UNIVERSIDADE FEDERAL DE JUIZ DE FORA
INsTITUTO DE CIENCIAS EXATAS

BACHARELADO EM CIENCIA DA COMPUTAGAO

Otimizacao multiobjetivo para selecao de
materiais de construcao

Alemilson Fabiano Silva

JUIZ DE FORA
JANEIRO, 2026



Otimizacao multiobjetivo para selecao de
materiais de construcao

ALEMILSON FABIANO SILVA

Universidade Federal de Juiz de Fora
Instituto de Ciéncias Exatas
Departamento de ciéncia da computacao

Bacharelado em Ciéncia Da Computacao

Orientadora: Luciana Conceigao Dias Campos
Coorientadora: Julia Castro Mendes

Coorientador: Vitor Freitas Mendes

JUIZ DE FORA
JANEIRO, 2026



OTIMIZACAO MULTIOBJETIVO PARA SELECAO DE
MATERIAIS DE CONSTRUCAO

Alemilson Fabiano Silva

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIENCIAS
EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE INTE-
GRANTE DOS REQUISITOS NECESSARIOS PARA A OBTENCAO DO GRAU DE
BACHAREL EM CIENCIA DA COMPUTACAO.

Aprovada por:

Luciana Conceicao Dias Campos
Doutora em Engenharia Elétrica (PUC-Rio)

Julia Castro Mendes
Doutora em Engenharia Civil (UFOP)

Vitor Freitas Mendes
Mestre em Engenharia Civil (UFOP)

Carlos Cristiano Hasenclever Borges
Doutor em Engenharia Civil (UFRJ)

Bruno Henriques Dias
Doutor em Engenharia Elétrica (PUC-Rio)

JUIZ DE FORA
22 DE JANEIRO, 2026



Dedico esse trabalho aos meus pais por todo

apoto e incentivo.



Resumo

A industria da construcao civil é um dos maiores contribuintes para as emissoes de ga-
ses de efeito estufa (GEE) e consumo de recursos naturais. A selecdo de materiais de
construcao ¢ uma etapa crucial no ciclo de vida de uma edificacao, impactando direta-
mente seu custo, desempenho energético e pegada de carbono. Este trabalho desenvolveu
uma abordagem integrada para apoiar a selecao de sistemas construtivos com base em
desempenho térmico, custo e emissoes de CO2 equivalente, combinando aprendizado de
maquina e otimizacao multiobjetivo. A abordagem proposta visa simular combinacoes
construtivas no EnergyPlus para alimentar um metamodelo baseado em XGBoost, o qual
¢ integrado a um processo de otimizacao multiobjetivo via R-NSGA-III. Dessa forma,
busca-se identificar as melhores combinacoes de sistemas de paredes, pisos e coberturas,
considerando diferentes preferéncias de avaliagao e compromisso entre os objetivos ana-
lisados. A utilizagao dos metamodelos permitiu avaliar mais de 28.224 combinagoes de
paredes, pisos e coberturas. Foram considerados dois cendrios de uso. No Cenario 1, 80%
dos pesos foram atribuidos as métricas de conforto térmico. Ja no Cenario 2, a priorizacao
foi direcionada ao custo (40%) e ao consumo energético (35%). No Cenério 1, as solugoes
obtidas reduziram o desconforto térmico em até 17% e ampliaram em 7% as métricas
associadas ao conforto, em comparacao ao espaco amostral. No Cenario 2, observou-se
maior convergencia das solucoes, com redugoes no consumo energético entre 140 kWh e
180 kWh, considerando um consumo anual de referéncia de aproximadamente 2000 kWh.
A analise de recorréncia indicou padroes distintos entre os climas: maior variabilidade em
Belém, convergéncia moderada em Sao Paulo e forte repeticao em Curitiba. Conclui-se
que a ferramenta proposta é promissora para apoiar decisoes construtivas considerando
cenarios atuais e futuros, tornando analises complexas mais rapidas, acessiveis e alinhadas

as demandas climaticas brasileiras.

Palavras-chave: Otimizacao multiobjetivo, selecao de materiais de construcao, Energy-

Plus, aprendizado de maquina, eficiéncia energética, mudancas climaticas.



Abstract

The construction industry is one of the largest contributors to greenhouse gas (GHG)
emissions and natural resource consumption. The selection of building materials is a cru-
cial step in the life cycle of a building, directly impacting its cost, energy performance, and
carbon footprint. This work developed an integrated approach to support the selection
of building systems based on thermal performance, cost, and CO2 equivalent emissions,
combining machine learning and multi-objective optimization. The proposed approach
aims to simulate construction combinations in EnergyPlus to feed an XGBoost-based me-
tamodel, which is integrated into a multi-objective optimization process via R-NSGA-III.
In this way, the goal is to identify the best combinations of wall, floor, and roof systems,
considering different evaluation preferences and trade-offs between the analyzed objecti-
ves. The use of metamodels allowed the evaluation of more than 28,224 combinations
of walls, floors, and roofs. Two usage scenarios were considered. In Scenario 1, 80% of
the weights were assigned to thermal comfort metrics. In Scenario 2, prioritization was
directed towards cost (40%) and energy consumption (35%). In Scenario 1, the solutions
obtained reduced thermal discomfort by up to 17% and increased comfort-related metrics
by 7%, compared to the sample area. In Scenario 2, greater convergence of solutions was
observed, with reductions in energy consumption between 140 kWh and 180 kWh, con-
sidering an annual reference consumption of approximately 2000 kWh. The recurrence
analysis indicated distinct patterns between climates: greater variability in Belém, mo-
derate convergence in Sao Paulo, and strong repetition in Curitiba. It is concluded that
the proposed tool is promising for supporting constructive decisions considering current
and future scenarios, making complex analyses faster, more accessible, and aligned with

Brazilian climate demands.

Keywords: Multi-objective optimization, selection of building materials, EnergyPlus,

machine learning, energy efficiency, climate change.
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“Nao importa o quao profunda seja a noite,
no dia sequinte o sol ird brilhar nova-

mente”.

Brook (One Piece)
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1 Introducao

Globalmente, o setor de edificacoes consome cerca de 30% de toda a energia final e é um
dos principais emissores de gases de efeito estufa, destacando sua importancia nas agendas
de mitigagao climatica (UN Environment Programme; Global Alliance for Buildings and
Construction (GlobalABC), 2023). A diversidade climéatica, agravada pelas mudangas
ambientais, torna essencial a compreensao sobre como as construgoes se comportam em
diferentes contextos climaticos, como é o caso do Brasil (KRELLING et al., 2024).

Projetar edificagoes que conciliem desempenho térmico e sustentabilidade, torna-
se, portanto, uma prioridade estratégica tanto para o setor publico quanto para o privado.
O conforto térmico refere-se a percepcao subjetiva de bem-estar dos ocupantes diante
das condi¢oes ambientais internas (ABNT, 2024a). Por sua vez, desempenho térmico
costuma ser tratado como a capacidade da edificacao manter condigoes internas estaveis
e agradaveis, independentemente das variagoes climaticas externas, sendo um parametro
objetivo (ABNT, 2024b). Quando o conforto térmico é alcangado com baixo consumo
de energia, obtém-se a eficiéncia energética, que se configura como um dos pilares da
sustentabilidade no setor da construcao civil (LAMBERTS et al., 2016).

Historicamente, a escolha de materiais de construcao tem sido pautada por critérios
economicos, disponibilidade e tradicao de uso, deixando em segundo plano aspectos
como a questao térmica e o impacto ambiental. Essa abordagem, entretanto, mostra-
se insustentavel diante dos desafios contemporaneos impostos pelas mudancas climaticas.
Projecgoes climaticas indicam o aumento da frequéncia e intensidade de eventos extremos,
como ondas de calor e variacoes bruscas de temperatura, que representam um desafio sig-
nificativo para o setor da construgao civil (NTC Brasil, 2025). Nesse contexto, torna-se
indispensavel considerar o conceito de resiliéncia térmica no processo de concepgao da
edificacao. A resiliéncia térmica é entendida como a capacidade das edificacoes de man-
ter condigoes adequadas de habitabilidade, conforto e desempenho energético mesmo sob
cendrios climaticos futuros mais severos (IFSC Verifica, 2024).

O desempenho térmico e energético das edificagoes pode ser avaliado por dife-
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rentes métricas, cada uma capturando aspectos complementares do desempenho térmico.
Neste trabalho, sao adotados quatro indicadores amplamente utilizados na literatura: a
Carga Térmica (CT), associada ao consumo energético necessario para manter condigdes
internas de conforto por meio de sistemas de climatizacao; os Graus Hora (GH), que
quantificam a intensidade do desconforto térmico em condicoes de ventilacao natural; a
Autonomia Térmica (AT), que expressa a frequéncia com que a edificagdo permanece
dentro da faixa de conforto sem o uso de sistemas ativos; e a Resiliéncia Térmica (RT),
voltada a avaliacao do desempenho da edificacao sob condicoes climaticas extremas. O
uso conjunto desses indicadores permite uma analise mais abrangente e representativa do
desempenho térmico da envoltoria.

