEN; GUESTRIN, 2016).

O boosting é uma técnica de aprendizado por conjunto (ensemble) na qual múltiplos

modelos, tipicamente árvores de decisão, são treinados de forma sequencial (CHEN;

GUESTRIN, 2016). A cada iteração, o modelo corrige os erros residuais das previsões

realizadas nas árvores antecessores, de modo que o modelo final seja uma soma ponderada

de todas essas árvores constrúıdas (CHEN; GUESTRIN, 2016). Essa abordagem permite

que o XGBoost capture relações complexas entre variáveis e reduza o viés e a variância do

modelo(CHEN; GUESTRIN, 2016). A Figura 2.8 ilustra esse funcionamento conceitual,

evidenciando a sequência de treinamento e correção dos reśıduos ao longo das iterações.

Dados de Treinamento

(X, y)

Árvore 1

f1(x)

Árvore 2

f2(x)

Árvore 3

f3(x)

Previsão Final

ŷ =
∑K

k=1 fk(x)

Treina

Corrige

reśıduos

Ajusta

novamente

Soma

modelos

Erros residuais r1 = y − ŷ1 r2 = y − (ŷ1 + ŷ2) r3 = y − (ŷ1 + ŷ2 + ŷ3)

Figura 2.8: Esquema conceitual do funcionamento do XGBoost.

Fonte: Baseado em (XGBoost Developers, 2025).

O processo de aprendizagem do XGBoost busca minimizar uma função objetivo
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(L(ϕ)) composta por dois termos: a função de perda (l), que mede o erro entre as previsões

(ŷi) e os valores reais (yi), e um termo de regularização (Ω(f)), que penaliza a comple-

xidade do modelo, prevenindo overfitting. Essa função objetivo é expressa na equação

(2.10).

L(ϕ) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (2.10)

A função de perda (l) costuma ser o erro MSE. Já o termo de regularização

(Ω(f)) é uma função do número de folhas da árvore (T), peso de cada folha (w2
j ), e

hiperparâmetros que controlam a penalização de complexidade (γ e λ), como se verifica

na equação (2.11).

Ω(f) = γT +
1

2
λ

T∑
j=1

w2
j (2.11)

O processo de aprendizado do XGBoost ocorre de forma aditiva e sequencial, em

que cada árvore é treinada para corrigir os erros residuais gerados pelas previsões ante-

riores. Dessa maneira, o modelo final resulta da soma ponderada de todas as árvores,

aprimorando gradualmente o ajuste às observações reais sem perder capacidade de gene-

ralização.

Entre as principais caracteŕısticas do XGBoost destacam-se sua regularização

expĺıcita, que incorpora penalizações L1 e L2 que reduzem o sobreajuste, e o suporte à

paralelização, que permite o particionamento eficiente de dados e acelera o treinamento

(CHEN; GUESTRIN, 2016). Além disso, também se destacam a capacidade de manejar

dados ausentes, identificando automaticamente os caminhos ideais para amostras com

valores faltantes, e o controle de aprendizado, realizando por meio do parâmetro learning

rate (η,) que equilibra a velocidade e a estabilidade de convergência (XGBoost Developers,

2025). Por fim, mas não menos importante, tem-se a análise de importância das variáveis,

que fornece medidas interpretáveis de contribuição de cada atributo na predição (XGBoost

Developers, 2025).

Embora os modelos preditivos baseados em ML, como o XGBoost, sejam ca-

pazes de estimar com alta precisão o desempenho termoenergético das edificações, sua
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aplicação isolada não é capaz de apoiar suficientemente as decisões complexas de projeto,

envolvendo múltiplos critérios que devem ser equilibrados simultaneamente (CRUZ et al.,

2024). Projetos arquitetônicos e construtivos envolvem, por natureza, trade-offs entre

variáveis como desempenho térmico, consumo energético, custo de materiais e impacto

ambiental (TRIANA et al., 2023). Assim, a busca por soluções que conciliem desempenho

e sustentabilidade requer uma abordagem sistemática que vá além da simples previsão de

resultados (CRUZ et al., 2024). Nesse contexto, a integração entre modelos preditivos e

métodos de otimização multiobjetivo torna-se uma estratégia poderosa (KUBWIMANA;

NAJAFI, 2023; COELLO et al., 2020). O modelo preditivo atua como um metamo-

delo (ou modelo substituto), capaz de estimar rapidamente o desempenho de diferentes

combinações de variáveis, reduzindo o custo computacional associado a simulações termo-

energéticas completas (BARBARESI et al., 2022). Já o algoritmo de otimização, como

será discorrido na seção 2.3, é responsável por explorar o espaço de soluções, identifi-

cando os conjuntos de alternativas mais promissores de acordo com os objetivos definidos

(COELLO et al., 2020).

2.3 Otimização

De modo geral, a otimização, no contexto de pesquisa operacional, consiste em encon-

trar, entre todas as soluções posśıveis de um problema, aquela (ou aquelas) que melhor

satisfaçam determinado critério de desempenho (HILLIER; LIEBERMAN, 2015). Esse

tipo de problema está presente em diversas áreas do conhecimento, sempre que há a ne-

cessidade de maximizar ou minimizar alguma variável de interesse, como eficiência, custo,

tempo ou desempenho. Em sua forma mais simples, um problema de otimização busca

identificar o vetor de variáveis de decisão que minimize (ou maximize) uma função objetivo

f(x) sujeita a restrições, como mostrado na equação (2.12), juntamente com as restrições

de desigualdade - equação (2.13) e igualdade - equação (2.14). O vetor x corresponde às

variáveis de decisão do modelo, definido na equação (2.15).

min
x∈Rn

f(x) (2.12)
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sujeito a gi(x) ≤ 0, i = 1, 2, . . . ,m (2.13)

hj(x) = 0, j = 1, 2, . . . , p (2.14)

x = [x1, x2, . . . , xn]
T (2.15)

Na prática, muitos problemas de engenharia, inclusive os relacionados ao desem-

penho termoenergético de edificações, apresentam natureza não linear, múltiplos mı́nimos

locais e variáveis interdependentes (COELLO et al., 2020). Nessas situações, métodos

anaĺıticos tradicionais se tornam inviáveis, exigindo o uso de abordagens numéricas e

heuŕısticas (COELLO et al., 2020). As abordagens numéricas são técnicas matemáticas

que buscam soluções aproximadas por meio de cálculos iterativos (CHAPRA; CANALE,

2015). Já as heuŕısticas são estratégias baseadas em regras emṕıricas ou inspiradas em

fenômenos naturais, usadas quando o problema é tão complexo que não há uma solução

exata viável (COELLO et al., 2020). Indo além, temos abordagens meta-heuŕısticas evolu-

tivas, em especial, inspiradas em processos naturais que, têm se mostrado particularmente

eficientes em lidar com tais desafios, oferecendo soluções robustas em espaços de busca

complexos e de alta dimensionalidade (COELLO et al., 2020; DEB et al., 2002).

Entre as meta-heuŕısticas mais conhecidas, destaca-se o algoritmo genético (Ge-

netic Algorithm, GA), introduzido por Holland na década de 1970 (COELLO et al., 2020).

Inspirado nos prinćıpios da seleção natural e da genética biológica, o GA simula

a evolução de uma população de soluções potenciais ao longo de várias gerações (EIBEN;

SMITH, 2015). Cada indiv́ıduo representa uma posśıvel solução codificada (normalmente

em forma de vetor ou cadeia binária), e seu desempenho é avaliado por uma função de

aptidão (fitness) (EIBEN; SMITH, 2015). Os indiv́ıduos mais aptos têm maior probabili-

dade de serem selecionados para reprodução, onde operadores genéticos, como cruzamento

(crossover) e mutação, são aplicados para gerar novas soluções (EIBEN; SMITH, 2015).

Esse processo iterativo promove a exploração e a diversificação do espaço de busca, per-

mitindo que o algoritmo evolua gradualmente em direção a soluções cada vez melhores
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(EIBEN; SMITH, 2015). A Figura 2.9 ilustra o procedimento.

População inicial

101101 011010 110001

Avaliação (Fitness)

Mede desempenho de cada indiv́ıduo

Seleção

Indiv́ıduos mais aptos têm maior chance

Pais selecionados

101101 011010

Cruzamento (Crossover)

Recombinação genética

Filhos gerados

101010 011101

Mutação

Pequenas alterações aleatórias

101110

Nova geração

Filhos + última geração

Figura 2.9: Fluxo de um Algoritmo Genético.

Fonte:Baseado em (GONTIJO, 2020).

Em problemas com múltiplos critérios de desempenho, no entanto, a aplicação

de um único GA tradicional é limitada, pois ele tende a convergir para uma única solução

ótima (DEB et al., 2002). Para lidar com cenários onde há mais de um objetivo a ser

otimizado simultaneamente, surgiram os chamados algoritmos genéticos multiobjetivo

(Multi-Objective Genetic Algorithms, MOGAs) (COELLO et al., 2020). Esses métodos

estendem os prinćıpios do GA clássico para trabalhar com múltiplas funções objetivo

em paralelo, buscando não uma única resposta, mas um conjunto de soluções de com-

promisso conhecidas como soluções de Pareto (DEB et al., 2002). Assim, em vez de

escolher arbitrariamente uma métrica de desempenho agregada, os MOGAs exploram o

equiĺıbrio natural entre objetivos conflitantes, oferecendo à projetista um leque de alter-

nativas com diferentes compensações entre custo, eficiência e outros critérios relevantes

(WIERZBICKI, 1980).

Entre as abordagens mais notáveis de MOGAs estão o algoritmo genético de

ordenação não dominada II (Non-dominated Sorting Genetic Algorithm II, NSGA-II) e

sua extensão NSGA-III (DEB et al., 2002). Esses métodos são particularmente úteis em

problemas de engenharia, onde decisões de projeto frequentemente envolvem múltiplos

objetivos interdependentes, como, no presente caso, desempenho térmico, consumo de

energia, impacto ambiental e custo construtivo.
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2.3.1 Otimização multiobjetivo

No mundo real, existem inúmeros problemas com dois ou mais objetivos, muitas vezes

conflitantes, aos quais buscamos otimizar simultaneamente. Por exemplo, ao desenvolver

um carro elétrico, uma empresa pode precisar equilibrar: maximizar a autonomia, mini-

mizar o custo de produção e reduzir o tempo de recarga. Aumentar a autonomia pode

elevar custos e ampliar o tempo de recarga, enquanto reduzir o tempo de recarga pode

exigir tecnologias mais caras ou menos eficientes. Esse equiĺıbrio entre metas opostas

caracteriza um t́ıpico problema de otimização multiobjetivo. Esses problemas são conhe-

cidos como problemas de otimização multiobjetivo (Multi-Optmization Problems, MOPs)

(COELLO et al., 2020).

Devido ao conflito entre objetivos, a resolução de um MOP resulta em um con-

junto de soluções que representam os melhores compromissos posśıveis entre os objetivos

(ou seja, soluções nas quais um objetivo não pode ser melhorado sem piorar outro) (CO-

ELLO et al., 2020). Tais soluções constituem o conjunto soluções de compromisso, e a

imagem desse conjunto (isto é, os valores das funções objetivo correspondentes) forma a

chamada frente ou fronteira de Pareto (FONSECA; FLEMING, 1999).

Matematicamente, um MOP resolve como o exemplo exposto na equação (2.16):

minimizar f(x) := [f1(x), f2(x), . . . , fk(x)]

sujeito a gi(x) ≤ 0, i = 1, 2, . . . ,m,

hj(x) = 0, j = 1, 2, . . . , p.

(2.16)

Onde:

x = [x1, x2, . . . , xn]
T é o vetor de variáveis de decisão,

fi : Rn → R, para i = 1, . . . , k, são as funções objetivo.

gi e hj : Rn → R são as funções de restrição do problema.

Além disso, para introduzir a noção de otimalidade usada em um MOP, é ne-

cessário entender alguns pontos (WIERZBICKI, 1980):

1. Dados dois vetores x, y ∈ Rk, diz-se que x ≤ y se xi ≤ yi para i = 1, . . . , k, e que x

domina y (denotado por x ≺ y) se x¡y.
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2. Diz-se que um vetor de variáveis de decisão x ∈ X ⊂ Rn é não dominado com

respeito a X se não existe outro x′ ∈ X tal que f(x′) ≺ f(x).

3. Diz-se que um vetor de variáveis de decisão x∗ ∈ F ⊂ Rn (sendo F a região viável)

é ótimo de Pareto se for não dominado com respeito a F .

4. O conjunto ótimo de Pareto (P ∗) é definido conforme a Eq. (2.17):

P ∗ = {x ∈ F | x é ótimo de Pareto} (2.17)

5. A frente de Pareto (PF ∗) é definida conforme a equação (2.18):

PF ∗ = {f(x) ∈ Rk | x ∈ P ∗} (2.18)

Nota-se que, o objetivo é obter o conjunto ótimo de Pareto a partir do conjunto

F de todos os vetores de variáveis de decisão que satisfazem as restrições do problema.

No entanto, na prática, nem todo o conjunto ótimo de Pareto é desejável ou alcançável.

Em alguns casos, os tomadores e tomadoras de decisão tendem a preferir certos tipos de

soluções ou regiões espećıficas da frente de Pareto, como é discutido na subseção seguinte.

2.3.2 Métricas de avaliação de desempenho em otimização mul-

tiobjetivo

Na prática, algoritmos de otimização multiobjetivo não fornecem exatamente a frente de

Pareto ótima teórica, mas sim uma aproximação composta por um conjunto finito de

soluções. Dessa forma, torna-se necessário empregar métricas quantitativas capazes de

avaliar a qualidade dessas soluções aproximadas.

Entre as métricas mais utilizadas na literatura destacam-se o Hypervolume (HV),

o Inverted Generational Distance Plus (IGD+) e o Spacing, cada uma associada a um

critério distinto de qualidade da frente de Pareto obtida (COELLO; LAMONT; VELDHUI-

ZEN, 2007; DEB, 2001).

Considere P = {p1, p2, . . . , pN} o conjunto de soluções obtidas por um algoritmo
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de otimização multiobjetivo, R = {r1, r2, . . . , rM} uma frente de Pareto de referência e

f(p) = (f1(p), . . . , fk(p)) o vetor de valores das funções objetivo associado a uma solução

p.

Hypervolume (HV)

O Hypervolume mede o volume do espaço de objetivos dominado pelas soluções obtidas,

considerando um ponto de referência zref previamente definido, o qual deve ser pior do

que todas as soluções em todos os objetivos (ZITZLER; BROCKHOFF; THIELE, 2007).

Matematicamente, o HV é definido como pode ser visto na equação (2.19):

HV (P ) = λ

(⋃
p∈P

[
f1(p), z

ref
1

]
× · · · ×

[
fk(p), z

ref
k

])
, (2.19)

onde λ(·) representa a medida de Lebesgue no espaço dos objetivos.

De forma intuitiva, essa métrica indica simultaneamente o quão próximas as

soluções estão da região ideal e o quanto elas cobrem essa região. Valores mais elevados

de HV indicam frentes de Pareto mais desejáveis, pois refletem melhor desempenho global

e maior diversidade das soluções. Por essa razão, o HV é amplamente adotado como uma

métrica consolidada na avaliação de algoritmos de otimização multiobjetivo.