Para isso, softwares de simulagao energética, como o EnergyPlus, sao amplamente
utilizados para avaliar o comportamento térmico e energético das edificacoes em cendarios
presentes e futuros, em diferentes localizacoes e climas, considerando tanto as condig¢oes
atuais quanto projecoes futuras e as caracteristicas especificas de cada projeto (OLI-
VEIRA, 2025). O EnergyPlus é um software de simulac¢ao termoenergética de edificagoes
que utiliza como dados de entrada a geometria do edificio, propriedades termofisicas
dos materiais, padroes de ocupacao, cargas internas e arquivos climaticos especificos da
localidade. A partir dessas informacoes, a ferramenta simula, em regime horario, o com-
portamento térmico das zonas internas e o consumo energético associado aos sistemas de
climatizacao, permitindo avaliar o desempenho térmico e energético ao longo do tempo
(U.S. Department of Energy, 2025). Entretanto, apesar de sua alta precisdo, as simulagoes
completas apresentam elevado custo computacional e tempo de processamento, especial-
mente quando aplicadas a problemas de larga escala que envolvem multiplas combinagoes
de materiais e configuragdes construtivas(MENDES, 2023).

Por essa razao, o uso de novas técnicas, surgem como uma alternativa viavel para
reduzir o tempo de andlise, permitindo obter resultados com boa precisao. A inteligéncia
artificial (TA) pode ser definida como o campo da ciéncia da computacao que desenvolve
sistemas capazes de executar tarefas que normalmente exigiriam raciocinio, percepcao e
aprendizado humano. Dentro desse campo, o aprendizado de maquina (Machine Learning

— ML) é um subconjunto que permite que algoritmos aprendam automaticamente a partir
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de dados, reconhecendo padroes e realizando previsoes sem a necessidade de programacao
explicita (FACELI et al., 2011). No contexto da andlise termoenergética de edificagoes,
o ML pode ser utilizado para prever o desempenho térmico de diferentes solugoes cons-
trutivas com base em dados simulados ou experimentais, reduzindo o tempo e o custo de
andlises complexas (OLIVEIRA, 2025; BAQER; RASHIDI-KHAZAEE, 2025; LI et al.,
2025).

Por sua vez, a otimizacao multiobjetivo é uma abordagem matematica voltada
para a resolucao de problemas em que se busca equilibrar simultaneamente multiplos
critérios conflitantes (VESIKAR; DEB; BLANK, 2018). Aplicada a andlise térmica de
edificacoes, essa técnica permite identificar solugoes de compromisso que conciliam desem-
penho térmico adequado e eficiéncia energética com viabilidade economica e sustentabili-
dade ambiental, apoiando o processo decisério de projetistas e pesquisadores(as) (CURY;
ALVES; ALVES, 2024; ROKA et al., 2024; ROKA et al., 2025).

Com base nesse cenario, este trabalho propoe o desenvolvimento de um modelo
de otimizagao multiobjetivo, integrado a modelos preditivos de aprendizado de maquina,
aplicado a selecdo de materiais de envoltéria (pisos, paredes e cobertura) em edificagoes
residenciais. O método visa integrar o uso de técnicas de otimizacao multiobjetivo com
modelos de ML, possibilitando identificar solugoes de compromisso entre critérios confli-
tantes: custo, desempenho térmico e impacto ambiental. Diferentemente de abordagens
convencionais, que geralmente consideram apenas um ou dois indicadores térmicos, este
trabalho adota uma andlise multimétrica, incorporando simultaneamente quatro métricas
relevantes para a avaliacao do desempenho passivo da edificacao: CT, GH, AT e RT.
A integracao conjunta dessas métricas constitui uma contribuicao inovadora do estudo,
permitindo uma caracterizacao mais completa e realista do comportamento térmico da
envoltoria em cenarios presentes e futuros. Além disso, o modelo proposto é orientado por
preferéncias, permitindo que o usuério(a) (por exemplo, arquiteto(a) ou engenheiro(a))
direcione a busca para regices especificas das solugoes étimas, conforme suas prioridades
de projeto. Dessa forma, o processo de otimizacao se torna interativo e mais alinhado
a pratica profissional, fornecendo respostas personalizadas que conciliam desempenho e

viabilidade economica.
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1.1 Objetivo geral

Desenvolver e avaliar uma abordagem integrada baseada em metamodelos preditivos e
otimizacao multiobjetivo para aprimorar a analise do desempenho térmico e energético

de edificagoes, incluindo também aspectos de custo e impacto ambiental.

1.1.1 Objetivos especificos

Os objetivos especificos deste estudo sao:

1. Determinar a viabilidade de um método de otimizagao multiobjetivo orientado por
preferéncias capaz de explorar de forma eficiente os trade offs entre critérios de

projeto relacionados ao desempenho térmico, energético, econémico e ambiental.

2. Investigar o impacto da otimizacao de parametros do algoritmo evolutivo para trés
formas distintas de representacao da solucao, discreta, binaria e Gray code avaliando
como essas escolhas influenciam a convergeéncia, a diversidade e a qualidade final do

conjunto de solugoes.

3. Analisar e comparar o impacto das diferentes condicoes climéticas sobre o desem-
penho térmico, energético e a selecao 6tima de sistemas construtivos, identificando
padroes de recorréncia, trade offs e estratégias de projeto mais adequadas para cada

contexto climatico.
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2 Fundamentacao Teodrica

Aqui serao apresentados os principais fundamentos tedricos que sustentam este trabalho.
Inicialmente, discutem-se os conceitos essenciais de avaliagao termoenergética, estabele-
cendo definigoes, indicadores e métodos de calculo relevantes ao desempenho térmico e
energético. Na sequéncia, introduzem-se conceitos de aprendizado de méquina pertinentes
ao estudo, com énfase em modelos e procedimentos de treinamento/validacao aplicdveis
ao problema. Por fim, sao expostos os principios de otimizac¢ao multiobjetivo, destacando
a modelagem de funcgoes-objetivo e restrigoes, bem como os critérios de Pareto, culmi-
nando na aplicagao de um Algoritmo Genético como estratégia de busca para a solugao

do problema proposto.

2.1 Avaliacao Termoenergética

2.1.1 Conceitos Fundamentais

O conforto térmico se refere a condigao subjetiva de satisfagao de um individuo em relagao
as condigoes climéticas do ambiente ao seu redor (LAMBERTS et al., 2016). Segundo
Lamberts et al. (2016), as variaveis que condicionam o conforto térmico sao classificadas

em dois grupos principais:

1. Ambientais: como temperatura do ar, velocidade do vento, umidade relativa do ar,
radiagao solar, entre outros fatores fisicos que atuam diretamente sobre o corpo

humano.

2. Humanas: como nivel de atividade metabdlica, a resisténcia térmica das vestimentas,
bem como caracteristicas fisiolgicas individuais, tais como sexo, idade, raga e estado

de saude.

O desempenho térmico, por sua vez, refere-se a uma caracteristica objetiva e
quantificavel da edificacao, representando sua capacidade de manter condigoes inter-

nas estaveis e agradaveis, independentemente das variagdes climaticas externas (ABNT,
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2024b). Segundo ABNT (2024a), entre os principais fatores que influenciam o desempenho

térmico estao:

1. Caracteristicas construtivas: propriedades termofisicas da vedacao, aberturas para

ventilacao, pé-direito!, orientacao solar e layout.

2. Caracteristicas externas: incidéncia solar, umidade, topografia, poluicao atmosférica,

amplitude térmica, sombreamento, vegetacao, urbanizagao e clima.

3. Fontes de calor: ocupacao e aparelhos emissores de calor.

Por fim, eficiéncia energética é a capacidade da edificacao entregar o desempenho
e as funcionalidades requeridas com o menor consumo possivel de energia (LAMBERTS;
DUTRA; PEREIRA, 2014). Na pratica, envolve estratégias de projeto e operacao que
reduzem custos e impactos ambientais, como adotar um projeto bioclimatico integrado
(orientacao, layout, aberturas, ventilacao e protegao solar), minimizar as cargas térmicas
associadas as trocas de calor pela envoltoria da edificagao, especificar equipamentos e
controles eficientes (BALARAS, 2021).

No ambito da eficiéncia energética, sao empregadas duas categorias principais de
estratégias para controle climatico: passivas e ativas. Estratégias passivas nao gastam
energia, sao baseadas em projeto arquitetonico e ciéncia dos materiais, operam em har-
monia com o clima local para reduzir a necessidade de intervengao mecanica (SADINENT;
MADALA; BOEHM, 2011). Como exemplo, podem-se citar Gosain (2025) a orientagao
do edificio para controle de ganhos solares em regides frias; o uso de inércia térmica (ex.
concreto ou rocha) para absorver e liberar calor vagarosamente no ambiente; adotar al-
tos niveis de isolamento na envoltéria, a fim de tornar o interior mais independente do
exterior; usar envidragamentos de alto desempenho para modular o ganho de calor por
radiacao solar; e promover a ventilacao natural efetiva para resfriar os ambientes.

J4 as estratégias ativas empregam sistemas mecanicos e elétricos para gerenciar o
ambiente interno, incluindo, por exemplo (GOSAIN, 2025): os sistemas de aquecimento,

ventilagao e ar-condicionado (AVAC); os controles e automacgao predial inteligentes para

IPé-direito: Distancia vertical livre entre o piso acabado e a face inferior do teto (ou forro) de um
compartimento.
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regular o uso de energia de forma eficiente e manter as condi¢oes de conforto térmico;
os sensores de presenga ou ocupacao para modular a iluminacao e a temperatura; e as
tecnologias de recuperacgao de energia, visando tratar a carga térmica remanescente com

maior eficiéncia.

2.1.2 Envoltéria da Edificacao

Um dos principais fatores que influenciam o desempenho térmico das edificacoes é a
envoltéria (ou sistema de vedacao), composta por pisos, paredes, coberturas e esquadrias
(portas e janelas) (RIBAS, 2007). Como pode ser visto na Figura 2.1, esses elementos sao
responsaveis por controlar o fluxo de calor entre o ambiente interno e externo (ou o inverso)
por condugao, convecgao e radiagao térmica(LAMBERTS; DUTRA; PEREIRA, 2014). O
bom desempenho da vedacao da edificacao contribui para manter o conforto térmico dos
ocupantes e reduz a dependéncia de sistemas artificiais de climatizagao, melhorando a

eficiéncia energética da construgdo (BACHRUN; ZHEN; GANI, 2019).

II.E o
: =
Incidente i . ] [
S
Incidente =iz
Refletida l . Transmitida
Absorvida Refletida
| Absorvida
Reenviada | | Reenviada ) :
ao exterior | ao interior Reenviada M Reenviada
ao exterior | @ao interior

Figura 2.1: Fluxo de calor proveniente da radiagao solar que incide em uma parede
(esquerda) e uma janela (direita)
Fonte: (MENDES, 2021).

Nos elementos opacos da envoltéria (paredes, pisos e coberturas), que nao per-
mitem a passagem direta de luz, o mecanismo dominante de troca térmica ¢é a conducao,
acionada pela diferenga entre as temperaturas interna e externa (LAMBERTS; DUTRA;

PEREIRA, 2014). J4 nos translicidos (ex. janelas, fachadas de vidro e claraboias), que
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permitem a entrada de luz, podem ocorrer trocas térmicas por condugao e convecgao,
mas, principalmente, por radiacao (LAMBERTS; DUTRA; PEREIRA, 2014).

As propriedades termofisicas dos materiais que compoem o sistema de vedacao
exercem influéncia significativa sobre esse fluxo de calor e, consequentemente, no desempe-
nho térmico da edificagdo (ALMEIDA; BRASILEIRO; SILVOSO, 2018). Sua magnitude
decorre de uma combinagao complexa e inter-relacionada desses parametros, como condu-
tividade, capacidade térmica e massa especifica, ao longo das camadas (MENDES, 2023).
A Tabela 2.1 apresenta as definicoes e efeitos das principais propriedades termofisicas
dos materiais. Neste trabalho, o foco serd sobre a transmitancia térmica (U), e a capa-
cidade térmica (Ct), que sintetiza grande parte da colaboracao dos sistemas opacos do

fechamento o desempenho térmico da edificacao(ABNT, 2024b).
Tabela 2.1: Propriedades termofisicas

Propriedade | Definicao Efeito na Efeito na
edificagcao em edificagao em dias
dias quentes frios

Calor

especifico (c¢)

[kJ/(kg-K)] Facilidade do material em se | Alto ¢ absorve Alto ¢ pode ajudar a
aquecer ou resfriar quando mais energia até reter calor interno
recebe ou perde energia aqueceren, por mais tempo,
(INCROPERA et al., 2008). | atrasando picos de | reduzindo variagoes
Sendo () a quantidade de temperatura bruscas de
calor, m a massa e AT a interna. Porém, o | temperatura e
variacao de temperatura: material, uma vez | tornando o ambiente
c= %. aquecido, pode mais estavel.

demorar a resfriar.

Massa

especifica (p)

[kg/m?3] Relagao entre a massa m e o | Alta p tende a aumentar a capacidade
volume V' de um material: térmica dos sistema (propriedade
p= . definida a seguir).

Espessura (e

[m] Dimensao associada a A e influencia na capacidade térmica,
profundidade do elemento resisténcia térmica e transmitancia

no que tange a transmissao | térmica (propriedades definidas a
de calor. seguir).
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(continuacao) Propriedades termofisicas

Propriedade | Definigcao Efeito na Efeito na
edificagao em edificagao em dias
dias quentes frios

Capacidade

térmica (C})

[J/(m2-K)] Potencial do elemento em Alta Cy ajuda a Alta C; funciona
variar sua temperatura retardar variacoes | como “reservatorio”
frente a um aporte de calor | bruscas de de calor, evitando
(ABNT, 2024b). Para uma | temperatura, mas | oscilagoes bruscas de
camada homogénea: pode acumular temperatura e
Ci=e-p-c calor excessivo em | mantendo o

regioes de baixa ambiente aquecido

amplitude térmica | por mais tempo.

didria (quentes Isso é especialmente

durante o dia e util em regioes de

quentes durante a | alta amplitude

noite). térmica didria
(quentes durante o
dia e frios durante a
noite).

Resisténcia

térmica (R)

[(m2-K)/W] Capacidade do elemento em | Alta R inibe a Alta R impede a
reduzir a troca de calor por | entrada de calor, saida de calor,
conducgao. Para camada evitando o ajudando a manter o
homogénea: R = $. superaquecimento | ambiente interno

da edificacio. aquecido.

Transmitancia

térmica (U)

[W/(m?2-K)] Taxa de transferéncia de Baixa U contribui | Baixa U contribui
calor induzida por diferenca | para impedir a para reter calor na
de temperatura entre entrada de calor edificacao.
superficies (ABNT, 2024b). | do exterior para o
Para elementos planos: interior a
U= %. edificagao.

Fonte: (MENDES, 2023), adaptado.

2.1.3 Métodos de avaliagcao por simulagao energética

Os softwares de simulacao computacional possibilitam a andlise do desempenho termoe-

nergético das edificagoes. Entre eles, o EnergyPlus destaca-se como o software gratuito

mais amplamente utilizado no mundo (MENDES et al., 2024). Desenvolvido pelo De-

partamento de Energia dos Estados Unidos, o programa tem como objetivo estimar as

trocas térmicas, os niveis de iluminacao e o consumo energético das edificagdes modeladas

(LAMBERTS et al., 2010). Dessa forma, é possivel realizar simulagbes para diferentes

tipologias construtivas a partir da modelagem tridimensional do edificio, considerando
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ainda as condigoes bioclimaticas locais por meio de arquivos meteoroldgicos especificos de
cada cidade.

As simulacoes no EnergyPlus sao realizadas através de arquivos de entrada pre-
viamente configurados com os parametros fisicos e operacionais, como as propriedades
dos sistemas construtivos, especifica¢do das aberturas para ventilagdo natural (janelas
e portas), o modelo geométrico da edificagdo, os padroes de ocupagao, as condigoes de
sombreamento, a divisao em zonas térmicas, configuracoes do sistemas de aquecimento,
ventilagao e ar-Condicionado (AVAC) entre outros fatores que influenciam o desempenho
energético (EnergyPlus, 2025). O EnergyPlus possui diversas variaveis de saida, e cada
método de avaliagao possui outputs distintos. Dentre esses métodos, quatro se destacam:
Carga Térmica (CT), Graus-hora (GH), Autonomia Térmica (AT) e Resiliéncia Térmica
(RT).

O método da Carga Térmica (CT) mede a energia consumida pelo sistema AVAC
para controle climatico ativo da temperatura interna da edificacao. Para isso é preciso
definir os setpoints (temperaturas em que os(as) usudrios(as) ligam ar condicionado ou
aquecedor) de temperatura do sistema de AVAC, a partir de recomendagoes de normas
ou preferéncias locais. Esses setpoints podem ser definidos pelo(a) usuério(a), pelos(as)
projetistas ou por normas. Sempre que a temperatura interna excede o limite superior
ou cai abaixo do inferior, o sistema AVAC é acionado para resfriar ou aquecer o ambiente
e manteé-lo dentro da faixa estipulada. Assim, quanto menor a energia requerida para
manter a temperatura no intervalo-alvo, menor o CT, melhor o desempenho térmico
e maior a eficiéncia energética da edificagao (HOYT; ARENS; ZHANG, 2015; WU et
al., 2023). A Figura 2.2 apresenta um exemplo de aplicagdo do método. O intervalo
setpoint foi configurado entre 21°C' e 23°C, e as colunas em vermelho e azul, representam,
respectivamente, a carga térmica de aquecimento (CTa) e de resfriamento (CTr), que se
acumulam ao longo do ano de referéncia, somando toda vez que o aquecedor ou o ar

condicionado sao colocados em funcionamento.
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Figura 2.2: Esquema de funcionamento de Carga Térmica CT

Fonte: (MENDES et al., 2024).

No geral, os estudos consideram ambientes de longa permanéncia da edificacao
(como quartos, salas) ao longo de um ano de referéncia, de modo a abranger todas as
estagoes do ano, mantendo as janelas e portas permanentemente fechadas (somente com a
infiltracao do ar entre as frestas) (MENDES, 2023). Naturalmente, essa métrica exige que
a edificagao seja projetada com um sistema AVAC em mente. O calculo do método segue

a equacao (2.1), que soma as cargas térmicas anuais de aquecimento e de resfriamento:

CTiota = Y (cT.+cT) (2.1)

ano de referéncia

onde:

o C'Tita € a soma das cargas térmicas de aquecimento e de resfriamento ao longo de

um ano;
e (T, é a carga térmica de aquecimento;
e (T, é a carga térmica de resfriamento.

O método Graus-Hora (GH) considera o uso da ventila¢ao natural como estratégia

passiva de resfriamento no controle climético interno (sem uso do sistema AVAC). Ele
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acumula a diferenga entre a temperatura interna e os limites de conforto térmico (tempe-
raturas operativas de referéncia) (MENDES et al., 2024). O Graus-Hora de aquecimento
(GHa) se refere a uma necessidade de aquecer o ambiente, correspondendo a soma das
diferencas entre a temperatura de conforto inferior e a temperatura interna sempre que
esta se encontra abaixo do limite. J& o Graus-Hora de resfriamento (GHr) se refere a
necessidade de resfriar o espaco, sendo obtido a partir das diferencas entre a temperatura
interna e a temperatura de conforto superior quando o limite é excedido. Mais uma vez,
os limites dos intervalos de conforto sao definidos com base em normas locais ou conforme
a convengao adotada pela equipe de pesquisa (MENDES et al., 2024). O GH também se
da pela andlise do periodo de um ano, e também em ambientes de longa permanéncia.