Inverted Generational Distance Plus (IGD+)

O IGD+ é uma métrica baseada em distância que avalia a proximidade entre a frente de

Pareto aproximada e uma frente de referência que representa a solução ideal do problema

(ZITZLER et al., 2003). Diferentemente do IGD tradicional, o IGD+ considera apenas

distâncias que violam a dominância de Pareto, penalizando soluções que estejam piores

do que a frente de referência.

A distância IGD+ entre um ponto de referência r ∈ R e uma solução p ∈ P é

definida na equação (2.20):

d+(r, p) =

√√√√ k∑
i=1

(max {fi(p)− fi(r), 0})2. (2.20)

Com base nessa distância, o IGD+ é calculado conforme pode ser visto na equação
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(2.21):

IGD+(P,R) =
1

|R|
∑
r∈R

min
p∈P

d+(r, p). (2.21)

Com isso, o IGD+ evita penalizar indevidamente soluções que dominam pontos

da frente de referência, tornando a métrica mais consistente com o conceito de dominância

de Pareto. Valores menores de IGD+ indicam melhor convergência da frente aproximada

em relação à frente ideal. De forma intuitiva, essa métrica mede o quão distante a frente

obtida está da frente ideal, considerando apenas os desvios realmente indesejáveis do

ponto de vista da otimização multiobjetivo.

Spacing

A métrica Spacing avalia a uniformidade da distribuição das soluções ao longo da frente

de Pareto (DEB, 2001). Inicialmente, define-se a distância mı́nima entre cada solução

pi ∈ P e as demais soluções da frente como demonstra a equação (2.22):

di = min
j ̸=i

k∑
m=1

|fm(pi)− fm(pj)| . (2.22)

Em seguida, o Spacing é calculado como o desvio padrão dessas distâncias, con-

forme pode ser visto na equação (2.23):

S =

√√√√ 1

N − 1

N∑
i=1

(di − d̄)2, (2.23)

onde d̄ representa a média das distâncias di.

Valores menores de Spacing indicam soluções mais uniformemente distribúıdas,

enquanto valores elevados apontam para aglomerações ou lacunas na frente aproximada,

comprometendo a diversidade das soluções.

Em conjunto, essas métricas permitem uma avaliação abrangente das soluções

obtidas, considerando convergência, diversidade e qualidade global da frente de Pareto

(COELLO; LAMONT; VELDHUIZEN, 2007).
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2.3.3 Otimização multiobjetivo baseada em pontos de referência

Com os recentes avanços na otimização evolutiva multiobjetivo (multi-objective evolutio-

nary optimization, EMO), é posśıvel encontrar diversas soluções de compromisso (trade-

off ) em problemas com quatro ou mais objetivos (VESIKAR; DEB; BLANK, 2018).

Porém, de acordo com Vesikar, Deb e Blank (2018), há ao menos duas razões pelas quais

os(as) usuários(as), em algumas ocasiões, podem estar interessados em encontrar apenas

uma parte da fronteira ótima de Pareto. Primeiro, após analisar as soluções obtidas por

algum algoritmo EMO, o(a) usuário(a) pode desejar se concentrar em uma região prefe-

rencial espećıfica da fronteira de Pareto, seja para obter soluções adicionais na região de

interesse ou para investigar a natureza das soluções naquela área. Segundo, o(a) usuário(a)

pode já ter uma preferência bem articulada entre os objetivos e estar interessado apenas

em soluções alinhadas a essas preferências ou podem existir restrições externas, como

f́ısicas, de custo e de projeto.

Existem diversas variantes de algoritmos EMO aplicáveis à busca por partes

espećıficas da fronteira ótima de Pareto. Dentre eles, destaca-se o R-NSGA-II (DEB;

SUNDAR, 2006), no qual as preferências dos tomadores e tomadoras de decisão são for-

necidas por um ou mais pontos de referência, seguindo uma abordagem de tomada de

decisão multicritério originalmente proposta por Wierzbicki (WIERZBICKI, 1980). Esse

algoritmo permite incorporar explicitamente as preferências dos tomadores de decisão no

processo evolutivo, direcionando a busca para regiões da fronteira de Pareto consideradas

mais relevantes. No entanto, por ser derivado do NSGA-II, o R-NSGA-II herda também

suas limitações, especialmente a dificuldade de manter uma boa distribuição das soluções

quando o número de objetivos aumenta, devido à perda de eficácia do mecanismo de crow-

ding distance em espaços objetivo de alta dimensionalidade (DEB et al., 2002). Esse fator

restringe sua aplicação em MOPs com muitos objetivos, motivando o desenvolvimento de

extensões mais robustas.

Em particular, o NSGA II seleciona soluções na última frente usando o crowding

distance, que estima a densidade local no espaço objetivo para promover diversidade

(DEB et al., 2002). Já o NSGA III substitui esse critério por um mecanismo de niching

guiado por pontos de referência, no qual os objetivos são normalizados e cada solução
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é associada ao ponto mais próximo, priorizando nichos menos ocupados para garantir

melhor cobertura da fronteira (DEB; SUNDAR, 2006). Essa mudança torna o controle de

diversidade mais robusto em problemas com muitos objetivos, onde o crowding distance

tende a perder poder discriminativo (DEB et al., 2002; DEB; SUNDAR, 2006).

O R-NSGA-III supera as limitações de seus predecessores ao combinar o meca-

nismo de pontos de referência do R-NSGA-II com a estrutura do NSGA-III, concebida

especificamente para lidar com problemas de muitos objetivos. Dessa forma, o algoritmo

mantém a capacidade de incorporar preferências expĺıcitas dos tomadores e tomadoras

de decisão por meio de pontos de referência personalizados, ao mesmo tempo que se be-

neficia da distribuição estruturada de soluções caracteŕıstica do NSGA-III, favorecendo

maior diversidade em espaços objetivo de alta dimensionalidade (DEB; SUNDAR, 2006;

VESIKAR; DEB; BLANK, 2018).

Essa integração torna o R-NSGA-III mais eficiente e adequado a aplicações práticas,

nas quais os tomadores e tomadoras de decisão estão interessados em regiões espećıficas

da fronteira de Pareto, permitindo direcionar a busca conforme preferências sem compro-

meter a diversidade das soluções (VESIKAR; DEB; BLANK, 2018).

A Figura 2.10 apresenta, de forma esquemática, um método h́ıbrido. Inicial-

mente, um modelo de avaliação do sistema é empregado para gerar uma base de dados

que relaciona variáveis de entrada e respostas de interesse. Em seguida, técnicas de apren-

dizado de máquina são utilizadas para construir um modelo preditivo capaz de aproximar

o comportamento do sistema, o qual é validado por procedimentos de amostragem e ajuste

de parâmetros. Por fim, um algoritmo de otimização multiobjetivo explora o espaço de

soluções com base nesse modelo preditivo, incorporando preferências do tomador e to-

madora de decisão, assim resultando em um conjunto de soluções de compromisso para

análise de trade-offs entre os objetivos considerados.
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Simulação termoenergética

Entrada: clima e parâmetros do projeto

Sáıda: base de dados (X, y)

Modelagem preditiva (ML)

Treinamento e validação do metamodelo

Sáıda: preditor do desempenho

Otimização multiobjetivo (Algoritmo genético)

Busca no espaço de soluções usando o meta modelo

Sáıda: conjunto e frente de Pareto

Figura 2.10: Método integrado

Fonte: Elaborado pelo autor.

Enquanto o modelo preditivo é responsável por estimar, com elevada eficiência, o

desempenho do sistema sob diferentes configurações de projeto, o algoritmo de otimização

atua como um mecanismo de busca inteligente sobre essas estimativas, otimizando si-

multaneamente múltiplos objetivos potencialmente conflitantes. Dessa forma, o modelo

preditivo passa a desempenhar o papel de um metamodelo (ou modelo substituto) do mo-

delo de avaliação original, possibilitando que o processo de otimização explore um grande

número de soluções potenciais em um tempo computacional significativamente inferior ao

requerido por avaliações diretas do sistema. Essa integração não apenas reduz o tempo de

processamento das análises, mas também amplia a capacidade de exploração de cenários,

contribuindo para o desenvolvimento de projetos mais eficientes, sustentáveis e resilientes

frente às mudanças climáticas (CRUZ et al., 2024).
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2.3.4 Estado da Arte

O desempenho termoenergético de edificações tem sido amplamente estudado nas últimas

décadas, impulsionado pela crescente preocupação com a eficiência energética e a sustenta-

bilidade no setor da construção civil. Esse campo multidisciplinar integra conhecimentos

de arquitetura bioclimática, ciências dos materiais, termodinâmica e ciência de dados,

com o objetivo de reduzir o consumo energético e as emissões de gases de efeito estufa

associadas à construção e operação dos edif́ıcios (BALARAS et al., 2024).

Historicamente, os primeiros estudos do desempenho térmico se concentraram em

métodos emṕıricos e análises simplificadas baseadas em balanços térmicos (LAMBERTS

et al., 2010). A partir da década de 1990, o avanço dos recursos computacionais viabi-

lizou o uso de simulações termoenergéticas detalhadas, com destaque para ferramentas

como EnergyPlus e TRNSYS, que permitiram representar com maior precisão o compor-

tamento dinâmico das edificações (CRAWLEY et al., 2001; MUSLIM, 2021). Esses mo-

delos baseados em f́ısica continuam sendo a principal referência para análises de eficiência,

embora apresentem desafios relacionados ao tempo de processamento e à calibração dos

parâmetros de entrada (MENDES et al., 2024).

Nos últimos anos, a convergência entre técnicas de modelagem f́ısica e métodos

de ML tem impulsionado uma nova geração de abordagens h́ıbridas (KUBWIMANA;

NAJAFI, 2023). De acordo com Balaras et al. (2024), essa integração permite superar

limitações computacionais e aumentar a capacidade preditiva, utilizando dados simulados

ou emṕıricos para treinar modelos capazes de estimar o desempenho térmico e energético

de forma rápida e precisa. Conforme as revisões da literatura realizadas por Balaras et al.

(2024), Coello et al. (2020) e Cruz et al. (2024), verifica-se que os estudos mais recentes

agrupam-se em três grandes eixos: (i) modelos de previsão de consumo e cargas térmicas,

que aplicam regressões lineares, redes neurais e gradient boosting para estimar demandas

energéticas; (ii) modelos de controle e otimização operacional, voltados ao ajuste dinâmico

de sistemas de climatização e iluminação; e (iii) modelos de otimização de projeto, que

integram algoritmos evolutivos multiobjetivo com meta-modelos para explorar soluções

construtivas de melhor desempenho.

Entre as abordagens de otimização, destacam-se os algoritmos genéticos, o NSGA-
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II e suas extensões, amplamente utilizados na busca de soluções de compromisso entre

variáveis conflitantes, como custo, consumo e conforto térmico (CRUZ et al., 2024). Esses

algoritmos têm sido aplicados em conjunto com metamodelos baseados em aprendizado

supervisionado, como Rede Neural Artificial, Random Forest, Support Vector Regression

e XGBoost, para reduzir o número de simulações necessárias, mantendo boa precisão

(BARBARESI et al., 2022). A literatura recente evidencia que essa combinação h́ıbrida

oferece ganhos significativos de eficiência, tornando viável a aplicação de métodos de

otimização em larga escala e em diferentes zonas climáticas (CRUZ et al., 2024).

Apesar dos avanços, algumas lacunas permanecem. Muitos estudos ainda se

concentram em condições de operação estáticas, negligenciando a variabilidade climática

futura, devido às mudanças climáticas, e o conceito de resiliência térmica, que se torna

crucial frente às projeções de aumento de temperaturas médias globais (HONG et al.,

2023). Outro ponto cŕıtico é a escassez de bases de dados padronizadas e abertas, o que

dificulta a reprodutibilidade e comparação entre estudos (TIAN et al., 2021).

Além das lacunas relacionadas à variabilidade climática futura e à resiliência

térmica, observa-se que a maior parte dos estudos concentra-se predominantemente em

métricas associadas ao consumo energético, como CT, enquanto análises voltadas a edi-

ficações naturalmente ventiladas, baseadas em indicadores de conforto térmico como GH e

AT, ainda são relativamente escassas. Essa assimetria limita a compreensão do desempe-

nho térmico em contextos nos quais estratégias passivas desempenham papel central, espe-

cialmente em climas quentes ou mistos. Diante desse cenário, torna-se relevante o desen-

volvimento de abordagens integradas que considerem simultaneamente múltiplas métricas

de desempenho, como CT, GH, AT e RT, avaliadas tanto sob condições climáticas atuais

quanto sob cenários futuros. Ademais, a incorporação de pontos de referência no processo

decisório desponta como uma estratégia promissora para explicitar preferências do toma-

dor de decisão na análise de soluções de compromisso. Nesse contexto, a integração entre

modelos preditivos baseados em aprendizado de máquina e técnicas de otimização mul-

tiobjetivo apresenta-se como um caminho potencial para viabilizar a exploração eficiente

do espaço de soluções e a análise sistemática dos trade-offs entre desempenho térmico,

conforto e eficiência.
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3 Abordagem Proposta

A abordagem proposta neste trabalho integra simulações termoenergéticas, modelagem

preditiva e otimização multiobjetivo para identificar combinações construtivas que con-

ciliem conforto térmico, eficiência energética, custo de materiais e emissões de CO2. A

metodologia foi organizada para possibilitar a análise de um grande número de alter-

nativas de projeto sob condições climáticas atuais e futuras, considerando três cidades

brasileiras com climas distintos: São Paulo, Belém e Curitiba. Também incorpora as

preferências de tomadores e tomadoras de decisão por meio da atribuição de pesos aos

critérios de otimização e da seleção de regiões espećıficas da fronteira de Pareto conforme

diferentes prioridades. A Figura 3.1 apresenta uma visão geral do método adotado.

Figura 3.1: Fluxograma geral da metodologia da pesquisa

Fonte: Elaborado pelo autor.

Com base nas métricas de desempenho termoenergético, econômico e ambiental

apresentadas anteriormente, este trabalho formula um problema de otimização multi-

objetivo para apoiar a seleção de sistemas construtivos de edificações residenciais. O

objetivo é identificar combinações de sistemas de paredes, pisos e coberturas que apresen-

tem soluções de compromisso entre desempenho térmico, custo e emissões de dióxido de

carbono, considerando simultaneamente cenários de clima presente e futuro.
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O problema é caracterizado por um espaço de decisão, composto por um con-

junto finito de alternativas construtivas para cada elemento da envoltória da edificação.

Para cada combinação candidata, as funções objetivo são avaliadas a partir dos modelos

computacionais desenvolvidos, permitindo quantificar o impacto da escolha dos sistemas

construtivos sobre o desempenho global da edificação.