A Figura 2.3 apresenta um exemplo de aplicacao do método GH para um inter-
valo de temperatura entre 18°C' e 26°C. e a equacao (2.2) apresenta a sua formulagao
matematica. Assim como no CT, quanto menor o valor da métrica (GH, no caso), melhor

o desempenho da edificacao.

mm GHa s GHr To
2

o©
1 g
5} &
g =
© o
3 0
g = 0_5 (-%
: :
= B
0 N

' 0.5

Figura 2.3: Esquema de funcionamento de Graus-Hora (GH)
Fonte: (MENDES et al., 2024).

GH=Y" [max(O, T, — T pase) + Max(0, Toyin pase — TO)} . (2.2)

ano ref.

onde:
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e GH: Graus hora (°C-h);

GH,: Graus hora de calor (°C-h);

GH,: Graus hora de frio (°C-h);

T,: temperatura operativa interna (°C);

Tinaxbase: limite superior de temperatura operativa (°C);

Tinin base: limite inferior de temperatura operativa (°C).

No método da Autonomia Térmica (AT), calcula-se a porcentagem de horas de
ocupacao em que a temperatura interna da edificacao se mantém dentro dos limites da
faixa de conforto térmico definidos (MENDES et al., 2024). Esses limites de tempera-
tura operativa podem ser estabelecidos com base em normas técnicas, recomendagoes da
literatura ou definidos pela equipe de pesquisa e preferéncias do(da) usudrio(a), conforme
o contexto da andlise. Por isso, esse método também é chamado de percentual de horas
dentro da faixa de temperatura operativa (PHFT)(ABNT, 2024b). Ele estd relacionado
com o GH, ao passo em que se verifica o desempenho térmico da edificacao com o uso
de ventilagao natural (sem uso de estratégias ativas) e se analisa o desempenho térmico
por meio da comparacao de temperaturas. Contudo, o GH estd mais relacionado a in-
tensidade de desconforto térmico proporcionada pela edificacdao, enquanto a AT esta mais
relacionada a frequéncia desse conforto térmico. A Figura 2.4 apresenta um exemplo de
aplicagao do método AT para um intervalo de 18°C' e 26°C e a equagao (2.3) apresenta a
sua formulacao matematica. Observe que, sempre que a temperatura operativa ultrapassa
os limites estabelecidos, ocorre uma redugao no valor da métrica, ao passo que, dentro
da faixa de conforto térmico, o indicador permanece constante. Entende-se que, quanto

maior for o PHFT obtido, melhor serda o desempenho térmico da edificacao.
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Figura 2.4: Método de Autonomia Térmica (AT)
Fonte: (MENDES et al., 2024).

O célculo do método segue a equagao (2.3):

(5 Tmin ase S To S Tmax ase
PHFT = Zano de ref. ( ,b b )

1 .
total de horas ocupadas x 100 (2.3)

1, seT, esta dentro da faixa [Tinin bases Lmax base)
0= (2.4)
0, caso contrario

onde:

PHFT: percentual de horas de ocupacao dentro de uma faixa de temperatura

operativa (%);

T,: temperatura operativa interna (°C);

Tininbase: limite inferior de temperatura operativa (°C);

Tinaxpase: limite superior de temperatura operativa (°C);

Por fim, a Resiliéncia Térmica (RT) de uma edificagdo pode ser definida como
a capacidade de manter ou recuperar condicoes internas adequadas perante variagoes

térmicas extremas (por exemplo, ondas de calor ou frio intenso) e, por consequéncia,
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pode ser medida de diversas formas (APOLONIO; CALLEJAS; ROSETA, 2024). Uma
delas é a partir do indicador Graus-Hora SET (GH SET) (ASHRAE, 2020). Essa métrica
também se espelha no método GH, pois se contabiliza o acumulado da diferenca de tempe-
ratura nas ocasides de desconforto térmico (APOLONIO; CALLEJAS; ROSETA, 2024).
Contudo, a faixa de temperatura de controle é referente a temperatura efetiva padrao
(Standard Effective Temperature, i.e., SET). SET é um indice que considera a tempe-
ratura do ar, temperatura radiante, umidade, velocidade do ar e fatores do ocupante,
como o metabolismo e a vestimenta (GAGGE; NISHI; GONZALEZ, 1972). No célculo
do GH SET, a condicao térmica interna da edificacao é representada pela temperatura
operativa interna (7},), que corresponde a sensagao térmica percebida pelo ocupante. Essa
variavel considera nao apenas a temperatura do ar, mas também o calor trocado com as
superficies do ambiente, como paredes, piso e cobertura, que podem estar mais quen-
tes ou mais frias e influenciar diretamente o conforto térmico. Nesse método, avalia-se
o desempenho térmico da edificacao sob condi¢oes extremas, como apagoes prolongados
ou escassez de combustivel para climatizacao de uma edificagao projetada para o uso de
estratégias ativas de controle climético (AVAC). A andlise é feita para temporadas de
extremo frio ou extremo calor na dada regiao, considerando os sete dias mais criticos do
ano (de frio ou calor).

A Figura 2.5 apresenta um exemplo de aplicacdo do método, com intervalo de
temperatura SET configurado entre 12°C' e 30°C. J4 a equagao (2.5) apresenta o célculo
embutido no método. Entende-se que, quanto menor o valor de GH SET calculado,
melhor o desempenho térmico e a resiliéncia térmica da edificacao. O sistema Leadership
in Energy and Environmental Design (LEED) determina uma faixa de temperatura SET
entre 12°C' e 30°C', sendo que, em edificacoes residenciais, os valores de GH SET nao

devem ultrapassar 120°C' h SET.
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Figura 2.5: Método de Resiliéncia Térmica (RT)
Fonte: (MENDES et al., 2024).
GHgsgr = Z (GH.sgr + GHfser)

semana critica

(2.5)

(]

[max((), To - Tmax,base) + maX(O, Tmin,base - To)} .

semana critica

onde:

GHggr: Graus-Hora SET total (°C-h SET);

GH, sgr: Graus-Hora SET de calor (°C-hSET);

GH,srr: Graus-Hora SET de frio (°C-hSET);

T,: temperatura operativa interna (°C);

Tinaxpase: limite superior de temperatura efetiva (°C);

Tinin base: limite inferior de temperatura efetiva (°C).

A precisao dos resultados e a ampla aceitagao da comunidade cientifica consolidam

softwares de simulacao energética, como o EnergyPlus, como referéncia no campo da
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simulacdo termoenergética de edificios (MUSLIM, 2021). Contudo, sua aplicagao ainda
impoe desafios praticos, sobretudo o tempo de processamento, que pode ultrapassar, em
muitos casos, varios minutos por modelo (MENDES, 2023). Em avaliagoes isoladas esse
tempo pode parecer modesto, porém, em estudos de otimizagao o tempo pode ser uma
limitacao, devido a quantidade de simulagoes requeridas, que podem chegar a casa das
dezenas ou centenas de milhares (KUBWIMANA; NAJAFI, 2023).

Nesses cenarios, o tempo total de execucao torna-se um gargalo relevante, exi-
gindo maior capacidade computacional (CPU/GPU, paralelizagao, filas de jobs) e um
planejamento rigoroso do experimento para viabilizar andlises de grande escala. Diante
disso, métodos de aprendizado de maquina (Machine Learning, ML) tém sido adotados.
Cada vez mais, torna-se comum a utilizacao de metamodelos que emulam a resposta de
softwares de simulagao energética (CRUZ et al., 2024). Esses métodos, aliados a outras
ferramentas de inteligéncia artificial (IA), permitem varrer espagos de projeto amplos,
realizar otimizacao e quantificacao de incertezas com menos custo computacional, sem

abrir mao do suporte do modelo fisico subjacente.

2.2 Aprendizado de Maquina

A TA é um campo da ciéncia da computacao dedicado ao desenvolvimento de sistemas
capazes de realizar tarefas que, tradicionalmente, exigiriam inteligéncia humana. Esses
sistemas buscam reproduzir aspectos do raciocinio, da percepcao e da aprendizagem, per-
mitindo que maquinas tomem decisoes de forma autonoma com base em dados e padroes
observados no ambiente (RUSSELL; NORVIG, 2020).

No contexto computacional, a IA difere dos sistemas convencionais por nao de-
pender de regras fixas programadas manualmente. Em vez de depender exclusivamente da
codificacao manual do conhecimento humano, os algoritmos de aprendizado de maquina
sao capazes de extrair automaticamente relacoes complexas entre variaveis, tornando se
especialmente tteis em dominios nos quais o comportamento do sistema é dinamico, in-
certo ou dificil de modelar por meio de regras explicitas. Em vez disso, baseia-se em
modelos capazes de “aprender” com experiéncias passadas e melhorar seu desempenho

progressivamente (FACELI et al., 2011). Essa capacidade de aprendizado é o que funda-
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menta o subcampo conhecido como aprendizado de maquina, em inglés, Machine Learning
(ML), responsavel por permitir que os sistemas ajustem seus comportamentos com base
em dados empiricos (RUSSELL; NORVIG, 2016).

O ML pode ser entendido como o conjunto de métodos e algoritmos que permi-
tem que um sistema melhore automaticamente seu desempenho em determinada tarefa
por meio da experiéncia (RUSSELL; NORVIG, 2016). Em outras palavras, o computador
nao ¢ explicitamente programado para realizar cada acao, mas sim treinado a partir de
dados que representam o comportamento esperado. Essa abordagem tem se mostrado fun-
damental em aplicacoes como reconhecimento facial, andlise de sentimentos, diagndstico
médico, sistemas de recomendacao e previsao de demanda energética (GERON, 2019).

Géron (2019), define que um programa é considerado capaz de aprendizado de
maquina quando seu desempenho em uma tarefa 7" melhora com a experiéncia E, medida
por uma métrica de desempenho P. Essa formulacao, embora datada, continua sendo 1til
porque explicita o carater iterativo do processo de aprendizado: o modelo é sucessivamente
exposto a pares de entrada e saida esperada e, cada iteracao, ajusta seus parametros
interno para reduzir o erro e, assim, ampliar sua capacidade preditiva. E justamente
esse principio que permanece na base dos algoritmos contemporaneos de ML. De forma
complementar,Russell e Norvig (2016), ressaltam que o ML constitui a espinha dorsal
das aplicagdes modernas de IA, pois oferece os mecanismos necessarios para transformar
grandes volumes de dados em conhecimento.

No ambito do aprendizado de maquina, os métodos podem ser classificados, de
forma geral, de acordo com a natureza dos dados disponiveis e do tipo de tarefa envolvida.
As abordagens mais difundidas incluem o aprendizado supervisionado, no qual o modelo
é treinado a partir de exemplos rotulados, isto é, pares de entrada e saida desejada; o
aprendizado nao supervisionado, que busca identificar padroes, estruturas ou agrupamen-
tos em dados nao rotulados; e, em menor escala, o aprendizado por reforco, baseado na
interagao continua com o ambiente por meio de recompensas e penalidades (FACELI et
al., 2011; GERON, 2019). Essa distingao é fundamental para compreender o escopo e as
limitagoes de cada técnica, bem como o tipo de problema ao qual elas se aplicam.

O foco desta secao recai sobre o Extreme Gradient Boosting (XGBoost), modelo
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preditivo adotado nas andlises, pertencente a classe dos algoritmos de ML supervisionado
baseados em arvores de decisao. A seguir, apresentam-se seus fundamentos tedricos e os

principais elementos necesséarios a sua aplicagao no contexto deste estudo.

2.2.1 Aprendizado Nao Supervisionado

No aprendizado nao supervisionado, o modelo € treinado a partir de um conjunto de dados
nao rotulado, isto é, as amostras de entrada nao estao associadas a saidas ou rétulos pre-
viamente definidos. Nesse contexto, o objetivo principal nao é realizar previsoes diretas,
mas identificar padroes, agrupamentos ou regularidades presentes nos dados, explorando
exclusivamente as relages internas entre as variaveis de entrada (ALPAYDIN, 2020; FA-
CELI et al., 2011).

Diferentemente do aprendizado supervisionado, em que existe uma variavel alvo
explicita, o aprendizado nao supervisionado busca compreender a organizacao intrinseca
do conjunto de dados. Essa abordagem é particularmente 1til em situagoes nas quais o
processo de rotulagem ¢é inviavel, custoso ou subjetivo, bem como em etapas exploratorias
de analise de dados, reducao de dimensionalidade e segmentacao de amostras (GERON,
2022).

Entre as principais categorias de aprendizado nao supervisionado destacam-se
os métodos de agrupamento (clustering), que tém como objetivo particionar o conjunto
de dados em grupos de amostras semelhantes entre si e distintas das demais, segundo
algum critério de similaridade ou distancia (RUSSELL; NORVIG, 2016). Nesses métodos,
espera-se que amostras pertencentes a um mesmo grupo compartilhem caracteristicas
comuns, enquanto amostras de grupos diferentes apresentem maior dissimilaridade.

Um dos algoritmos de agrupamento mais amplamente utilizados na literatura é
o k-means. Esse algoritmo visa particionar o conjunto de dados em k grupos previamente
definidos, denominados clusters, de modo a minimizar a soma das distancias quadraticas
entre cada amostra e o centroide do grupo ao qual ela foi atribuida (AHMED; SERAJ;
ISLAM, 2020). Formalmente, o k-means busca minimizar a variancia intra-cluster, pro-
movendo agrupamentos compactos e bem definidos no espago de atributos.

O funcionamento do k-means ocorre de forma iterativa. Inicialmente, sao seleci-
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onados k centroides, que podem ser definidos aleatoriamente ou por métodos especificos
de inicializacao. Em seguida, cada amostra do conjunto de dados ¢é atribuida ao cluster
cujo centroide apresenta a menor distancia, geralmente medida pela distancia euclidiana.
Apos essa etapa de atribuicao, os centroides sao recalculados como a média das amostras
pertencentes a cada cluster. Esse processo de atribuicao e atualizacao é repetido até que
nao haja mais mudancgas significativas nos centroides ou nas associagoes das amostras
(GERON, 2022).

Apesar de sua simplicidade e eficiéncia computacional, o k-means apresenta al-
gumas limitacoes relevantes. O numero de clusters k deve ser definido previamente, o
que nem sempre é trivial e pode influenciar significativamente os resultados. Além disso,
o algoritmo é sensivel a inicializacao dos centroides e a presenca de outliers, podendo
convergir para minimos locais (FACELI et al., 2011). Ainda assim, devido a sua in-
terpretabilidade e baixo custo computacional, o k-means é amplamente empregado em
diversas dreas, como segmentacao de clientes, andlise exploratoria de dados, agrupamento
de materiais, identificagao de padroes climaticos e organizacao de grandes bases de dados

multidimensionais.

2.2.2 Aprendizado Supervisionado

No aprendizado supervisionado o modelo é treinado a partir de um conjunto de dados
rotulado, no qual cada amostra de entrada estd associada a uma saida desejada. O
objetivo é aprender uma funcao capaz de generalizar o relacionamento entre variaveis de
entrada (features) e saidas (targets), de modo que o modelo consiga realizar previsoes
precisas quando exposto a novos dados (ALPAYDIN, 2020).

De forma geral, os problemas supervisionados podem ser divididos em duas gran-
des categorias: classificacdo e regressao. A classificacdo é empregada quando a varidavel
de saida é discreta, representando classes ou categorias. O objetivo, nesse caso, é atri-
buir uma classe correta a cada nova amostra com base em padroes aprendidos durante
o treinamento (RUSSELL; NORVIG, 2016; LITJENS et al., 2017; PHUA et al., 2010;
LESSMANN et al., 2015). Exemplos tipicos incluem o reconhecimento de imagens, a

deteccao de fraudes bancarias, a identificacao de doencas em exames médicos e a previsao
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de aprovacao de crédito. Em todos esses casos, o modelo deve distinguir entre categorias
distintas, como “fraude” ou “nao fraude”, “positivo” ou “negativo”, “baixo risco” ou “alto
risco”.

Por outro lado, a regressao ¢ aplicada quando a variavel de saida é continua,
ou seja, assume valores numéricos dentro de um intervalo (RUSSELL; NORVIG, 2016).
Nesses casos, o modelo busca prever quantidades, tendéncias ou intensidades com base nas
caracteristicas de entrada. Exemplos incluem a previsao de precos de imoveis, o consumo
de energia, a temperatura ambiente, a resisténcia de um concreto, a produgao agricola
e a carga térmica de uma edificacao (GERON, 2022). A regressao, portanto, é essencial
em estudos que envolvem estimativas quantitativas e relagoes fisicas ou economicas entre
variaveis.

Em termos genéricos, os modelos de regressao supervisionada aprendem a mini-
mizar o erro entre os valores previstos e os valores reais, utilizando métricas de avaliacao
que quantificam o desempenho do modelo (Elastic, 2025). Quanto menor for o erro ob-
tido durante o treinamento e a validagao, mais adequado tende a ser o modelo de ML ao
problema em anédlise. No entanto, é preciso cautela quanto ao sobreajuste (overfitting),
situagao em que o modelo apresenta desempenho aparentemente excelente nos dados de
treinamento, mas baixa capacidade de generalizacao ao ser aplicado a novos casos (FA-
CELI et al., 2011). Para mitigar esse efeito, recomenda se a divisao do conjunto de dados
em amostras distintas de treinamento, validacao e teste. Entretanto, essa estratégia sé é
efetiva quando os subconjuntos sao representativos da distribuicao dos dados e nao exces-
sivamente homogeéneos, uma vez que conjuntos enviesados podem conduzir ao sobreajuste
e a uma avaliagdo excessivamente otimista do desempenho do modelo (ALPAYDIN, 2020;
FACELI et al., 2011). Nessa estrutura, o conjunto de treinamento é usado para ajustar
os parametros do modelo, o de validacao serve para calibrar hiperparametros e preve-
nir o sobreajuste, e o de teste é reservado para avaliar a capacidade de generalizacao
(ALPAYDIN, 2020).