Adota-se uma abordagem de otimização multiobjetivo, na qual não se busca uma

única solução ótima, mas sim um conjunto de soluções não dominadas que aproximam a

frente de Pareto do problema. Dessa forma, a formulação proposta possibilita analisar

explicitamente os conflitos existentes entre os diferentes objetivos, fornecendo subśıdios

quantitativos para a tomada de decisão em projetos de edificações sob a perspectiva de

eficiência energética, viabilidade econômica e sustentabilidade ambiental. As equações

(3.1) até a (3.3) apresentam a formulação matemática do problema de otimização mul-

tiobjetivo considerado neste trabalho, definindo o vetor de funções objetivo, o vetor de

variáveis de decisão e o espaço de busca associado.

min
x

F(x) =
[
CT pres(x), CT fut(x), GHpres(x), GH fut(x),

(1− AT pres(x)), (1− AT fut(x)), RT pres(x), RT fut(x),

Custo(x), CO2(x)
] (3.1)

x = (xpa, xpi, xco) (3.2)

xpa ∈ P, xpi ∈ I, xco ∈ C =⇒ x ∈ X = P× I× C (3.3)

onde:

� F(x) é o vetor de funções objetivo do problema, conforme a equação (3.1).

� x é o vetor de variáveis de decisão, composto por três escolhas: xpa (sistema de

parede), xpi (sistema de piso) e xco (sistema de cobertura), conforme a equação

(3.2).
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� P é o conjunto finito de alternativas dispońıveis para sistemas de parede. Cada

elemento de P corresponde a uma composição construtiva candidata de parede con-

siderada neste trabalho.

� I é o conjunto finito de alternativas dispońıveis para sistemas de piso. Cada elemento

de I corresponde a uma composição construtiva candidata de piso considerada neste

trabalho.

� C é o conjunto finito de alternativas dispońıveis para sistemas de cobertura. Cada

elemento de C corresponde a uma composição construtiva candidata de cobertura

considerada neste trabalho.

� X é o espaço de busca do problema, isto é, o conjunto de todas as combinações

posśıveis entre paredes, pisos e coberturas consideradas: X = P × I × C, conforme

a equação (3.3).

� O sobrescrito pres indica avaliação no cenário de clima presente (ano de re-

ferência), enquanto fut indica avaliação no cenário de clima futuro. Em ambos

os casos, as métricas são calculadas a partir das séries simuladas para a edificação

e para o modelo de ocupação adotado.

Descrição das funções objetivo:

1. CT pres(x) e CT fut(x) representam a carga térmica anual total, definida como a soma

das cargas de aquecimento e de resfriamento associadas à solução x, para os cenários

de clima presente e futuro, respectivamente. Tipicamente, CT é expresso em energia

anual, por exemplo em kWh/ano.

2. GHpres(x) e GH fut(x) representam o indicador de Graus-Hora associado ao descon-

forto térmico para a solução x, nos cenários de clima presente e futuro, respectiva-

mente. O GH é usualmente expresso em °C·h.

3. AT pres(x) e AT fut(x) representam a Autonomia Térmica, definida como o percentual

de horas ocupadas em que a temperatura operativa interna permanece dentro da
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faixa de conforto térmico. Por se tratar de uma métrica de maximização, a Autono-

mia Térmica foi convertida para minimização por meio das funções (1−AT pres(x))

e (1−AT fut(x)). A AT é adimensional e pode ser apresentada em fração (0 a 1) ou

em percentual (%).

4. RT pres(x) e RT fut(x) representam a Resiliência Térmica associada à solução x, cal-

culada para os cenários de clima presente e futuro. Neste trabalho, a Resiliência

Térmica é quantificada por meio da unidade ◦ChSET . Por se tratar de uma métrica

associada à intensidade do desconforto térmico em condições cŕıticas, RT é tratada

como uma função objetivo de minimização, conforme a definição do indicador ado-

tada.

5. Custo(x) representa o custo associado à solução x, calculado a partir da composição

de materiais e dos critérios econômicos definidos. O custo é expresso em moeda

corrente (R$), conforme o escopo econômico adotado.

6. CO2 (x) representa a emissão de dióxido de carbono associada à solução x, con-

forme o escopo considerado. Essa métrica representa emissões incorporadas, sendo

usualmente expressa em kgCO2.

Adicionalmente, este trabalho considera a aplicação de pesos para refletir a importância

relativa de cada função objetivo. Para isso, os valores das funções objetivo são previamente

normalizados por meio da normalização Min-Max, de modo a torná-los comparáveis em

uma escala adimensional comum. A equação (3.4) demonstra a normalização Min-Max.

f̂i(x) =
fi(x)− fmin

i

fmax
i − fmin

i

, i = 1, . . . ,m (3.4)

onde fmin
i e fmax

i representam, respectivamente, os menores e maiores valores observados

para o objetivo i, e m é o número total de funções objetivo.

Assim, o problema busca identificar soluções de compromisso que conciliem de-

sempenho termoenergético no clima presente e futuro, redução de custo e redução das

emissões de dióxido de carbono.
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3.1 Sistemas Construtivos

Em estudos preliminares desta equipe de pesquisa, foram catalogados materiais que

compõem 28 tipos de parede, 21 tipos de pisos e 48 tipos de coberturas, totalizando

28.224 combinações construtivas (MENDES et al., 2025). No Apêndice A, lista-se cada

um desses sistemas construtivos, onde também foram inclúıdas propriedades termof́ısicas,

como resistência térmica (R) e a capacidade térmica (Ct) de cada sistema. Também é

listado o custo de construção e instalação de cada um deles, bem como o seu respectivo

impacto ambiental (em emissões de kgCO2). Esses dados foram retirados do estudo de

Arcanjo et al. (2025), que realizou o levantamento com base na Tabela do Sistema Na-

cional de Pesquisa de Custos e Índices da Construção Civil (SINAPI) e no Sistema de

Informação do Desempenho Ambiental da Construção (Sidac). A Figura 3.2 apresenta a

dispersão dos sistemas construtivos analisados, quanto ao custo e emissão de CO2. Por

sua vez, a Figura 3.3 apresenta essa dispersão, em relação às propriedades termof́ısicas

(R e Ct). A Tabela 3.1 ilustra 3 exemplos da base de dados.

Tabela 3.1: Exemplos de sistemas construtivos analisados

Sistema Tipo Camadas Espessura total (m) R (m2K/W) Ct (kJ/m2K)

co48 Cobertura Reboco + Laje treliçada de EPS +

Impermeabilizante

0.143 0.31 181.21

pi01 Piso Contrapiso + Argamassa colante +

Porcelanato

0.045 0.04 86.00

pa04 Parede Reboco isolante + Bloco cerâmico +

Reboco isolante

0.140 0.44 131.36

Fonte: Elaborado pelo autor.
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(a) Curitiba

(b) São Paulo

(c) Belém

Figura 3.2: Dispersão dos sistemas construtivos por custo e emissão de CO2

Fonte: Elaborado pelo autor.
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Figura 3.3: Dispersão dos sistemas construtivos por resistência térmica (R) e capacidade
térmica (Ct)

Fonte: Elaborado pelo autor.

Como as combinações construtivas não apresentam distribuição cont́ınua ou uni-

forme, a comparação direta com valores extremos não seria estatisticamente represen-

tativa. Assim, adotou-se uma abordagem baseada em medidas robustas de posição: o

quartil inferior (Q1), a mediana (Md) e o quartil superior (Q3). Nesse contexto, Q1 e Q3

delimitam a faixa central da distribuição, correspondendo, respectivamente, aos valores

abaixo dos quais estão 25% e 75% dos resultados. Já a Md representa o ponto central

dessa distribuição, dividindo os valores em duas metades iguais. A Tabela 3.2 apresenta

as estat́ısticas dos parâmetros utilizados nas análises.

Tabela 3.2: Estat́ısticas dos parâmetros utilizados nas análises

Parâmetro Q1 Mediana Q3

R (m2·K)/W 0.22 0.29 0.39

Ct (kJ/(m2·K)) 114.07 197.94 265.88

Custo Curitiba (R$) 81170.7 89838.8 103024.8

Custo São Paulo (R$) 77204.6 85955.5 99575.0

Custo Belém (R$) 88443.0 97318.0 111409.8

CO2 (kgCO2) 5248.7 6411.4 10170.2

Fonte: Elaborado pelo autor.



3.2 Edificação e Climas Analisados 58

3.2 Edificação e Climas Analisados

Neste trabalho, foi analisada uma habitação de interesse social de pequeno porte, com

área total de 40 m2, conforme representado na Figura 3.4. A edificação é térrea, unifa-

miliar e possui uma configuração funcional simples, composta por sala, banheiro e dois

dormitórios.

Para representar diferentes condições climáticas do território brasileiro, foram

selecionadas três cidades localizadas em distintas zonas bioclimáticas brasileiras (ZBs),

conforme a NBR 15220 (ABNT, 2024b): Curitiba (ZB 1M), São Paulo (ZB 2M) e Belém

(ZB 6A). Ao longo do texto, essas cidades serão tratadas de forma relativa como clima

frio, ameno e quente, respectivamente, de modo a facilitar a interpretação dos resultados.

Figura 3.4: HIS 1 – Esquerda: maquete 3D. Meio: maquete humanizada. Direita: planta
baixa.

Fonte: (OLIVEIRA, 2025)

Além do clima atual (ABNT, 2024b), o presente trabalho também utiliza arquivos

climáticos projetados para o ano de 2080, permitindo avaliar o desempenho térmico das

edificações em cenários de mudança climática. Essa decisão é fundamentada na ABNT

(2024b), que estabelece requisitos de desempenho associados à vida útil de projeto, de

modo que a análise não se restringe às condições climáticas presentes, mas considera a

manutenção do desempenho ao longo do tempo. Assim, o horizonte de 2080 é adotado

como um cenário representativo de longo prazo, possibilitando verificar se as soluções

avaliadas permanecem adequadas diante de condições climáticas futuras. Esses arquivos

foram desenvolvidos por Vaz et al. (2024) por meio do Future Weather Generator (FWG),

utilizando o cenário SSP2-4.5 do CMIP-6, que representa um futuro intermediário, mar-

cado por esforços moderados de mitigação de emissões. Trata-se de um cenário ampla-
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mente empregado em pesquisas de planejamento urbano e resiliência térmica por oferecer

projeções consistentes e realistas para análises de adaptação e mitigação climática (USTA;

TEYMOURI; CHATTERJEE, 2022).

3.3 Modelo Substituto para Avaliação do Desempe-

nho Térmico

Como se verifica na Tabela 3.3, foi desenvolvido um modelo espećıfico para prever cada

métrica de desempenho térmico, abrangendo Carga Térmica (CT), Graus-Hora (GH),

Autonomia Térmica (AT) e Resiliência Térmica (RT). Cada métrica também possui uma

versão para o presente e outra para o futuro, identificadas pelo sub́ındice f . Todos os

modelos foram treinados utilizando o conjunto completo de variáveis de entrada, composto

pelos valores de resistência térmica (R) e capacidade térmica (Ct) das paredes, do piso e

da cobertura sendo os sub́ındices p, pi e c empregados para identificar, respectivamente,

parede, piso e cobertura.

Tabela 3.3: Modelos de aprendizado de máquina desenvolvidos

# Métrica prevista Variáveis de entrada

1 CT

Rp, Ctp, Rpi, Ctpi, Rc, Ctc

2 CTf

3 GH

4 GHf

5 AT

6 ATf

7 RT

8 RTf

Fonte: Elaborado pelo autor.

Para a elaboração dos modelos de ML, este trabalho se baseou nos estudos an-

teriores de Mendes et al. (2025), Louback (2025) e Oliveira (2025). Esses estudos desen-

volveram um modelo de ML para prever o desempenho térmico de edificações a partir

das métricas de CT e GH no clima presente, com o mesmo banco de dados analisado
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neste trabalho. Para isso, foram realizadas simulações no EnergyPlus, avaliando todas as

permutações de conjuntos de parede, piso e cobertura, aplicadas a duas residências unifa-

miliares de 40 m2 em Curitiba (frio), São Paulo (ameno) e Belém (quente). As simulações

seguiram as configurações da NBR 15575 e geraram valores de CT e GH utilizados como

variáveis-alvo para treinar modelos XGBoost. As propriedades termof́ısicas de cada com-

binação construtiva (R e Ct) foram empregadas como variáveis de entrada, e os modelos

foram avaliados por meio de validação cruzada (k-fold; k=10) e das métricas R2, MAE e

MAPE.

Os resultados evidenciaram alta precisão. Em todos os cenários analisados, os

modelos apresentaram R2 superior a 0,99 e MAPE inferior a 6,1%, frequentemente abaixo

de 1,1%. Exemplos incluem o modelo de CTr em Curitiba, que atingiu R2 de 0,9993 e

MAPE de apenas 0,35%, e o modelo de GHc em São Paulo, com R2 de 0,9995 (OLIVEIRA,

2025).

Adicionalmente, um dos achados mais relevantes de Mendes et al. (2025) foi a

demonstração da eficácia da redução do banco de dados. Para testar essa hipótese, o

conjunto completo de instâncias foi gradualmente reduzido para treinos contendo apenas

1% a 10% das amostras, enquanto o restante do banco (99% a 90%) foi utilizado como

teste. Em cada caso, foram realizadas 100 repetições para reduzir o efeito de variações

aleatórias. Mesmo com apenas 1% do banco de dados usados para treinamento, os mo-

delos mantiveram R2 acima de 0,81. A partir de 2% das instâncias, o R2 superou 0,90

em todos os testes, apresentando baixa dispersão e desvios-padrão inferiores a 1%. Es-

ses resultados demonstraram que não é necessário treinar modelos com a totalidade das

simulações energéticas: simular apenas 2% do banco no EnergyPlus (procedimento que

leva aproximadamente uma hora em um computador básico) já permite treinar modelos

suficientemente precisos para aplicações profissionais.

Esse procedimento foi tratado como uma prova de conceito. Para verificar sua

capacidade de generalização, em cenários em que não foi simulado o banco de dados com-

pleto, simulou-se apenas 10% das combinações totais e, posteriormente, essas instâncias

foram utilizadas no treinamento do ML. Essa abordagem foi escolhida por ser conserva-

dora e, ainda assim, reduzir cerca de 90% do custo operacional associado à construção de
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modelos treinados com 100% das instâncias. A eficácia desses modelos foi avaliada com

mil instâncias aleatórias e independentes do treinamento, que também foram simuladas.

Mais detalhes podem ser consultados em Mendes et al. (2025), Oliveira (2025) e Louback

(2025).

No presente trabalho, foi mantido o uso de 10% do banco de dados para o trei-

namento do modelo, mas aprimorou-se a seleção das instâncias de treino por meio de

agrupamento não supervisionado a partir dos valores de R e Ct de cada sistema cons-

trutivo. O objetivo dessa etapa foi garantir maior diversidade estrutural no conjunto

de treinamento, evitando que o modelo fosse ajustado apenas com combinações muito

semelhantes entre si. Para isso, aplicou-se o algoritmo de agrupamento k-means sobre

todas as instâncias dispońıveis. Do total de grupos definidos (correspondentes a 10% do

total de instâncias), cada grupo representa um subconjunto de combinações construtivas

com caracteŕısticas termof́ısicas semelhantes. Em seguida, foi selecionada apenas uma

instância por grupo, garantindo que instâncias muito similares não fossem simultanea-

mente escolhidas. Essa abordagem reduz redundâncias e melhora a representatividade do

conjunto utilizado no treinamento. Além disso, para o presente trabalho, foram ampli-

adas as métricas de avaliação do desempenho térmico, incorporando também AT e RT,

além de projeções de desempenho térmico para o futuro (2080).A Tabela 3.4 apresenta os

resultados comparativos entre a formulação adotada por Oliveira (2025) e a adotada neste

trabalho. Verifica-se uma melhoria no clima ameno e uma aproximação dos resultados

nos demais climas. Adicionalmente, o presente trabalho estende os modelos por meio da

inclusão de métricas complementares.