Outra abordagem amplamente empregada é a validacao cruzada (cross-validation)
em que o conjunto de dados é dividido em multiplas parti¢oes (ou folds), alternando-se

as amostras utilizadas para treino e validagao a cada iteragao (ALPAYDIN, 2020; FA-
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CELI et al., 2011). Em aplicagoes préticas, é comum realizar previamente uma separagao
do conjunto de dados em duas partes: uma parcela destinada ao conjunto de teste, ti-
picamente correspondente a 20% das amostras, mantida isolada durante o processo de
treinamento, e a parcela restante (80%), utilizada na etapa de validagao cruzada. Esse
procedimento permite estimar de forma mais confiavel o desempenho médio do modelo,
reduzindo a dependéncia de uma unica divisao dos dados e mitigando possiveis vieses
amostrais (ALPAYDIN, 2020). A Figura 2.6 apresenta o funcionamento do método k
fold cross-validation, com k = 5, sendo reiterado 5 vezes de modo que, em cada iteracao,
um fold diferente é utilizado para validacao e os demais 4 folds compoem o conjunto
de treinamento. Ao final das 5 execugoes, obtém-se uma estimativa média mais estavel
do desempenho do modelo, reduzindo sua sensibilidade a uma tnica divisao dos dados e

mitigando potenciais vieses amostrais.

Iteragdo 1 Iteragdo 2 | Iteragdo 3 | Iteracdo 4 Iteracdo 5
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Figura 2.6: Banco de dados dividido em subconjuntos de treino e teste por meio do
método k-fold para k=5

Fonte: (MENDES et al., 2025)

Entre as métricas mais utilizadas em problemas de regressao estao o erro absoluto
médio (Mean Absolute Error, MAE), o erro percentual absoluto médio (Mean Absolute
Percentage Error, MAPE), o erro quadratico médio (Root Mean Squared Error, RMSE),
e o coeficiente de determinacao (R?)(MENDES et al., 2025).

O erro absoluto médio (Mean Absolute Error, MAE), calcula a média das dife-
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rengas absolutas entre os valores previstos (7;) e os valores observados (y;) na quantidade

de dados analisados, sendo expressa na equagao (2.6):

1 & .
MAE = =3l — i (2.6)
=1

O MAE é expresso na mesma unidade da varidvel de interesse, uma vez que
representa a média das diferengas absolutas entre valores observados e previstos. Quanto
menor o valor do MAE, melhor o desempenho do modelo, pois menores sao, em média,
os desvios entre as previsoes e os valores reais.

O erro percentual absoluto médio (Mean Absolute Percentage Error, MAPE) re-
presenta o erro relativo em termos percentuais, permitindo avaliar o desvio médio pro-

porcional entre as previsoes e os valores reais, sendo expressa na equagao (2.7):

MAPE = @Zn:

n <
i=1
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” (2.7)

O MAPE é uma métrica adimensional, expressa em termos percentuais, o que
facilita a interpretacao do erro de forma relativa a magnitude dos valores observados.
Valores mais baixos de MAPE indicam maior precisao preditiva do modelo. Contudo,
essa métrica pode apresentar limitacoes quando os valores observados ¥; se aproximam de
zero, situagao na qual o erro percentual tende a ser amplificado.

Ja o erro quadrético médio (Root Mean Squared Error, RMSE) dd maior peso a
erros mais altos, sendo amplamente empregado quando grandes desvios tém maior impacto

no desempenho do modelo, sendo expressa na Eq. (2.8):

n

1 N
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O RMSE ¢ expresso na mesma unidade da varidvel de interesse, assim como o
MAE, porém atribui maior penalizagao a erros de maior magnitude devido a elevacao ao
quadrado das diferencas. Dessa forma, valores menores de RMSE indicam melhor desem-
penho do modelo, sendo essa métrica especialmente adequada quando grandes desvios
entre valores previstos e observados sao indesejaveis.

Por fim, o coeficiente de determinagao (Coefficient of Determination, R?) mede
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a proporcao da variabilidade dos dados que é explicada pelo modelo, indicando sua qua-

lidade de ajuste, sendo expressa na Eq. (2.9):

2 4 > iy — 9i)?
A S N (2.9)

O coeficiente de determinacao R? é uma métrica adimensional que pode assumir
valores variando de -co a 1. Valores proximos de 1 indicam que o modelo explica grande
parte da variabilidade dos dados observados, enquanto valores préximos de zero indicam
desempenho semelhante ao de um modelo que utiliza apenas a média dos dados como
predicao. Valores negativos de R? indicam que o modelo apresenta desempenho inferior
a esse preditor médio, caracterizando um ajuste inadequado.

Essas métricas permitem quantificar a precisao e a robustez dos modelos predi-
tivos, sendo ferramentas fundamentais para a comparacao de diferentes algoritmos e o

refinamento de seus hiperparametros.

2.2.3 Arvores de Decisao

As drvores de decisao (Decision Trees, em inglés) constituem um dos modelos mais in-
tuitivos e amplamente utilizados no aprendizado supervisionado, tanto para tarefas de
classificagdo quanto de regressao (ABDULQADER; ABDULAZEEZ, 2024). Sua popu-
laridade advém da simplicidade conceitual e da capacidade de representar relagoes nao
lineares entre variaveis de entrada e saida de maneira interpretavel.

A Figura 2.7 ilustra uma arvore de decisao para resolver um problema de re-
gressao. A construcao da arvore segue uma abordagem de cima para baixo, em que o
no raiz contém todo o conjunto de dados. A cada iteracao, as divisoes sao realizadas até
que se atinja um critério de parada, como a profundidade maxima, o niimero minimo de
amostras por n6 ou a auséncia de ganho informacional significativo. O resultado final
¢ uma estrutura hierarquica composta por nés de decisao e noés folha, nos quais cada
folha representa uma previsao ou valor médio associado as amostras pertencentes aquele

subconjunto.
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Divisao 1

X; <0,357

Divisao 2

Xy <187

(MSE = 6,4)

N6s de decisao: regra de divisao (X e limiar).

Folhas: predi¢do do né () e tamanho da amostra (n).

Figura 2.7: Exemplo de arvore de decisao para regressao. Os nés de decisao exibem a
regra de divisdo e uma métrica de erro (MSE); as folhas apresentam a previsao média y
e o nimero de amostras n.

Fonte: Baseado em (STANKEVIX, 2020).

Nota-se que o funcionamento de uma arvore de decisao baseia-se na divisao recur-
siva do conjunto de dados em subconjuntos progressivamente mais homogéneos, segundo
critérios de decisao definidos por métricas estatisticas (BLOCKEEL et al., 2023). Em
cada no6 da arvore, escolhe-se uma variavel e um ponto de divisao que melhor separam as
amostras de acordo com o objetivo de predi¢ao. Para problemas de classificacao, medidas
como a impureza de Gini e a entropia sao comumente utilizadas para avaliar a qualidade
das divisdes (BLOCKEEL et al., 2023). J4 em problemas de regressao, o critério mais
adotado é a minimizagao do erro quadréatico médio (Mean Squared Error, MSE) entre os
valores previstos e observados (BLOCKEEL et al., 2023).

Uma das principais vantagens das arvores de decisao é a facilidade de inter-
pretacao. A estrutura hierarquica permite compreender de forma direta como o modelo
chega a uma decisao (ABDULQADER; ABDULAZEEZ, 2024). Essas caracteristicas sao
uteis em aplicagoes que demandam transparéncia, como diagndsticos médicos, crédito
bancario ou avaliacao de desempenho energético de edificacoes. No entanto, arvores in-
dividuais tendem a apresentar limitacoes em termos de generalizacao, podendo sofrer de
sobreajuste (overfitting) quando o modelo se torna excessivamente complexo e ajustado

aos dados de treinamento (ZHANG, 2024), fazendo valer a etapa de validacao e teste do
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modelo para avaliar esse problema.

Para contornar essas limitacoes de overfitting, surgiram os chamados métodos de
ensemble, que combinam modelos em que multiplas arvores que sao treinadas de forma
sequencial, como o Random Forest e o Gradient Boosting, que combinam multiplas drvores
para aumentar a precisdo e a robustez do modelo (ABDULQADER; ABDULAZEEZ,
2024). Dentre esses métodos, destaca-se o Eztreme Gradient Boosting (XGBoost), que é

apresentado na subsecao seguinte.

2.2.4 Extreme Gradient Boosting (XGBoost)

O Extreme Gradient Boosting (XGBoost) é um modelo de aprendizado supervisionado
baseado em arvores de decisao que utiliza o principio do boosting de gradiente para apri-
morar progressivamente a capacidade preditiva do modelo (XGBoost Developers, 2025).
Desenvolvido por Chen e Guestrin (2016), ele é amplamente reconhecido por sua alta
eficiencia computacional, desempenho preditivo robusto e flexibilidade de aplicacao em
problemas de regressao e classificagdo (CHEN; GUESTRIN, 2016).

O boosting é uma técnica de aprendizado por conjunto (ensemble) na qual miltiplos
modelos, tipicamente arvores de decisao, sdo treinados de forma sequencial (CHEN;
GUESTRIN, 2016). A cada iteracdo, o modelo corrige os erros residuais das previsoes
realizadas nas arvores antecessores, de modo que o modelo final seja uma soma ponderada
de todas essas arvores construidas (CHEN; GUESTRIN, 2016). Essa abordagem permite
que o XGBoost capture relagoes complexas entre variaveis e reduza o viés e a variancia do
modelo(CHEN; GUESTRIN, 2016). A Figura 2.8 ilustra esse funcionamento conceitual,

evidenciando a sequéncia de treinamento e correcao dos residuos ao longo das iteragoes.

Corrige Ajusta Soma
Dados de Treinamento |y Arvore 1 residuos Arvore 2 |novamente|  Arvore 3 modelos
(X,y) fi(z) fa() f3(@)

| | |
\ A\ \
Erros residuais 71 =y — 41 r2 =y — (41 + 92) r3 =y — (1 + 2 + J3)

Figura 2.8: Esquema conceitual do funcionamento do XGBoost.

Fonte: Baseado em (XGBoost Developers, 2025).

O processo de aprendizagem do XGBoost busca minimizar uma funcao objetivo
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(L(¢)) composta por dois termos: a fungao de perda (1), que mede o erro entre as previsoes
(9;) e os valores reais (y;), e um termo de regularizacao (£2(f)), que penaliza a comple-
xidade do modelo, prevenindo overfitting. Essa funcao objetivo é expressa na equacao

(2.10).

K

L(g) = Zl(yi,g» +) Qf) (2.10)

k=1
A funcdo de perda (1) costuma ser o erro MSE. J4 o termo de regularizacao
(Q(f)) é uma fungao do nimero de folhas da drvore (T), peso de cada folha (w3), e

hiperparametros que controlam a penalizagao de complexidade (v e \), como se verifica

na equacao (2.11).

Q(f) 27T+%A2w§ (2.11)

O processo de aprendizado do XGBoost ocorre de forma aditiva e sequencial, em
que cada arvore ¢é treinada para corrigir os erros residuais gerados pelas previsoes ante-
riores. Dessa maneira, o modelo final resulta da soma ponderada de todas as arvores,
aprimorando gradualmente o ajuste as observacoes reais sem perder capacidade de gene-
ralizacao.

Entre as principais caracteristicas do XGBoost destacam-se sua regularizagao
explicita, que incorpora penalizagoes L1 e L2 que reduzem o sobreajuste, e o suporte a
paralelizacao, que permite o particionamento eficiente de dados e acelera o treinamento
(CHEN; GUESTRIN, 2016). Além disso, também se destacam a capacidade de manejar
dados ausentes, identificando automaticamente os caminhos ideais para amostras com
valores faltantes, e o controle de aprendizado, realizando por meio do parametro learning
rate (n,) que equilibra a velocidade e a estabilidade de convergéncia (XGBoost Developers,
2025). Por fim, mas ndo menos importante, tem-se a anélise de importancia das varidveis,
que fornece medidas interpretaveis de contribuigao de cada atributo na predigao (XGBoost
Developers, 2025).

Embora os modelos preditivos baseados em ML, como o XGBoost, sejam ca-

pazes de estimar com alta precisao o desempenho termoenergético das edificagoes, sua
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aplicagao isolada nao é capaz de apoiar suficientemente as decisoes complexas de projeto,
envolvendo miltiplos critérios que devem ser equilibrados simultaneamente (CRUZ et al.,
2024). Projetos arquitetonicos e construtivos envolvem, por natureza, trade-offs entre
variaveis como desempenho térmico, consumo energético, custo de materiais e impacto
ambiental (TRIANA et al., 2023). Assim, a busca por solugoes que conciliem desempenho
e sustentabilidade requer uma abordagem sistematica que va além da simples previsao de
resultados (CRUZ et al., 2024). Nesse contexto, a integragao entre modelos preditivos e
métodos de otimizagao multiobjetivo torna-se uma estratégia poderosa (KUBWIMANA;
NAJAFI, 2023; COELLO et al., 2020). O modelo preditivo atua como um metamo-
delo (ou modelo substituto), capaz de estimar rapidamente o desempenho de diferentes
combinagoes de variaveis, reduzindo o custo computacional associado a simulagoes termo-
energéticas completas (BARBARESI et al., 2022). J4 o algoritmo de otimizacao, como
serda discorrido na secao 2.3, é responsavel por explorar o espaco de solucoes, identifi-

cando os conjuntos de alternativas mais promissores de acordo com os objetivos definidos

(COELLO et al., 2020).

2.3 Otimizacao

De modo geral, a otimizagao, no contexto de pesquisa operacional, consiste em encon-
trar, entre todas as solugoes possiveis de um problema, aquela (ou aquelas) que melhor
satisfacam determinado critério de desempenho (HILLIER; LIEBERMAN, 2015). Esse
tipo de problema esta presente em diversas areas do conhecimento, sempre que ha a ne-
cessidade de maximizar ou minimizar alguma variavel de interesse, como eficiéncia, custo,
tempo ou desempenho. Em sua forma mais simples, um problema de otimizagao busca
identificar o vetor de varidveis de decis@o que minimize (ou maximize) uma fungao objetivo
f(x) sujeita a restrigdes, como mostrado na equagdo (2.12), juntamente com as restrigoes
de desigualdade - equagao (2.13) e igualdade - equagao (2.14). O vetor x corresponde as

variaveis de decisdo do modelo, definido na equagao (2.15).

min f(z) (2.12)
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sujeito a  g;(x) <0, i=1,2,...,m (2.13)
hi(x) =0, j=1,2...p (2.14)
T =[xy, T, ..., 7,]" (2.15)

Na pratica, muitos problemas de engenharia, inclusive os relacionados ao desem-
penho termoenergético de edificagoes, apresentam natureza nao linear, multiplos minimos
locais e varidveis interdependentes (COELLO et al., 2020). Nessas situagoes, métodos
analiticos tradicionais se tornam inviaveis, exigindo o uso de abordagens numéricas e
heuristicas (COELLO et al., 2020). As abordagens numeéricas sao técnicas matematicas
que buscam solugoes aproximadas por meio de calculos iterativos (CHAPRA; CANALE,
2015). Ja as heuristicas sdo estratégias baseadas em regras empiricas ou inspiradas em
fenomenos naturais, usadas quando o problema ¢é tao complexo que nao ha uma solucao
exata vidvel (COELLO et al., 2020). Indo além, temos abordagens meta-heuristicas evolu-
tivas, em especial, inspiradas em processos naturais que, tém se mostrado particularmente
eficientes em lidar com tais desafios, oferecendo solugoes robustas em espacos de busca
complexos e de alta dimensionalidade (COELLO et al., 2020; DEB et al., 2002).

Entre as meta-heuristicas mais conhecidas, destaca-se o algoritmo genético (Ge-
netic Algorithm, GA), introduzido por Holland na década de 1970 (COELLO et al., 2020).

Inspirado nos principios da selecao natural e da genética biolégica, o GA simula
a evolugao de uma populagao de solugoes potenciais ao longo de vérias geragoes (EIBEN;
SMITH, 2015). Cada individuo representa uma possivel solu¢ao codificada (normalmente
em forma de vetor ou cadeia bindria), e seu desempenho é avaliado por uma funcao de
aptidao (fitness) (EIBEN; SMITH, 2015). Os individuos mais aptos tém maior probabili-
dade de serem selecionados para reproducao, onde operadores genéticos, como cruzamento
(crossover) e mutagao, sao aplicados para gerar novas solucgoes (EIBEN; SMITH, 2015).
Esse processo iterativo promove a exploracao e a diversificacao do espaco de busca, per-

mitindo que o algoritmo evolua gradualmente em direcao a solugoes cada vez melhores
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(EIBEN; SMITH, 2015). A Figura 2.9 ilustra o procedimento.

Populacao inicial Avaliagdo (Fitness) Selecao
( fottor ) ototo ) 1iooor ] Mede desempenho de cada individuo Individuos mais aptos tém maior chance

Pais selecionados
[ ]

101101 ] [ 011010

|

Cruzamento (Crossover)

Recombinagao genética

Mutagao
Nova geragao Filhos gerados
Pequenas alteragoes aleatérias
Filhos + tltima geragao [ tototo ) ([ otitor ]

Figura 2.9: Fluxo de um Algoritmo Genético.

Fonte:Baseado em (GONTIJO, 2020).

Em problemas com muiltiplos critérios de desempenho, no entanto, a aplicacao
de um 1unico GA tradicional é limitada, pois ele tende a convergir para uma tnica solugao
6tima (DEB et al., 2002). Para lidar com cenérios onde ha mais de um objetivo a ser
otimizado simultaneamente, surgiram os chamados algoritmos genéticos multiobjetivo
(Multi-Objective Genetic Algorithms, MOGAs) (COELLO et al., 2020). Esses métodos
estendem os principios do GA classico para trabalhar com miultiplas fungoes objetivo
em paralelo, buscando nao uma tunica resposta, mas um conjunto de solugoes de com-
promisso conhecidas como solugoes de Pareto (DEB et al., 2002). Assim, em vez de
escolher arbitrariamente uma métrica de desempenho agregada, os MOGAs exploram o
equilibrio natural entre objetivos conflitantes, oferecendo a projetista um leque de alter-
nativas com diferentes compensagoes entre custo, eficiéncia e outros critérios relevantes
(WIERZBICKI, 1980).

Entre as abordagens mais notaveis de MOGAs estao o algoritmo genético de
ordenagao nao dominada II (Non-dominated Sorting Genetic Algorithm II, NSGA-II) e
sua extensao NSGA-III (DEB et al., 2002). Esses métodos sao particularmente titeis em
problemas de engenharia, onde decisoes de projeto frequentemente envolvem miltiplos
objetivos interdependentes, como, no presente caso, desempenho térmico, consumo de

energia, impacto ambiental e custo construtivo.
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2.3.1 Otimizacao multiobjetivo

No mundo real, existem intimeros problemas com dois ou mais objetivos, muitas vezes
conflitantes, aos quais buscamos otimizar simultaneamente. Por exemplo, ao desenvolver
um carro elétrico, uma empresa pode precisar equilibrar: maximizar a autonomia, mini-
mizar o custo de producao e reduzir o tempo de recarga. Aumentar a autonomia pode
elevar custos e ampliar o tempo de recarga, enquanto reduzir o tempo de recarga pode
exigir tecnologias mais caras ou menos eficientes. Esse equilibrio entre metas opostas
caracteriza um tipico problema de otimizacao multiobjetivo. Esses problemas sao conhe-
cidos como problemas de otimizagao multiobjetivo (Multi-Optmization Problems, MOPs)
(COELLO et al., 2020).