Tabela 3.4: Comparativo de desempenho dos modelos desenvolvidos por (OLIVEIRA,
2025) e neste trabalho

Cidade Métrica

prevista

R2 MAE MAPE(%) RMSE

Oliveira

(2024)

Pres.

trab.

Oliveira

(2024)

Pres.

trab.

Oliveira

(2024)

Pres.

trab.

Oliveira

(2024)

Pres.

trab.

Curitiba
(frio)

CT (MJ) 0,994 0,997 23,659 24,30 0,630 0,377 – 36,381

GH

(°C·h)

0,978 0,977 98,343 62,936 1,404 0,423 – 91,18

RT (°C·h

SET)

– 0,990 – 1,652 – 2,158 – 2,211

AT (%) – 0,994 – 0,002 – 0,402 – 0,002
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(continuação) Comparativo de desempenho dos modelos

Cidade Métrica

prevista

R2 MAE MAPE(%) RMSE

Oliveira

(2024)

Pres.

trab.

Oliveira

(2024)

Pres.

trab.

Oliveira

(2024)

Pres.

trab.

Oliveira

(2024)

Pres.

trab.

CTf (MJ) – 1,000 – 6,263 – 0,125 – 97,123

GHf

(°C·h)

– 0,997 – 49,979 – 0,855 – 69,246

RTf (%) – 0,994 – 1,607 – 2,669 – 2,369

ATf (%) – 0,998 – 0,001 – 0,131 – 0,001

São Paulo
(ameno)

CT (MJ) 0,982 0,996 25,994 22,181 0,978 0,496 – 31,507

GH

(°C·h)

0,988 0,979 62,252 52,205 1,500 0,653 – 78,605

RT (°C·h

SET)

– 0,949 – 0,065 – 313,0 – 0,118

AT (%) – 0,993 – 0,002 – 0,351 – 0,003

CTf (MJ) – 0,999 – 0,986 – 0,147 – 141,000

GHf

(°C·h)

– 0,996 – 74,710 – 0,912 – 105,280

RTf (%) – 0,995 – 1,728 – 3,545 – 2,516

ATf (%) – 0,994 – 0,001 – 0,101 – 0,001

Belém
(quente)

CT (MJ) 0,997 0,992 20,379 27,590 0,191 0,263 – 31,16

GH

(°C·h)

0,995 0,979 65,696 52,205 0,374 0,653 – 78,605

RT (°C·h

SET)

– 0,995 – 1,312 – 1,312 – 1,915

AT (%) – 0,993 – 0,002 – 0,351 – 0,003

CTf (MJ) – 0,997 – 35,852 – 0,185 – 47,70

GHf

(°C·h)

– 0,927 – 108,045 – 0,228 – 277,116

RTf (%) – 0,994 – 1,697 – 0,370 – 2,375

ATf (%) – 0,992 – 0,003 – 0,194 – 0,004

Fonte: Elaborado pelo autor.

3.4 Otimização Multiobjetivo

Na etapa de otimização multiobjetivo, os parâmetros de desempenho térmico (CT, GH,

AT e RT) foram avaliados por meio dos modelos de ML desenvolvidos neste estudo,

enquanto os critérios de impacto ambiental e custo dos materiais foram obtidos a partir

do banco de dados compilado por Arcanjo et al. (2025). Para não enviesar esses objetivos,

dada suas diferenças de escala, incialmente, esses dados foram normalizados com o método

básico “min-max” (equação (3.5))
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f ′(x) =
f(x)− fmin

fmax − fmin

(3.5)

Esses critérios, no entanto, apresentam conflitos naturais entre si, como já dis-

cutido na literatura (Cruz et al., 2024b; Mendes et al., 2024b). Por exemplo, uma com-

binação construtiva que reduz significativamente CT pode exigir materiais de maior iso-

lamento, o que normalmente eleva o custo e aumentando as emissões de CO2 associadas à

produção desses materiais isolantes. De forma semelhante, uma alternativa muito barata

pode apresentar pior desempenho térmico e maior desconforto ao longo do ano. Para lidar

com essas contradições e permitir que a ferramenta reflita preferências espećıficas de quem

toma a decisão, optou-se pelo uso do algoritmo Reference-point based Non-dominated Sor-

ting Genetic Algorithm III (R-NSGA-III), amplamente reconhecido por sua capacidade

de explorar de forma eficiente regiões de interesse da fronteira de Pareto de acordo com

os pesos e os pontos de referência definidos pelo usuário. A implementação foi realizada

com o suporte da biblioteca Pymoo, em Python (BLANK; DEB, 2020).

3.4.1 Seleção da representação dos indiv́ıduos

O problema de seleção de sistemas construtivos é de natureza discreta, pois cada pa-

rede, piso e cobertura deve ser escolhida dentro de um conjunto finito de alternativas.

Para aumentar a robustez do modelo de otimização, foram avaliadas três estratégias de

representação dos indiv́ıduos da população: inteira, binária e Gray Code (SHASTRI;

FRACHTENBERG, 2020; ROTHLAUF, 2006). Cada esquema determina como os genes

são estruturados e manipulados pelos operadores evolutivos, influenciando a capacidade

do algoritmo de explorar o espaço de busca e de refinar soluções localmente (YIQUN; XI-

ANRUI, 2018). A comparação entre essas representações é essencial, uma vez que escolhas

inadequadas de codificação podem levar à perda de diversidade, convergência prematura

ou dificuldade no refinamento da fronteira de Pareto (YIQUN; XIANRUI, 2018).

Na representação inteira, cada indiv́ıduo é descrito por um vetor composto por

três variáveis inteiras, que indicam os ı́ndices da parede, do piso e da cobertura selecio-

nados. Por exemplo, o indiv́ıduo (2, 8, 5) representa a terceira parede da lista (́ındice 2),

o nono piso (́ındice 8) e a sexta cobertura (́ındice 5). A partir desse triplo construtivo,
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são extráıdos os valores de transmitância térmica (U), capacidade térmica (Ct) e custos,

que servem como entrada nos modelos de ML, resultando nas previsões das métricas CT,

GH, AT e RT para os cenários presente e futuro.

Embora o problema seja discreto, a representação inteira foi integrada a operado-

res tradicionalmente aplicados em espaços cont́ınuos, devidamente adaptados ao domı́nio

inteiro (BLANK; DEB, 2020). A população inicial foi gerada pelo método IntegerRandom-

Sampling, que sorteia cada gene dentro dos limites válidos de cada categoria (BLANK;

DEB, 2020). No cruzamento, empregou-se o operador SBX, no qual os descendentes

são obtidos como combinações intermediárias entre dois pais; os valores cont́ınuos gera-

dos são posteriormente arredondados e reparados para garantir coerência com os ı́ndices

dispońıveis (DEB; SUNDAR, 2006). A mutação foi implementada por meio da mutação

polinomial, que introduz pequenas perturbações cont́ınuas sobre os genes inteiros, também

submetidas a arredondamento e reparo para assegurar a validade das soluções (BLANK;

DEB, 2020).

Na representação binária, cada alternativa é codificada por um bloco de bits,

cujo tamanho corresponde ao número mı́nimo necessário para representar todas as opções

dispońıveis (SHASTRI; FRACHTENBERG, 2020). nparede = 28, npiso = 21 e ncobertura = 48

os blocos possuem 5, 5 e 6 bits, respectivamente, totalizando 16 bits por indiv́ıduo. Cada

indiv́ıduo é, portanto, um vetor binário formado pela concatenação desses três blocos. Por

exemplo, o bloco (1, 0, 1, 1, 0) referente à parede é interpretado como o número decimal

22, que é convertido em um ı́ndice válido pela operação de divisão inteira (SHASTRI;

FRACHTENBERG, 2020). Os operadores evolutivos atuam diretamente sobre os bits:

a população inicial é gerada por BinaryRandomSampling, o cruzamento é feito por one-

point crossover e a mutação emprega bit flip com baixa probabilidade, invertendo bits

individuais e gerando novas combinações construtivas (BLANK; DEB, 2020).

Na representação Gray Code, cada alternativa também é codificada por blocos de

bits, porém utilizando um esquema em que números consecutivos diferem por apenas um

bit (ROTHLAUF, 2006). Essa caracteŕıstica promove transições mais suaves no espaço de

busca, reduzindo saltos abruptos e favorecendo a exploração de vizinhanças estruturadas.

Por exemplo, enquanto o número 2 é representado como 010 no binário comum, em Gray



3.4 Otimização Multiobjetivo 65

Code torna-se 011, e o número 3 torna-se 010 (apenas um bit muda entre eles). Cada

indiv́ıduo é formado pela concatenação dos blocos de parede, piso e cobertura codificados

em Gray Code, que depois são decodificados novamente para inteiros antes da avaliação.

Os operadores evolutivos atuam da mesma forma que na representação binária: o cruza-

mento é realizado por one-point crossover, enquanto a mutação aplica bit flip com baixa

probabilidade, gerando alterações graduais nos valores inteiros correspondentes (SHAS-

TRI; FRACHTENBERG, 2020). Após a decodificação, padrões que produzam ı́ndices

fora dos limites de cada conjunto de alternativas são considerados não mapeados e, por-

tanto, descartados e substitúıdos por novas amostras, garantindo que apenas soluções

válidas sejam avaliadas.

A definição dos hiperparâmetros do algoritmo R-NSGA-III (i.e., tamanho da po-

pulação, taxa de cruzamento, taxa de mutação, operador de cruzamento, operador de

mutação, parâmetro η e número de gerações) foi realizada em duas etapas complementa-

res. Inicialmente, empregou-se um random search, que avaliou diversas combinações desses

hiperparâmetros com base no hipervolume das fronteiras de Pareto geradas (BERGSTRA;

BENGIO; RACHMAD, 2012). Em seguida, os melhores conjuntos foram refinados por

meio do Optuna, que utiliza amostragem eficiente orientada por otimização bayesiana

(AKIBA et al., 2019). Essa abordagem reduziu o custo computacional e permitiu concen-

trar a busca em regiões promissoras do espaço de hiperparâmetros. Cada representação

(inteira, binária e Gray Code) teve seu próprio conjunto final de hiperparâmetros ajustado

antes da comparação entre elas e seus valores estão apresentados no Apêndice B.

Após a etapa de otimização dos hiperparâmetros para cada uma das três repre-

sentações de solução avaliadas, tornou-se necessário identificar qual delas apresentava o

melhor desempenho global na resolução do problema multiobjetivo. Para isso, foi con-

duzida uma análise comparativa fundamentada em métricas amplamente consolidadas na

literatura de otimização evolutiva multiobjetivo (YIQUN; XIANRUI, 2018).

Cada representação foi executada 10 vezes de forma independente. A repetição

das execuções permitiu capturar a variabilidade intŕınseca aos algoritmos evolutivos, pos-

sibilitando avaliar a robustez estat́ıstica associada a cada forma de representação. A

comparação entre as representações considerou três indicadores de qualidade da fronteira
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de Pareto obtida:

1. HV (Hypervolume)

2. IGD+

3. Spacing

3.4.2 Preferências do(a) usuário(a) e seleção da melhor com-

binação construtiva

Apesar da normalização inicial das funções objetivo, os valores das combinações ótimas na

fronteira de Pareto foram propositalmente desbalanceados por meio da aplicação de pesos

que refletem as preferências dos usuários. Essa estratégia permite resultados mais per-

sonalizados a diferentes cenários de projeto e uso da edificação, ajustando a importância

relativa de cada critério. Os pesos adotados nesta etapa foram definidos de forma hi-

potética para ilustrar dois posśıveis cenários. Além disso, foram estabelecidos pontos de

referência para algumas métricas, utilizados exclusivamente durante a execução do algo-

ritmo com o objetivo de direcionar a busca para regiões espećıficas da fronteira de Pareto.

Já os pesos foram aplicados apenas posteriormente, durante a análise da fronteira, para

apoiar a seleção da solução construtiva mais adequada em cada cenário.

Como se observa na Tabela 3.5, o Cenário 1 atribui maior peso às métricas

de desempenho passivo (GH, AT e RT, presentes e futuras) e ao CO2, refletindo uma

situação em que o(a) usuário(a) prioriza ventilação natural, conforto sem climatização e

sustentabilidade. Esse cenário representa edificações destinadas a reduzir a dependência

de ar-condicionado, valorizando soluções bioclimáticas e maior resiliência térmica ao longo

do tempo.

Já o Cenário 2 concentra maior peso em custo inicial e nas métricas de carga

térmica (CT e CTf), correspondendo a um(a) usuário(a) que busca minimizar gastos

de construção e custo de utilização da edificação (na forma de energia para o sistema

AVAC), tanto no presente quanto no futuro. As métricas passivas permanecem no modelo,

porém com menor relevância, alinhando-se a um perfil de decisão mais orientado por

eficiência econômica do que por desempenho passivo. Nesse caso, os pontos de referência
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fixados para CT e CTf (3500 kWh e 5500 kWh, respectivamente) orientam o algoritmo a

privilegiar combinações com desempenho energético dentro desses limites, aproximando a

otimização de uma visão mais pragmática e econômico-energética.

Tabela 3.5: Pesos usados nos cenários de otimização multiobjetivo

Métrica Cenário 1 Cenário 2

CT 0,03 0,20

GH 0,18 0,03

RT 0,09 0,02

AT 0,13 0,03

CTf 0,03 0,15

GHf 0,18 0,03

RTf 0,09 0,02

ATf 0,13 0,03

Custo 0,06 0,40

CO2 0,08 0,09

Fonte: Elaborado pelo autor.

A seleção da melhor combinação construtiva em cada cenário foi realizada me-

diante o cálculo da distância euclidiana ponderada em relação ao ponto ideal, composta

pelos melhores valores obtidos para cada função objetivo na fronteira de Pareto. Para

cada alternativa, avaliou-se o afastamento entre seus valores normalizados e o ponto ideal,

ponderando-se essa diferença pelos pesos atribúıdos a cada métrica no respectivo cenário.

Esse procedimento permite quantificar o quão próxima cada solução está do desempe-

nho ótimo teórico, de modo que a alternativa associada ao menor valor de distância é

considerada a mais adequada dentro das preferências do usuário. O cálculo adotado é

apresentado a na equação (3.6).

D =
√∑

wi

(
fi − f ideal

i

)2
(3.6)

onde

• fi valor normalizado da função objetivo i para a solução avaliada
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• f ∗
i melhor valor obtido para a função objetivo i (ponto ideal)

• wi peso atribúıdo à função objetivo i no cenário considerado

• n número total de métricas avaliadas

3.5 Análise dos Resultados

Após a obtenção das soluções ótimas, realizou-se uma etapa espećıfica de análise destinada

a avaliar a consistência e a robustez dos resultados. Para cada combinação de tipologia

de edificação, clima e cenário, o algoritmo de otimização foi executado 100 vezes de

forma independente, com sementes de inicialização distintas, evitando que as soluções

dependessem de um único caminho de busca (EIBEN; SMITH, 2003). Ao final de cada

execução, selecionou-se a solução com maior valor de hipervolume, resultando em um

conjunto de 100 soluções ótimas por caso analisado. A partir desse conjunto, foram

constrúıdos histogramas de frequência que permitiram identificar quais sistemas de parede,

piso e cobertura, bem como quais combinações completas, surgiram com maior recorrência

entre as melhores soluções.

Essa etapa é fundamental porque permite transformar um conjunto amplo de

soluções em informações claras sobre padrões de preferência do algoritmo. Soluções que

aparecem repetidamente entre as 50 execuções tendem a ser mais robustas, pois mantêm

desempenho elevado mesmo diante das variações estocásticas internas do processo de

otimização (MANUEL; BRANKE; PAQUETE, 2021). A Figura 3.5 representa um fluxo-

grama ilustrando a análise adotada.
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Figura 3.5: Fluxo da etapa de avaliação por múltiplas soluções.

Fonte: Elaborado pelo autor.
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4 Experimentos e Resultados

4.1 Definição do melhor tipo de representação

Como apresentado na Tabela 4.1, a comparação entre as três representações avaliadas

(discreta (inteira), binária e Gray Code) evidencia diferenças significativas no desempenho

do algoritmo de otimização, considerando os indicadores HV, IGD+ e Spacing, calculados

ao longo de 10 execuções independentes.

Tabela 4.1: Comparação das três representações segundo HV, IGD+ e Spacing (10
execuções).

Representação HV (média ± desvio) IGD+ (média ± desvio) Spacing (média ± desvio)

Discreta (inteira) 0.959858± 0.000156 0.013501± 0.001420 0.101037± 0.000201

Binária 0.944149± 0.000013 0.018073± 0.000196 0.114499± 0.000230

Gray Code 0.964505± 0.000143 0.014643± 0.002470 0.095300± 0.000155

Fonte: Elaborado pelo autor.

Entre elas, a representação Gray Code obteve o melhor desempenho global, apre-

sentando o maior valor médio de HV (0,964505 ± 0,000143), o que indica maior apro-

ximação da fronteira de Pareto ideal e melhor cobertura do espaço de soluções. Além

disso, seu valor de Spacing (0,095300 ± 0,000155) foi o menor dentre as representações

analisadas, sugerindo uma distribuição mais uniforme das soluções ao longo da fronteira,

caracteŕıstica desejável em algoritmos multiobjetivo (ZITZLER; DEB; THIELE, 2000).

Embora a representação discreta (inteira) tenha apresentado o menor valor de

IGD+ (0,013501 ± 0,001420), indicando menor distância média entre sua fronteira e a

fronteira de referência, esse benef́ıcio foi acompanhado de maior irregularidade na dis-

tribuição das soluções (Spacing = 0,101037 ± 0,000201), o que reduz a diversidade da

fronteira obtida (YIQUN; XIANRUI, 2018). Já a representação binária apresentou os pi-

ores resultados em todas as métricas avaliadas, com destaque para o menor HV (0,944149

± 0,000013) e o maior Spacing (0,114499 ± 0,000230), indicando frentes menos diversas,

mais distantes da ideal e menos estáveis entre execuções (YIQUN; XIANRUI, 2018).

Esses resultados são coerentes com o comportamento esperado de cada esquema
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de codificação. A representação Gray Code, ao garantir que números consecutivos diferem

por apenas um bit, promove transições mais suaves no espaço de busca e reduz flutuações

bruscas decorrentes da mutação (ROTHLAUF, 2006). Isso favorece uma exploração mais

estruturada do espaço discreto e contribuindo para a geração de frentes mais consisten-

tes e equilibradas. Em contraste, o esquema binário tradicional tende a produzir saltos

abruptos no espaço de busca, o que pode prejudicar tanto a convergência quanto a diver-

sidade, especialmente em problemas discretos e com alta correlação entre variáveis, como

o observado neste estudo (EIBEN; SMITH, 2015).

A atuação dos esquemas de codificação foi coerente com o esperado na literatura.

A Gray Code apresentou o melhor desempenho global, com maior HV e menor Spacing, re-

sultado associado à sua maior localidade, que reduz saltos fenot́ıpicos e favorece transições

suaves no espaço de busca (ROTHLAUF, 2006).

Considerando o desempenho numérico obtido, a estabilidade entre execuções e

a coerência teórica com o comportamento esperado das representações, o Gray Code foi

selecionado como representação definitiva para os demais experimentos realizados neste

trabalho.

4.2 Análise das melhores soluções

4.2.1 Análise de valores das melhores combinações

Com a representação definida, foram analisadas as melhores soluções construtivas para

Curitiba, São Paulo e Belém, considerando 100 execuções do algoritmo em dois cenários

distintos. A Tabela 4.2 apresenta um resumo desses resultados, comparando o desem-

penho das soluções otimizadas e relacionando-os ao comportamento global do espaço

amostral completo (todas combinações posśıveis avaliadas pelo algoritmo), o que permite

avaliar o grau de melhoria obtido em relação às combinações posśıveis.

Tabela 4.2: Comparação estat́ıstica entre soluções otimizadas e espaço amostral

Cidade Métrica

Espaço amostral

completo

Otimização do

Cenário 1

Otimização do

Cenário 2

Q1 Md Q3 Q1 Md Q3 Q1 Md Q3

Curitiba

CT

[kWh]
1681.2 1868.7 1917.3 1460.3 1474.6 1495.6 1358.7 1460.1 1470.5

GH

[◦Ch]
14702.3 14995.0 15352.0 13849.0 13907.1 14103.0 13849.4 13849.4 13877.6

AT

[%]
40 40 40 50 50 50 50 50 50

Continua na próxima página
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Cidade Métrica

Espaço amostral

completo

Otimização do

Cenário 1

Otimização do

Cenário 2

Q1 Md Q3 Q1 Md Q3 Q1 Md Q3
RT

[◦ChSET ]
77.5 93.7 103.6 45.0 50.5 60.9 34.8 44.1 47.6

CTf

[kWh]
1341.34 1513.4 1542.9 1207.8 1211.3 1235.4 1111.3 1208.0 1210.7

GHf

[◦Ch]
5259.8 6198.6 6689.6 3488.7 3557.6 3912.5 3272.9 3480.2 3534.1

ATf

[%]
70 70 70 70 80 80 80 80 80

RTf

[◦ChSET ]
47.0 74.2 89.8 15.7 18.4 25.5 10.8 15.1 17.1

Custo

[R$]
81170.7 89838.8 103024.8 70336.9 73685.5 79480.4 69370.6 72828.9 74634.9

CO2

[kgCO2]
5248.7 6411.4 10170.2 3440.8 4296.4 7265.5 2948.0 9154.9 9570.0

São Paulo

CT

[kWh]
1185.5 1320.3 1358.8 928.0 949.7 1021.7 928.3 950.4 1049.3

GH

[◦Ch]
7728.4 7990.0 8338.1 7084.6 7117.6 7348.5 7078.0 7105.5 7360.4

AT

[%]
60 60 60 60 60 60 60 60 60

RT

[◦ChSET ]
0.0 0.1 0.5 0 0 0 0 0 0

CTf

[kWh]
1787.9 1987.5 2007.6 1546.1 1547.8 1673.3 1547.0 1551.8 1695.4

GHf

[◦Ch]
7369.1 8629.8 9282.9 4558.6 4629.6 5278.6 4585.6 4688.1 5351.5

ATf

[%]
70 70 70 70 70 70 70 70 70

RTf

[◦ChSET ]
46.2 72.9 89.4 2.6 3.0 8.1 2.7 3.8 9.8

Custo

[R$]
77204.6 85955.5 99575.0 63869.1 65544.1 69604.1 63962.1 67417.4 72528.7

CO2

[kgCO2]
5248.7 6411.4 10170.2 4871.1 9422.8 10001.6 3046.7 9114.0 9477.8

Belém

CT

[kWh]
2830.9 2918.1 2984.3 2822.5 2917.7 2951.0 2769.8 2817.2 2949.8

GH

[◦Ch]
7728.4 7990.0 8338.1 7570.2 7937.8 8416.4 7381.3 7558.1 7905.1

AT

[%]
60 60 60 60 60 60 60 60 60

RT

[◦ChSET ]
44.3 61.6 74.7 22.4 34.5 73.8 5.5 13.9 28.9

CTf

[kWh]
5224.2 5455.4 5546.7 5127.9 5373.6 5464.3 5004.8 5107.6 5288.8

GHf

[◦Ch]
46852.9 47847.1 48131.0 45937.9 46504.6 47961.9 45535.1 45834.0 45904.1

ATf

[%]
0 0 0 0 0 0 0 0 0

RTf

[◦ChSET ]
452.4 479.1 487.5 423.6 452.4 485.1 410.3 420.8 425.4

Custo

[R$]
88443.0 97318.0 111409.8 81670.1 92146.3 100320.6 69363.1 76757.5 81351.4

CO2

[kgCO2]
5248.7 6411.4 10170.2 4655.6 5968.2 8706.0 2719.2 4032.0 5721.2

Fonte: Elaborado pelo autor.

No Cenário 1, os pesos atribúıdos priorizaram as métricas associadas ao conforto

térmico passivo, com maior influência de GH e AT, incluindo suas projeções futuras.

Como consequência, observa-se que a mediana das soluções otimizadas aproxima-se dos

valores mı́nimos do espaço amostral para GH e GHf, e dos valores máximos para AT e

ATf, com diferenças percentuais variando, em média, entre 3% e 25%, mas São Paulo

tendo garantindo a maior variação (entre 13% e 20%). Esse comportamento indica que

o algoritmo favoreceu configurações capazes de aumentar o número de horas em conforto

térmico e reduzir a intensidade do desconforto nos peŕıodos em que a edificação não atende

às condições ideais, atendendo ao objetivo central de aprimorar o desempenho térmico

passivo.

Em contraste, os valores de CT e CTf apresentam desvios mais acentuados entre

a mediana dos valores otimizados com os menores valores de todo campo amostral (en-
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tre 12% e 20%), o que evidencia sua menor relevância relativa na função objetivo desse

cenário. Ainda assim, o impacto não é negligenciável: a mediana das soluções otimizadas

diferiu 255,03 kWh para CT e 274,53 kWh para CTf em relação à mediana do espaço

amostral completo, considerando 1 ano de referência. Considerando que a maior tarifa

de energia elétrica é no Pará, com R$ 0,93/kWh (ENERGIA, 2025), e a menor é em

Curitiba, com R$ 0,62/kWh (ENERGIA, 2025), essa diferença pode representar relativas

implicações financeiras ao longo de toda a vida útil da edificação. O conjunto desses

resultados confirma o comportamento esperado em funções multiobjetivo baseadas em

pesos. Critérios com maior importância atribúıda tendem a apresentar soluções otimiza-

das mais próximas dos valores desejáveis, enquanto métricas menos priorizadas exibem

maior variação e afastamento em relação ao desempenho ideal.

No Cenário 2, observou-se o comportamento oposto ao do Cenário 1. Os pesos

foram propositalmente concentrados em custo da construção, CT e CTf, de modo a repre-

sentar um cenário de uso consciente de sistemas de climatização (AVAC). Para orientar

o processo de otimização, foram definidos pontos de referência para consumo energético:

2000 kWh para CT e 3000 kWh para CTf. Os resultados mostram a proximidade das

medianas das soluções otimizadas aos pontos de referência de CT (87%) e CTf (87%).

Quanto ao custo, é verificado desvios entre 22,9% e 47,5% entre a mediana dos valores

otimizados com os menores valores de todo campo amostral, destacando a magnitude do

peso que foi dada a esse critério.

Como os pesos atribúıdos às métricas permanecem semelhantes entre o peŕıodo

atual e o futuro dentro de cada cenário, as soluções otimizadas resultam em respostas

equivalentes para ambos os horizontes temporais. Assim, as análises apresentadas já re-

fletem simultaneamente os dois momentos, garantindo que as melhorias observadas sejam

válidas tanto para as condições presentes quanto para as projetadas.

4.2.2 Análise de recorrência das melhores combinações

A Figura 4.1 apresenta as combinações construtivas recorrentes (≥ 2 ocorrências) entre

as 100 soluções finais obtidas no Cenário 1. Observa-se uma menor variabilidade em São

Paulo, onde uma única combinação (pa34-pi4-co28) foi selecionada em 15 execuções, indi-
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cando forte predominância dessa solução e sugerindo maior estabilidade da configuração

ideal nesse clima. Em Curitiba, a dispersão é maior: duas combinações (pa34-pi4-co19

e pa34-pi4-co28) apresentaram recorrência moderada (5 aparições cada), enquanto o res-

tante das soluções apresentou distribuição pulverizada ao longo das execuções. Já em

Belém, apenas quatro combinações se repetiram, sendo a pa33-pi10-co20 a mais frequente,

com três aparições. As outras três ocorreram apenas duas vezes, reforçando o caráter al-

tamente distribúıdo das soluções.

Esse comportamento evidencia diferenças no grau de convergência das soluções

entre os climas. Em cenários como São Paulo (e parcialmente Curitiba) a maior re-

corrência sugere que a otimização identifica um caminho construtivo mais consistente,

indicando que pequenas variações nos materiais tendem a impactar menos significativa-

mente o desempenho térmico. Por outro lado, em Belém, a baixa repetibilidade pode

refletir dois fenômenos de forma separada ou integrada: (i) maior flexibilidade proje-

tual, em que múltiplas combinações apresentam desempenho semelhante, ou (ii) menor

influência isolada da envoltória no conforto térmico passivo, dada a predominância de

condições externas adversas em clima quente e úmido.

Essa hipótese é reforçada pela observação de que, em Belém (e, em menor escala,

em Curitiba) pequenas mudanças nos componentes construtivos resultam em variações

discretas nos indicadores GH e AT (para presente e futuro). Isso reduz a dominância

de uma solução única na otimização e sugere que, nesses contextos, estratégias comple-

mentares de projeto passivo, como sombreamento, ventilação cruzada, orientação solar e

modulação de aberturas, podem exercer papel tão ou mais relevante que o ajuste isolado

dos materiais da envoltória.
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Figura 4.1: Melhores combinações no Cenário 1 com frequência maior ou igual a 2 para
cada clima. Tons mais escuros representam maior frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

A Figura 4.2 apresenta o mesmo mapeamento para o Cenário 2. Nesse caso,

observou-se maior convergência dos resultados para São Paulo e Curitiba. Em Curitiba, a

combinação pa34-pi4-co28 foi registrada 20 vezes (o maior valor de recorrência entre com-

binações construtivas de todo o estudo) indicando um forte consenso computacional sobre

sua adequação quando consideradas as ponderações do segundo cenário. Em São Paulo,

uma única, e a mesma solução do Cenário 1, concentrou a maior parte das ocorrências

(pa34-pi1-co28), desta vez em 14 execuções. Já Belém apresentou comportamento seme-

lhante ao observado no Cenário 1, com soluções variadas. Nesse cenário, houve somente

uma combinação (pa1-pi10-co16) com frequência ≥ 1, sendo igual a 2, demonstrando

novamente baixa convergência.

A frequência por si só não garante que uma combinação seja competitiva em

termos absolutos. Por isso, as Tabelas 4.3 e 4.4 apresentam estat́ısticas descritivas do

espaço avaliado, permitindo posicionar as melhores soluções em relação ao mı́nimo, à

mediana e ao máximo observados para custo total e emissões totais de CO2.

Em termos de custo, as melhores combinações em Curitiba e São Paulo per-

manecem claramente abaixo das medianas de suas respectivas localizações, ficando mais

próximas dos mı́nimos do que do centro da distribuição, o que caracteriza soluções econo-

micamente competitivas dentro do conjunto analisado. Em Belém, a melhor solução do

Cenário 1 aproxima se da mediana, enquanto a do Cenário 2 desloca se para uma faixa

intermediária entre o mı́nimo e a mediana, reduzindo o custo total em relação ao Cenário

1. Para as emissões, observa se que os valores das melhores combinações permanecem
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distantes do máximo global, com destaque para Belém no Cenário 2, cuja emissão total

(5654,6 kgCO2) fica abaixo da mediana (6411,4 kgCO2). Já Curitiba e São Paulo apre-

sentam emissões acima da mediana, porém ainda em patamar moderado frente ao limite

superior observado.

Assim, a Tabela 4.5 consolida as combinações escolhidas por localização e cenário,

ao passo que as estat́ısticas fornecem o referencial necessário para interpretar o quão

próximas essas soluções estão dos melhores valores observados no conjunto, evidenciando

o equiĺıbrio entre custo total e CO2 total em cada contexto climático.

Figura 4.2: Melhores combinações no Cenário 2 com frequência maior ou igual a 2 para
cada clima. Tons mais escuros representam maior frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

Tabela 4.3: Estat́ısticas do custo total (R$) por localização: mı́nimo, mediana e máximo

Localização Mı́nimo (R$) Mediana (R$) Máximo (R$)

BL 62469.79 97318.01 186965.97

CB 54405.05 89838.85 177862.87

SP 50507.83 85955.53 176672.73

Tabela 4.4: Estat́ısticas das emissões totais de CO2 (kgCO2): mı́nimo, mediana e máximo

Mı́nimo (kgCO2) Mediana (kgCO2) Máximo (kgCO2)

2000.0 6411.4 16663.2
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Tabela 4.5: Melhores combinações por localização e cenário: custo total e emissões totais
de CO2

Localização Cenário Combinação Custo total (R$) CO2 total (kgCO2)

Curitiba 1 pa34pi04co19 66470.29 10472.40

Curitiba 2 pa34pi04co28 66067.96 9477.80

São Paulo 1 pa34pi04co28 65876.33 9248.02

São Paulo 2 pa34pi01co28 63034.24 9477.80

Belém 1 pa33pi10co20 96663.75 6814.50

Belém 2 pa01pi10co16 80501.06 5654.60

Embora essa distribuição heterogênea sugira a ausência de uma solução universal-

mente dominante, a seção seguinte (Seção 4.3) aprofunda e organiza os padrões observa-

dos, destacando os sistemas construtivos que mais se sobressáıram ao longo das execuções.

Com isso, torna-se posśıvel uma interpretação mais objetiva, comparativa e integrada dos

resultados.

4.3 Melhores sistemas construtivos

A interpretação dos resultados deve considerar que o comportamento das soluções oti-

mizadas está diretamente associado às prioridades definidas na função objetivo. Como

já visto, a distribuição dos pesos resulta em diferenças marcantes entre os dois cenários.

No Cenário 1, as métricas térmicas relacionadas a GH, AT, RT e suas projeções futuras

representaram 80% da influência total, enquanto o custo e o consumo energético (CT +

CTf) tiveram participação marginal, ambos com apenas 6%. Em contraste, o Cenário

2 apresenta um perfil quase inverso. O peso atribúıdo às métricas térmicas para con-

dicionamento passivo do ambiente interno foi reduzido para 13%, enquanto CT + CTf

alcançaram 35% e o custo tornou-se o critério dominante, com 40% de influência.
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Cenário 1

Curitiba

A Figura 4.3 apresenta as frequências (≥ 2) dos sistemas construtivos das melhores com-

binações construtivas apontadas pelo algoritmo de otimização para o Cenário 1, em Cu-

ritiba. Segundo a ABNT (2024a) trata-se de uma cidade localizada na ZB 1M (”muito

fria com inverno moderado”).

(a) Recorrência ≥ 2 dos sistemas construtivos nas soluções otimizadas para o
Cenário 1 em Curitiba.

(b) R vs Ct dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 1 em Curitiba.

Figura 4.3: Materiais recorrentes para Curitiba. Tons mais escuros representam maior
frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

No Cenário 1, a pa30 foi a solução mais recorrente, com 59 aparições, composta

por bloco de concreto de 14 cm sem revestimento, apresentando baixa resistência térmica

(R = 0,15 (m2·K)/W) e baixa capacidade térmica (Ct = 132,39 kJ/(m2·K))). A com-

binação desses valores relativamente baixos de resistência e capacidade térmica resultou

em uma envoltória leve e pouco inercial, permitindo resposta mais rápida às condições

internas consideradas e reduzindo o tempo em desconforto por frio segundo o indicador

AT e a intensidade desse frio, avaliado por GH, métricas priorizadas no Cenário 1.
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A segunda parede mais frequente foi a pa34, presente em 24 soluções finais, com-

posta por bloco cerâmico assentado na posição deitado, com 9 cm, resultando em uma

resistência térmica mais alta (R = 0,35 (m2·K)/W) e capacidade térmica mais baixa (Ct

= 97,27 kJ/(m2·K)). Em climas frios, como Curitiba, classificada como ZB 1M (muito frio

com inverno moderado) (ABNT, 2005), maior resistência térmica reduz perdas de calor

para o ambiente externo e contribui para estabilidade térmica interna (LAMBERTS et

al., 2016). Desta forma, enquanto a pa30 atua acelerando o aquecimento interno, a pa34 o

faz minimizando sua dissipação, caracterizando duas estratégias térmicas distintas, porém

equivalentes em desempenho segundo os critérios otimizados.

A recorrência do piso pi4, contabilizando 36 aparições, reforça esse padrão. Esse

sistema, composto por contrapiso sem laje com acabamento em cimento queimado, apre-

senta R = 0,04 (m2·K)/W e Ct = 97,5 kJ/(m2·K), favorecendo o acoplamento térmico

com o solo, que tanto em climas frios quanto quentes, tende a apresentar menor variação

térmica ao longo do tempo e atuar como moderador natural. A baixa massa térmica desse

sistema evita atraso térmico excessivo e favorece estabilização mais rápida da temperatura

interna.

A cobertura mais frequente foi co28, composta por telha cerâmica com forro de

PVC e ausência de laje, apresentando R = 0,25 (m2·K)/W e Ct = 40,08 kJ/(m2·K). Assim

como as demais soluções predominantes, trata-se de um sistema leve, cuja rápida resposta

térmica permitiu aproveitar os ganhos solares diurnos e reduzir o desconforto por frio. A

ausência de casos recorrentes de superaquecimento nas simulações reforça a adequação

dessa escolha no clima analisado.

A interpretação conjunta dos resultados revela um comportamento consistente:

a maior parte das soluções selecionadas apresenta baixos valores de R e Ct, indicando

preferência do algoritmo por envoltórias leves e responsivas, capazes de aproveitar ganhos

solares e ajustar a temperatura interna rapidamente. No entanto, a recorrência, ainda

que menor, de sistemas com propriedades térmicas mais elevadas, como o piso pi8 (Ct =

316,0 kJ/(m2·K)), a cobertura co3 (R = 0,50 (m2·K)/W) e a cobertura co1 (Ct = 296,60

kJ/(m2·K)), indica que o processo de otimização também identificou cenários nos quais

maior isolamento ou maior amortecimento térmico se mostraram vantajosos. Assim, a
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seleção final não reflete uma única abordagem térmica dominante, mas sim um equiĺıbrio

adaptativo entre rápida resposta ao ambiente e maior estabilidade térmica interna, con-

dicionado pelas caracteŕısticas climáticas, pela interação entre os demais componentes da

envoltória e pelos pesos atribúıdos aos critérios de análise.

São Paulo

A Figura 4.4 apresenta as frequências superior a 1 dos sistemas construtivos das melhores

combinações construtivas em São Paulo para o Cenário 1. Segundo a ABNT (2024a), São

Paulo é uma cidade pertencente à ZB 2M (“fria com inverno moderado”).

(a) Recorrência ≥ 2 dos sistemas construtivos nas soluções otimizadas para o
Cenário 1 em São Paulo.

(b) R vs Ct dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 1 em São Paulo.

Figura 4.4: Materiais recorrentes para São Paulo. Tons mais escuros representam maior
frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

A parede pa34 e a cobertura co28 também se destacaram em São Paulo, com

75 e 35 recorrências, respectivamente, demonstrando desempenho ainda mais expressivo

do que em Curitiba. Esse resultado reforça a capacidade desse conjunto construtivo

em atender aos critérios priorizados no Cenário 1, pelos mesmos mecanismos previamente
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discutidos: barreira térmica eficiente devido à maior resistência (no caso da pa34) e rápida

resposta térmica devido à baixa capacidade térmica (no caso da co28). Além disso, a baixa

capacidade térmica reduz o risco de superaquecimento, pois limita o armazenamento de

calor ao longo do dia e facilita o resfriamento noturno (LAMBERTS et al., 2016).

O comportamento observado no piso acompanha essa tendência. O sistema predo-

minante em São Paulo consiste em contrapiso revestido com porcelanato (pi1), resultando

em valores de R = 0,04 (m2·K)/W e Ct = 86,00 kJ/(m2·K), muito próximos aos observa-

dos para o piso pi4, solução mais frequente em Curitiba e segunda mais recorrente em São

Paulo, com 37 aparições. Assim como no clima mais frio, trata-se de um componente leve

e sem laje, o que favorece rápida adaptação térmica interna com a temperatura amena

do solo, sem induzir atraso térmico significativo.

A recorrência semelhante das soluções entre Curitiba e São Paulo sugere forte

influência do regime climático no processo de otimização. Embora os dois locais apresen-

tem intensidades distintas de frio, ambos são classificados como regiões de predominância

térmica fria segundo a (ABNT, 2024a), o que pode explicar a similaridade das soluções

predominantes. No entanto, em São Paulo a variabilidade observada em Curitiba é menos

evidente: as soluções se concentram essencialmente em uma única região dos gráficos R

versus Ct, indicando menor necessidade de estratégias térmicas distintas para atender aos

critérios otimizados. Essa maior convergência pode estar associada à menor severidade

térmica e à amplitude diária mais moderada, que reduzem os benef́ıcios adicionais de

soluções mais isolantes ou com maior massa térmica e tornam mais eficiente a adoção de

sistemas com baixa inércia térmica.

Belém

A Figura 4.5 apresenta apenas os sistemas construtivos que se repetiram ao menos duas

vezes entre as melhores combinações obtidas para Belém no Cenário 1. Segundo a (ABNT,

2024a), essa cidade está localizada na ZB 6A (“muito quente e úmida”).
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(a) Recorrência ≥ 2 dos sistemas construtivos nas soluções otimizadas para o
Cenário 1 em Belém.

(b) R vs Ct dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 1 em Belém.

Figura 4.5: Materiais recorrentes para Belém. Tons mais escuros representam maior
frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

A parede pa33 apresentou 21 recorrências em Belém no Cenário 1. Trata-se de

uma alvenaria simples de bloco cerâmico de 11,5 cm, sem reboco, com R = 0,21 (m2·K)/W

e Ct = 55,57 kJ/(m2·K), valores relativamente baixos dentro do conjunto analisado. Esse

comportamento favorece uma resposta térmica mais rápida e contribui para dissipar calor

acumulado sempre que há possibilidade de resfriamento natural, o que é desejável em

clima quente e úmido, onde as cargas térmicas tendem a ser predominantemente positi-

vas. Nos demais componentes da envoltória, a ausência de predominância de uma única

solução reforça a interpretação de que diferentes sistemas apresentaram desempenhos

muito próximos, indicando que, em Belém, a envoltória isoladamente exerce influência li-

mitada no conforto térmico passivo devido à forte predominância das condições externas.

Essa tendência é evidente, por exemplo, ao comparar o pi7 com o pi21, que tiveram 13 e 10

recorrências, respectivamente. O pi7 tem R = 0,11 (m2·K)/W e Ct = 60,50 kJ/(m2·K),

enquanto o pi21, tem valores significativamente maiores (R = 0,50 (m2·K)/W e Ct =
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291,08 kJ/(m2·K)), sugerindo que tanto soluções leves quanto mais isoladas alcançaram

desempenho semelhante sob as prioridades estabelecidas no Cenário 1.

Em Belém, as soluções recorrentes distribuem-se por uma faixa ampla de valores

de R e Ct, indicando ausência de uma estratégia dominante. Esse comportamento é con-

sistente com a baixa repetibilidade observada anteriormente na análise das combinações

construtivas, sugerindo que múltiplas combinações alcançaram desempenho semelhante e

que a influência isolada da envoltória é limitada no clima quente-úmido.

Cenário 2

Curitiba

A Figura 4.6 apresenta apenas os sistemas construtivos recorrentes (≥ 2 ocorrências) entre

as combinações selecionadas como melhores pelo algoritmo no Cenário 2, para o caso de

Curitiba.
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(a) Recorrência ≥ 2 dos sistemas construtivos nas soluções otimizadas para o
Cenário 2 em Curitiba.

(b) Custo dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 2 em Curitiba.

(c) R vs Ct dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 2 em Curitiba.

Figura 4.6: Materiais recorrentes para Curitiba. Tons mais escuros representam maior
frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

No Cenário 2, a parede pa34 apresentou 81 recorrências em Curitiba, constituindo

o maior número registrado em todo o estudo. Como descrito anteriormente, trata-se de

uma alvenaria formada por bloco cerâmico assentado na posição deitado, com 9 cm de es-

pessura, resultando em uma resistência térmica relativamente alta (R = 0,35 (m2·K)/W)

e capacidade térmica relativamente baixa (Ct = 97,27 kJ/(m2·K)). A ausência de reves-
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timento contribui para um custo final mais reduzido (R$ 568,76/m2), o que pode ter

favorecido sua recorrência no Cenário 2, considerando o peso dominante atribúıdo a custo

e demanda energética. Além disso, essa configuração tende a favorecer o desempenho

energético quando há uso de sistemas AVAC, pois a combinação de maior resistência

térmica com baixa inércia permite resposta mais rápida ao condicionamento artificial e

reduz a troca térmica com o exterior, tornando a edificação menos dependente das va-

riações climáticas externas.

No caso do piso, os sistemas pi4 (51 recorrências) e pi1 (47 recorrências), bem

como a cobertura co28 (35 recorrências), voltaram a se destacar como soluções otimizadas

para o clima de Curitiba no Cenário 2, pelos mesmos mecanismos já discutidos. Agora, en-

tretanto, o piso pi4 apresenta maior predominância em um cenário ainda mais exigente em

relação ao custo, o que pode estar relacionado ao seu baixo valor unitário (R$ 106,70/m2).

Embora pi1 também apresente um custo relativamente competitivo (R$147,82/m2), o pi4

se sobressai como opção economicamente mais atrativa, sem comprometer o desempe-

nho energético exigido pelo Cenário 2. A cobertura co28 mantem valores relativamente

inferiores quando comparada às alternativas de cobertura (R$ 205,66/m2).

Além disso, observa-se uma coincidência relevante entre os sistemas com menor

custo unitário e os agrupamentos mais frequentes no gráfico R versus Ct. As soluções que

se repetem tendem a ocupar uma faixa concentrada de valores térmicos intermediários

e custo reduzido, sugerindo que, no Cenário 2, essa sobreposição entre desempenho ade-

quado ao uso condicionado e competitividade econômica se tornou o principal direcio-

nador das escolhas otimizadas. Essa relação reforça que o processo de otimização não

apenas identificou alternativas energeticamente compat́ıveis com climatização artificial,

mas também priorizou aquelas cuja viabilidade financeira favorece sua adoção prática no

contexto construtivo analisado.

São Paulo

A Figura 4.7 reúne os sistemas construtivos com recorrência igual ou superior a duas

aparições entre as melhores soluções do Cenário 2 em São Paulo. Os mesmos padrões foram

observados em São Paulo, com destaque para a parede pa34 (71 ocorrências, custo de R$
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540,43/m2), os pisos pi1 (60, R$ 133,32/m2) e pi4 (35, R$168,14/m2), e a cobertura co28

(28, R$ 219,14/m2), indicando uma tendência semelhante à encontrada em Curitiba nas

soluções otimizadas do Cenário 2. Assim como no clima mais frio, as soluções recorrentes

se concentram em uma faixa estreita do gráfico R versus Ct, indicando que o peso atribúıdo

ao custo e ao desempenho energético sob climatização artificial direcionou a seleção para

sistemas de menor custo e com propriedades térmicas semelhantes, resultando em um

agrupamento consistente e menor diversidade de alternativas.
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(a) Recorrência ≥ 2 dos sistemas construtivos nas soluções otimizadas para o
Cenário 2 em São Paulo.

(b) Custo dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 2 em São Paulo.

(c) R vs Ct dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 2 em São Paulo.

Figura 4.7: Materiais recorrentes para São Paulo. Tons mais escuros representam maior
frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

Belém

Por fim, a Figura 4.8 mostra os sistemas construtivos recorrentes (≥ 2 ocorrências) entre

as soluções selecionadas como ótimas para Belém no Cenário 2.
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(a) Recorrência ≥ 2 dos sistemas construtivos nas soluções otimizadas para o
Cenário 2 em Belém.

(b) Custo dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 2 em Belém.

(c) R vs Ct dos sistemas construtivos com recorrência ≥ 2 nas soluções otimizadas
para o Cenário 2 em Belém.

Figura 4.8: Materiais recorrentes para Belém. Tons mais escuros representam maior
frequência de seleção dos sistemas.

Fonte: Elaborado pelo autor.

Observa-se que nenhum sistema construtivo apresentou predominância expres-

siva em relação aos demais no Cenário 2 para Belém. A maior recorrência ocorreu para a

parede pa1, com 13 aparições, mas ainda assim sem formar uma tendência dominante den-

tro da categoria. Esse comportamento reforça a interpretação já identificada no Cenário

1 para Belém: diferentes sistemas, mesmo com caracteŕısticas f́ısicas distintas, obtive-
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ram desempenho semelhante, sugerindo que a envoltória, isoladamente, exerce influência

limitada no resultado da otimização para esse clima quente e úmido.

Essa dispersão é ainda mais evidente no Cenário 2, comparado ao 1. Nemmesmo o

critério de custo, que é responsável pelo maior peso na função objetivo, gerou convergência

para uma solução única ou um agrupamento mais consistente. A comparação do custo

entre sistemas ilustra esse comportamento: a parede pa1, apesar de ser a mais recorrente,

apresenta um valor relativamente baixo (R$ 538,92/m2), situando-se próximo ao primeiro

quartil da distribuição de custos; enquanto a parede pa18, com 10 recorrências, possui

custo superior (R$ 632,42/m2), posicionando-se acima da mediana.

A análise dos gráficos confirma esse padrão: os sistemas recorrentes permanece-

ram distribúıdos em diferentes faixas de custo e de propriedades térmicas, sem formação

de um agrupamento claro. Mesmo com o custo como critério dominante no Cenário 2,

não houve convergência para soluções mais baratas ou termicamente semelhantes, indi-

cando que, em Belém, diferentes combinações continuam apresentando comportamento

equivalente no processo de otimização.
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5 Conclusão

Este trabalho investigou a aplicação de técnicas de otimização multiobjetivo para apoiar

a seleção de materiais de construção de forma integrada ao desempenho térmico, custo

e emissões operacionais. A abordagem proposta combinou simulações termoenergéticas

realizadas no EnergyPlus, metamodelos baseados em XGBoost para acelerar a avaliação

de soluções e o algoritmo evolutivo R-NSGA-III para conduzir o processo de busca dos

melhores conjuntos em cenários atuais e futuros. A análise contemplou três cidades com

climas diferentes (Curitiba, São Paulo e Belém), reforçando a variedade de demandas

térmicas presentes no território brasileiro.

Os resultados mostraram que o uso de metamodelos exigiu um custo computacio-

nal significativamente baixo da otimização, ao invés de vários dias caso todos os conjuntos

fossem simulados separadamente (8 min para cada conjunto em um computador pessoal

convencional). Essa redução possibilitou a análise eficiente de mais de 199123 combinações

construtivas ao longo das execuções realizadas.

Na comparação entre as representações avaliadas, o Gray Code apresentou o me-

lhor desempenho global, obtendo um valor médio de HV = 0,964505 e Spacing = 0,095300,

superando as representações discreta e binária.

A análise das soluções otimizadas revelou comportamentos distintos entre os

cenários. No Cenário 1, no qual o foco é o conforto térmico obtido por estratégias passi-

vas, os resultados indicam uma melhora consistente no desempenho térmico das soluções

otimizadas quando comparadas ao conjunto total de alternativas avaliadas. De modo ge-

ral, as soluções selecionadas apresentaram uma redução nos valores de Graus-Hora (GH)

e um aumento na autonomia térmica (AT), com variações t́ıpicas entre 6% e 10%, a de-

pender da cidade analisada. Isso significa que, após a otimização, as edificações tendem

a apresentar menos horas de desconforto térmico e uma maior proporção do tempo em

condições aceitáveis de conforto. No caso de São Paulo, esse efeito foi mais pronunciado,

com uma redução de aproximadamente 7% em GH e um aumento de cerca de 17% em

AT, evidenciando o potencial da abordagem para melhorar o conforto térmico sem o uso
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de estratégias ativas. Ainda que CT e CTf tivessem pesos menores, as medianas ainda

apresentaram diferença em torno de 180 kWh, o que pode representar variação de R$ 112

a R$ 167 anuais no presente dependendo da tarifa energética local.

No Cenário 2, com maior peso para custo, carga térmica (CT) e carga térmica

no clima futuro (CTf), houve forte convergência para soluções espećıficas. As medianas

otimizadas aproximaram-se dos pontos de referência definidos, atingindo 87% de aderência

para CT e 87% para CTf. Esse comportamento foi mais evidente em Curitiba e São Paulo,

onde algumas combinações apareceram entre 12 e 20 vezes dentro das 100 execuções. Já

em Belém, a maior dispersão permaneceu: a combinação mais frequente ocorreu apenas

2 vezes, reforçando a menor sensibilidade da envoltória construtiva nesse clima quente-

úmido. Observa-se ainda que, em todos os casos, as soluções recorrentes concentram-

se predominantemente em faixas de custo mais baixo para paredes, pisos e coberturas,

evidenciando que a otimização, ao priorizar custo e carga térmica, favorece materiais

economicamente mais acesśıveis.

No total, a otimização permitiu identificar soluções capazes de reduzir custos ope-

racionais e melhorar o desempenho térmico de forma integrada. Comparando as melhores

soluções de cada cenário com o espaço amostral, verificaram-se ganhos globais entre 8%

e 22% nos indicadores priorizados, demonstrando o potencial da abordagem como ferra-

menta de apoio ao projeto.

Como possibilidades de aprimoramento e continuidade deste estudo, destaca-se

que as análises foram conduzidas considerando uma única tipologia de edificação residen-

cial, o que restringe a abrangência dos resultados a esse modelo espećıfico. A ampliação

da metodologia para diferentes tipologias arquitetônicas, com variações geométricas e fun-

cionais, permitiria avaliar a robustez da abordagem frente a configurações construtivas

distintas. Além disso, o espaço de soluções foi limitado a um conjunto finito e previamente

definido de sistemas construtivos para paredes, pisos e coberturas. Investigações futuras

podem expandir esse espaço de busca, incorporando novas alternativas construtivas ou

variações mais amplas de propriedades termof́ısicas, de modo a explorar um conjunto

mais diverso de soluções potenciais. Adicionalmente, uma extensão relevante consiste em

incorporar o custo operacional ao modelo de avaliação, considerando o consumo energético
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anual e sua conversão em custos ao longo do ciclo de vida. Nesse contexto, também se

mostra promissora a inclusão de cenários de geração distribúıda, como sistemas fotovoltai-

cos, permitindo estimar o impacto de energias renováveis na redução do custo operacional

e das emissões de CO2 associadas à operação da edificação.

Em conclusão, os achados indicam que não existe uma solução universal, mas

sim alternativas senśıveis ao clima, e aos pesos atribúıdos. Portanto, o desenvolvimento

desta ferramenta evidenciou o potencial da integração entre simulação termoenergética,

aprendizado de máquina e otimização multiobjetivo como um caminho robusto, escalável e

aplicável para apoiar decisões construtivas mais racionais e alinhadas às demandas atuais

e futuras do setor.
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A Lista de materiais dos sistemas

construtivos

A.1 Paredes

Tabela A.1: Materiais e propriedades térmicas equivalentes dos sistemas de paredes

Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

1

Reboco 0.0150 1.1500 1950.0000 1000.0000

4.7213 111.8647Bloco Cerâmico 0.0900 0.4846 860.0833 689.4000

Reboco 0.0150 1.1500 1950.0000 1000.0000

2

Reboco 0.0200 1.1500 1950.0000 1000.0000

4.5351 131.3647Bloco Cerâmico 0.0900 0.4846 860.0833 689.4000

Reboco 0.0200 1.1500 1950.0000 1000.0000

3

Reboco 0.0250 1.1500 1950.0000 1000.0000

4.3630 150.8647Bloco Cerâmico 0.0900 0.4846 860.0833 689.4000

Reboco 0.0250 1.1500 1950.0000 1000.0000

4

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

2.2951 131.3647Bloco Cerâmico 0.0900 0.4846 860.0833 689.4000

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

5

Reboco 0.0150 1.1500 1950.0000 1000.0000

4.1984 114.0718Bloco Cerâmico 0.1150 0.5422 806.5978 599.1000

Reboco 0.0150 1.1500 1950.0000 1000.0000

6

Reboco 0.0200 1.1500 1950.0000 1000.0000

4.0505 133.5718Bloco Cerâmico 0.1150 0.5422 806.5978 599.1000

Reboco 0.0200 1.1500 1950.0000 1000.0000

7

Reboco 0.0250 1.1500 1950.0000 1000.0000

3.9127 153.0718Bloco Cerâmico 0.1150 0.5422 806.5978 599.1000
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Número Materiais e (m) λ ρ c
U

[J/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Reboco 0.0250 1.1500 1950.0000 1000.0000

8

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

2.1640 133.5718Bloco Cerâmico 0.1150 0.5422 806.5978 599.1000

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

9

Reboco 0.0150 1.1500 1950.0000 1000.0000

2.6549 155.7660Bloco cerâmico

9cm deitado

0.1900 0.5420 968.4167 528.6220

Reboco 0.0150 1.1500 1950.0000 1000.0000

10

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.5950 175.2660Bloco cerâmico

9cm deitado

0.1900 0.5420 968.4167 528.6220

Reboco 0.0200 1.1500 1950.0000 1000.0000

11

Reboco 0.0250 1.1500 1950.0000 1000.0000

2.5377 194.7660Bloco cerâmico

9cm deitado

0.1900 0.5420 968.4167 528.6220

Reboco 0.0250 1.1500 1950.0000 1000.0000

12

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

1.6651 175.2660Bloco cerâmico

9cm deitado

0.1900 0.5420 968.4167 528.6220

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

13

Reboco 0.0150 1.1500 1950.0000 1000.0000

2.7212 156.3134Bloco cerâmico

11.5cm deitado

0.1900 0.5565 870.1685 591.6180

Reboco 0.0150 1.1500 1950.0000 1000.0000

14

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.6583 175.8134Bloco cerâmico

11.5cm deitado

0.1900 0.5565 870.1685 591.6180

Reboco 0.0200 1.1500 1950.0000 1000.0000

15

Reboco 0.0250 1.1500 1950.0000 1000.0000

2.5982 195.3134
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Número Materiais e (m) λ ρ c
U

[J/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Bloco cerâmico

11.5cm deitado

0.1900 0.5565 870.1685 591.6180

Reboco 0.0250 1.1500 1950.0000 1000.0000

16

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

1.6909 175.8134Bloco cerâmico

11.5cm deitado

0.1900 0.5565 870.1685 591.6180

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

17

Reboco 0.0150 1.1500 1950.0000 1000.0000

7.6245 205.3581Tijolo maciço 0.1000 0.9517 1592.8570 921.9790

Reboco 0.0150 1.1500 1950.0000 1000.0000

18

Reboco 0.0200 1.1500 1950.0000 1000.0000

7.1504 224.8581Tijolo maciço 0.1000 0.9517 1592.8570 921.9790

Reboco 0.0200 1.1500 1950.0000 1000.0000

19

Reboco 0.0250 1.1500 1950.0000 1000.0000

6.7318 244.3581Tijolo maciço 0.1000 0.9517 1592.8570 921.9790

Reboco 0.0250 1.1500 1950.0000 1000.0000

20

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

2.8163 224.8581Tijolo maciço 0.1000 0.9517 1592.8570 921.9790

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

21

Reboco 0.0150 1.1500 1950.0000 1000.0000

5.5314 190.8870Bloco de Concreto 0.1400 0.9050 1166.0803 810.9400

Reboco 0.0150 1.1500 1950.0000 1000.0000

22

Reboco 0.0200 1.1500 1950.0000 1000.0000

5.2775 210.3870Bloco de Concreto 0.1400 0.9050 1166.0803 810.9400

Reboco 0.0200 1.1500 1950.0000 1000.0000

23

Reboco 0.0250 1.1500 1950.0000 1000.0000

5.0460 229.8870Bloco de Concreto 0.1400 0.9050 1166.0803 810.9400

Reboco 0.0250 1.1500 1950.0000 1000.0000

24

Reboco isolante 0.0250 1.1500 2023.4000 2000.0000

5.0460 334.7270
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Número Materiais e (m) λ ρ c
U

[J/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Bloco de Concreto 0.1400 0.9050 1166.0803 810.9400

Reboco isolante 0.0250 1.1500 2023.4000 2000.0000

25

Reboco 0.0150 1.1500 1950.0000 1000.0000

6.5665 184.4178Bloco de Concreto 0.0900 0.7131 1506.4027 928.7600

Reboco 0.0150 1.1500 1950.0000 1000.0000

26

Reboco 0.0200 1.1500 1950.0000 1000.0000

6.2118 203.9178Bloco de Concreto 0.0900 0.7131 1506.4027 928.7600

Reboco 0.0200 1.1500 1950.0000 1000.0000

27

Reboco 0.0250 1.1500 1950.0000 1000.0000

5.8935 223.4178Bloco de Concreto 0.0900 0.7131 1506.4027 928.7600

Reboco 0.0250 1.1500 1950.0000 1000.0000

28

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

2.6582 203.9178Bloco de Concreto 0.0900 0.7131 1506.4027 928.7600

Reboco isolante 0.0250 0.2000 1560.0000 1000.0000

29 Tijolo maciço 0.1000 0.9517 1592.8570 921.9790 9.5175 146.8581

30 Bloco de Concreto 0.1400 0.9050 1166.0803 810.9400 6.4641 132.3870

31 Bloco de Concreto 0.0900 0.7131 1506.4027 928.7600 7.9239 125.9178

32 Bloco Cerâmico 0.0900 0.4846 860.0833 689.4000 5.3844 53.3647

33 Bloco Cerâmico 0.1150 0.5422 806.5978 599.1000 4.7148 55.5718

34 Bloco cerâmico

9cm deitado

0.1900 0.5420 968.4167 528.6220 2.8524 97.2660

35 Bloco cerâmico

11.5cm deitado

0.1900 0.5565 870.1685 591.6180 2.9291 97.8134

A.2 Pisos
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Tabela A.2: Materiais e propriedades térmicas equivalentes dos sistemas de pisos

Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

1

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

25.7944 86.0000Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Porcelanato 0.0100 1.2000 2000.0000 850.0000

2
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

10.5205 82.6200
Taco de madeira 0.0200 0.2900 900.0000 1340.0000

3
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

27.7108 63.4920
Vinil 0.0040 0.4000 1300.0000 960.0000

4
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

23.0000 97.5000
Cimento queimado 0.0200 1.1500 1950.0000 1000.0000

5
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

14.0673 77.6475
Madeira laminada 0.0090 0.2000 925.0000 2300.0000

6

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

26.9531 112.6800Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Granito 0.0200 3.0000 2600.0000 840.0000

7
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

9.1391 60.5000
Carpete 0.0050 0.0600 160.0000 2500.0000

8

Laje 0.1000 1.7500 2300.0000 1000.0000

10.4263 316.0000
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Porcelanato 0.0100 1.2000 2000.0000 850.0000

9

Laje 0.1000 1.7500 2300.0000 1000.0000

6.3880 323.1200
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Taco de madeira 0.0200 0.2900 900.0000 1340.0000

10

Laje 0.1000 1.7500 2300.0000 1000.0000

10.7262 293.4920Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Vinil 0.0040 0.4000 1300.0000 960.0000

11

Laje 0.1000 1.7500 2300.0000 1000.0000

9.9383 327.5000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Cimento queimado 0.0200 1.1500 1950.0000 1000.0000

12

Laje 0.1000 1.7500 2300.0000 1000.0000

7.7985 307.6475Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Madeira laminada 0.0090 0.2000 925.0000 2300.0000

13

Laje 0.1000 1.7500 2300.0000 1000.0000

10.6107 342.6800
Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Granito 0.0200 3.0000 2600.0000 840.0000

14

Laje 0.1000 1.7500 2300.0000 1000.0000

6.0037 290.5000Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Carpete 0.0050 0.0600 160.0000 2500.0000

15

Laje 0.1000 1.7500 2300.0000 1000.0000

2.3297 316.5775

Manta lã de vidro 0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Porcelanato 0.0100 1.2000 2000.0000 850.0000

16

Laje 0.1000 1.7500 2300.0000 1000.0000

2.0596 313.1975
Manta ter-

moacústica

0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Taco de madeira 0.0200 0.2900 900.0000 1340.0000

17

Laje 0.1000 1.7500 2300.0000 1000.0000

2.3443 294.0695
Manta ter-

moacústica

0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Vinil 0.0040 0.4000 1300.0000 960.0000

18

Laje 0.1000 1.7500 2300.0000 1000.0000

2.3044 328.0775
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Manta ter-

moacústica

0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Cimento queimado 0.0200 1.1500 1950.0000 1000.0000

19

Laje 0.1000 1.7500 2300.0000 1000.0000

2.1666 308.2250
Manta ter-

moacústica

0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Madeira laminada 0.0090 0.2000 925.0000 2300.0000

20

Laje 0.1000 1.7500 2300.0000 1000.0000

2.3388 343.2575

Manta ter-

moacústica

0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Argamassa Colante 0.0050 1.1500 2100.0000 1000.0000

Granito 0.0200 3.0000 2600.0000 840.0000

21

Laje 0.1000 1.7500 2300.0000 1000.0000

2.0004 291.0775
Manta ter-

moacústica

0.0150 0.0450 55.0000 700.0000

Contrapiso 0.0300 1.1500 1950.0000 1000.0000

Carpete 0.0050 0.0600 160.0000 2500.0000

A.3 Cobertura

Tabela A.3: Materiais e propriedades térmicas equivalentes dos sistemas de cobertura

Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

1

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.6462 296.6000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Caixa de ar 0.1500 Rt =

0,1775

(m2·K)/W

- -

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

2

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.9184 247.4645
Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

3

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.0168 204.2113
Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

4

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.7956 315.0000
Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

5

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.0134 265.8645
Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

6

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.0617 222.6113
Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

7

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.8707 278.0720
Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

8

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.0605 228.9365
Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

9

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.0837 185.6833
Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

10

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.0840 296.6202

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

11

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.5468 247.4846

Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

12

Reboco 0.0200 1.1500 1950.0000 1000.0000

1.8321 204.2315

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

13

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.1902 315.0202

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

14

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.6188 265.8846

Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

15

Reboco 0.0200 1.1500 1950.0000 1000.0000

1.8690 222.6315

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

16

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.2431 278.0922

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

17

Reboco 0.0200 1.1500 1950.0000 1000.0000

2.6543 228.9566

Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

18

Reboco 0.0200 1.1500 1950.0000 1000.0000

1.8871 185.7035

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

19

Painel de gesso 0.0125 0.3500 875.0000 840.0000

4.2474 36.7875Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

20

Painel de gesso 0.0125 0.3500 875.0000 840.0000

4.4515 55.1875Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

21

Painel de gesso 0.0125 0.3500 875.0000 840.0000

4.5552 18.2595Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

22

Painel de gesso 0.0125 0.3500 875.0000 840.0000

3.5034 36.8077
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

23

Painel de gesso 0.0125 0.3500 875.0000 840.0000

3.6411 55.2077
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

24

Painel de gesso 0.0125 0.3500 875.0000 840.0000

3.7102 18.2797
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

25

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

3.3592 247.0790
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

26

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

2.7316 197.9435
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

27

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

1.9258 154.6903
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

28

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

4.0044 40.0800Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

29

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

4.1854 58.4800
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

30

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

4.2769 21.5520Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

31

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

3.3364 40.1002
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

32

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

3.4611 58.5002
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

33

Forro de PVC 0.0100 0.2000 1300.0000 960.0000

3.5234 21.5722
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

34

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

3.5585 237.9490
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

35

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

2.8619 188.8135
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

36

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

1.9897 145.5603
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

37

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

4.2908 30.9500Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

38

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

4.4992 49.3500
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

39

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

4.6051 12.4220Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

40

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

3.5329 30.9702
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de cerâmica 0.0200 0.9000 1500.0000 920.0000

41

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

3.6729 49.3702
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000

Telha de concreto 0.0200 1.7500 2300.0000 1000.0000

42

Forro de madeira 0.0050 0.1500 500.0000 1340.0000

3.7432 12.4422
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Manta ter-

moacústica

0.0020 0.0400 12.0000 840.0000
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Telha de fibroci-

mento

0.0060 0.9500 1800.0000 840.0000

43

Painel de gesso 0.0125 0.3500 875.0000 840.0000

3.5286 243.7865
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

44

Painel de gesso 0.0125 0.3500 875.0000 840.0000

2.8426 194.6510
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

45

Painel de gesso 0.0125 0.3500 875.0000 840.0000

1.9803 151.3978
Caixa de ar 0.2000 Rt =

0,1775

(m2·K)/W

- -

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

46

Reboco 0.0200 1.1500 1950.0000 1000.0000

11.4184 273.5990Laje de concreto 0.1000 1.7500 2300.0000 1000.0000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

47

Reboco 0.0200 1.1500 1950.0000 1000.0000

6.4115 224.4635Laje treliçada de

cerâmica

0.1200 0.9559 1629.7620 924.8000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000

48

Reboco 0.0200 1.1500 1950.0000 1000.0000

3.2346 181.2103
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Número Materiais e (m) λ ρ c
U

[W/(m2·K)]

Ct

[J/(m2·K)]

do Sis-

tema
(W/m.K)(kg/m3) (J/kg.K) equivalente equivalente

Laje treliçada de

EPS

0.1200 0.4305 1289.8000 889.1000

Impermeabilizante 0.0030 0.2300 1050.0000 1460.0000
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B Tabelas de calibração de hiperparâmetros

B.1 Random search na representação discreta

Tabela B.1: Configurações gerais utilizadas no random search para a representação dis-
creta.

Configuração Descrição

Número de tentativas (trials) 20 execuções

Operador de amostragem IntegerRandomSampling

Operador de cruzamento SBX

Operador de mutação PM (Polynomial Mutation)

Eliminação de duplicatas Ativada (eliminate duplicates=True)

Critério de avaliação Hipervolume (HV)

Indicador de HV ref point = [1.1] * 10

Tabela B.2: Faixas de hiperparâmetros obtidas pelo random search (representação dis-
creta).

Hiperparâmetro Faixa (mı́n–máx)

pop per ref point 1 – 2

pm prob 0.01035821 – 0.0171512

pm eta 14.34564 – 18.7204

sbx eta 11.454559 – 22.00091

sbx prob 0.905015 – 0.94675

n gen 97 – 99
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Tabela B.3: Melhor conjunto de hiperparâmetros obtido pelo Optuna (representação dis-
creta).

Hiperparâmetro Valor ótimo

pop per ref point 1

pm prob 0.0143118

pm eta 17.6370

sbx eta 21.8359

sbx prob 0.923585

n gen 99

Hipervolume (HV) 0.959858

B.2 Random search na representação binária

Tabela B.4: Configurações gerais utilizadas no random search para a representação
binária.

Configuração Descrição

Número de tentativas (trials) 20 execuções

Operador de amostragem BinaryRandomSampling

Operadores de cruzamento avaliados HUX, single point, two point, uniform

Operador de mutação BitflipMutation

Eliminação de duplicatas Ativada (eliminate duplicates=True)

Critério de avaliação Hipervolume (HV)

Indicador de HV ref point = [1.1] * 10
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Tabela B.5: Faixas de hiperparâmetros obtidas pelo random search (representação
binária).

Hiperparâmetro Faixa (mı́n–máx)

pop per ref point 1 – 4

mut prob 0.0111832 – 0.01633134

sbx prob 0.912424256 – 0.954234

n gen 80 – 85

crossover two point

Tabela B.6: Melhor conjunto de hiperparâmetros obtido pelo Optuna (representação
binária).

Hiperparâmetro Valor ótimo

pop per ref point 1

mut prob 0.0143118

sbx prob 0.9334565321

crossover two point

n gen 81

Hipervolume (HV) 0.944688
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B.3 Random search na representação Gray Code

Tabela B.7: Configurações gerais utilizadas no random search para a representação Gray
Code.

Configuração Descrição

Número de tentativas (trials) 20 execuções

Operador de amostragem BinaryRandomSampling

Operadores de cruzamento avaliados HUX, single point, two point, uniform

Operador de mutação BitflipMutation

Eliminação de duplicatas Ativada (eliminate duplicates=True)

Critério de avaliação Hipervolume (HV)

Indicador de HV ref point = [1.1] * 10

Tabela B.8: Faixas de hiperparâmetros obtidas pelo random search (representação Gray
Code).

Hiperparâmetro Faixa (mı́n–máx)

pop per ref point 1 – 4

mut prob 0.01167 – 0.01519844

sbx prob 0.9225617 – 0.95328967

n gen 81 – 83

crossover two point



B.3 Random search na representação Gray Code 116

Tabela B.9: Melhor conjunto de hiperparâmetros obtido pelo Optuna (representação Gray
Code).

Hiperparâmetro Valor ótimo

pop per ref point 1

mut prob 0.0143

sbx prob 0.9376651123

crossover two point

n gen 81

Hipervolume (HV) 0.9560
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v. 17, n. 1, p. 921–929, nov. 2018. Dispońıvel em: ⟨https://eventos.antac.org.br/index.
php/entac/article/view/1426⟩.

ALPAYDIN, E. Introduction to Machine Learning. 4th. ed. Cambridge, MA: MIT Press,
2020. ISBN 9780262043793.

APOLONIO, R.; CALLEJAS, I.; ROSETA, F. Evaluation of the thermal resilience of
buildings in overheating in present and climate change scenarios. Ambiente Constrúıdo,
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pońıvel em: ⟨https://www.elastic.co/pt/what-is/supervised-machine-learning⟩.

ENERGIA, C. Mapa de tarifas de energia no Brasil. 2025. ⟨https://clarke.com.br/
mapa-de-tarifas-de-energia-no-brasil/⟩. Acesso em: 07 dez. 2025.

EnergyPlus. EnergyPlus�: Building Energy Simulation Software. 2025. ⟨https://
energyplus.net⟩. Acesso em: 21/10/2025.

FACELI, K. et al. Inteligência Artificial: Uma Abordagem de Aprendizado de Máquina.
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GÉRON, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow. 2.
ed. Sebastopol: O’Reilly Media, 2019.
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ficações. Monografia (Trabalho de Conclusão de Curso (Graduação em Engenharia Com-
putacional)) — Universidade Federal de Juiz de Fora, Juiz de Fora, 2025. Dispońıvel em:
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aplicações. Juiz de Fora, MG, 2025. Acesso em: 08 dez. 2025. Dispońıvel em:
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RESÍDUOS NA CONSTRUÇÃO, v. 9, n. 1, p. 1–6, ago. 2025. Dispońıvel em: ⟨https:
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