Devido ao conflito entre objetivos, a resolugao de um MOP resulta em um con-
junto de solugoes que representam os melhores compromissos possiveis entre os objetivos
(ou seja, solugdes nas quais um objetivo ndo pode ser melhorado sem piorar outro) (CO-
ELLO et al., 2020). Tais solugoes constituem o conjunto solugdes de compromisso, e a
imagem desse conjunto (isto é, os valores das fungdes objetivo correspondentes) forma a
chamada frente ou fronteira de Pareto (FONSECA; FLEMING, 1999).

Matematicamente, um MOP resolve como o exemplo exposto na equacao (2.16):

minimizar f(l’) = [fl(m)a fZ(x)a v 7fk(x>]
sujeito a  gi(x) <0, i=1,2,...,m, (2.16)

hj(l’)zo, ]21,2,,[)

Onde:
r = [11,Zs,...,2,]T é 0 vetor de varidveis de decisdo,
fi:R" - R, parat=1,...,k, sdao as fungoes objetivo.

gi e hj : R" = R sao as fungoes de restrigao do problema.
Além disso, para introduzir a nocao de otimalidade usada em um MOP, é ne-

cessario entender alguns pontos (WIERZBICKI, 1980):

1. Dados dois vetores z,y € R¥, diz-se que x <y se x; < y; parai=1,...,k, e que x

domina y (denotado por x < y) se xjy.
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2. Diz-se que um vetor de variaveis de decisao x € X C R™ é nao dominado com

respeito a X se nao existe outro 2’ € X tal que f(z') < f(x).

3. Diz-se que um vetor de varidveis de decisao z* € F' C R" (sendo F' a regiao viavel)

é 6timo de Pareto se for nao dominado com respeito a F'.

4. O conjunto 6timo de Pareto (P*) ¢é definido conforme a Eq. (2.17):

P* ={x € F | x é 6timo de Pareto} (2.17)

5. A frente de Pareto (PF*) é definida conforme a equagdo (2.18):

PF*={f(z) e R" |z € P*} (2.18)

Nota-se que, o objetivo é obter o conjunto 6timo de Pareto a partir do conjunto
F' de todos os vetores de variaveis de decisao que satisfazem as restrigoes do problema.
No entanto, na pratica, nem todo o conjunto 6timo de Pareto é desejavel ou alcancavel.
Em alguns casos, os tomadores e tomadoras de decisao tendem a preferir certos tipos de

solugoes ou regioes especificas da frente de Pareto, como é discutido na subsecao seguinte.

2.3.2 Meétricas de avaliagao de desempenho em otimizacao mul-
tiobjetivo

Na prética, algoritmos de otimizagao multiobjetivo nao fornecem exatamente a frente de
Pareto étima tedrica, mas sim uma aproximacao composta por um conjunto finito de
solucoes. Dessa forma, torna-se necessario empregar métricas quantitativas capazes de
avaliar a qualidade dessas solugoes aproximadas.

Entre as métricas mais utilizadas na literatura destacam-se o Hypervolume (HV),
o Inverted Generational Distance Plus (IGD%1) e o Spacing, cada uma associada a um
critério distinto de qualidade da frente de Pareto obtida (COELLO; LAMONT; VELDHUI-
ZEN, 2007; DEB, 2001).

Considere P = {p1,ps,...,pn} 0 conjunto de solugdes obtidas por um algoritmo
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de otimiza¢do multiobjetivo, R = {ry,rs,...,ry} uma frente de Pareto de referéncia e
f(p) = (fi(p),..., fr(p)) o vetor de valores das fungdes objetivo associado a uma solugao
p.

Hypervolume (HV)

O Hypervolume mede o volume do espaco de objetivos dominado pelas solugoes obtidas,
considerando um ponto de referéncia 2" previamente definido, o qual deve ser pior do
que todas as solugoes em todos os objetivos (ZITZLER; BROCKHOFF; THIELE, 2007).

Matematicamente, o HV é definido como pode ser visto na equagao (2.19):

HV(P) = <U [F1(p), 2] > - x [ fulp), ref}>’ (2.19)

peP
onde A(-) representa a medida de Lebesgue no espago dos objetivos.

De forma intuitiva, essa métrica indica simultaneamente o quao préximas as
solugoes estao da regiao ideal e o quanto elas cobrem essa regiao. Valores mais elevados
de HV indicam frentes de Pareto mais desejaveis, pois refletem melhor desempenho global
e maior diversidade das solugoes. Por essa razao, o HV é amplamente adotado como uma

métrica consolidada na avaliacao de algoritmos de otimizagao multiobjetivo.

Inverted Generational Distance Plus (IGD")

O IGD™ é uma métrica baseada em distancia que avalia a proximidade entre a frente de
Pareto aproximada e uma frente de referéncia que representa a solucao ideal do problema
(ZITZLER et al., 2003). Diferentemente do IGD tradicional, o IGD™ considera apenas
distancias que violam a dominancia de Pareto, penalizando solucoes que estejam piores
do que a frente de referéncia.

A distancia IGD™ entre um ponto de referéncia r € R e uma solugao p € P é

definida na equagao (2.20):

d*(r,p) = | Y (max{fi(p) = fi(r),0})". (2.20)

=1

Com base nessa distancia, o IGD™ é calculado conforme pode ser visto na equacao
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(2.21):

IGD"(P,R) |R\ z:rmnalJr D). (2.21)

peEP

Com isso, o IGD™ evita penalizar indevidamente solucoes que dominam pontos
da frente de referéncia, tornando a métrica mais consistente com o conceito de dominancia
de Pareto. Valores menores de IGD™ indicam melhor convergéncia da frente aproximada
em relacao a frente ideal. De forma intuitiva, essa métrica mede o quao distante a frente
obtida estd da frente ideal, considerando apenas os desvios realmente indesejaveis do

ponto de vista da otimizacao multiobjetivo.

Spacing

A métrica Spacing avalia a uniformidade da distribuicao das solugoes ao longo da frente
de Pareto (DEB, 2001). Inicialmente, define-se a distancia minima entre cada solucao

pi € P e as demais solugoes da frente como demonstra a equagao (2.22):

k
m=1

Em seguida, o Spacing é calculado como o desvio padrao dessas distancias, con-

forme pode ser visto na equacao (2.23):

1

S=\|v—1 ;(di —d)?, (2.23)

onde d representa a média das distancias d;.

Valores menores de Spacing indicam solugoes mais uniformemente distribuidas,
enquanto valores elevados apontam para aglomeracoes ou lacunas na frente aproximada,
comprometendo a diversidade das solugoes.

Em conjunto, essas métricas permitem uma avaliacao abrangente das solugoes

obtidas, considerando convergéncia, diversidade e qualidade global da frente de Pareto

(COELLO; LAMONT; VELDHUIZEN, 2007).
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2.3.3 Otimizacao multiobjetivo baseada em pontos de referéncia

Com os recentes avangos na otimizacao evolutiva multiobjetivo (multi-objective evolutio-
nary optimization, EMO), é possivel encontrar diversas solugdes de compromisso (trade-
off) em problemas com quatro ou mais objetivos (VESIKAR; DEB; BLANK, 2018).
Porém, de acordo com Vesikar, Deb e Blank (2018), ha ao menos duas razoes pelas quais
os(as) usudrios(as), em algumas ocasioes, podem estar interessados em encontrar apenas
uma parte da fronteira 6tima de Pareto. Primeiro, apds analisar as solugoes obtidas por
algum algoritmo EMO, o(a) usudrio(a) pode desejar se concentrar em uma regiao prefe-
rencial especifica da fronteira de Pareto, seja para obter solugoes adicionais na regiao de
interesse ou para investigar a natureza das solugoes naquela drea. Segundo, o(a) usuério(a)
pode ja ter uma preferéncia bem articulada entre os objetivos e estar interessado apenas
em solugoes alinhadas a essas preferéncias ou podem existir restrigoes externas, como
fisicas, de custo e de projeto.

Existem diversas variantes de algoritmos EMO aplicaveis a busca por partes
especificas da fronteira étima de Pareto. Dentre eles, destaca-se o R-NSGA-II (DEB;
SUNDAR, 2006), no qual as preferéncias dos tomadores e tomadoras de decisao sao for-
necidas por um ou mais pontos de referéncia, seguindo uma abordagem de tomada de
decis@o multicritério originalmente proposta por Wierzbicki (WIERZBICKI, 1980). Esse
algoritmo permite incorporar explicitamente as preferéncias dos tomadores de decisao no
processo evolutivo, direcionando a busca para regioes da fronteira de Pareto consideradas
mais relevantes. No entanto, por ser derivado do NSGA-II, o R-NSGA-II herda também
suas limitagoes, especialmente a dificuldade de manter uma boa distribuicao das solugoes
quando o numero de objetivos aumenta, devido a perda de eficdcia do mecanismo de crow-
ding distance em espagos objetivo de alta dimensionalidade (DEB et al., 2002). Esse fator
restringe sua aplicacao em MOPs com muitos objetivos, motivando o desenvolvimento de
extensoes mais robustas.

Em particular, o NSGA II seleciona solugoes na tultima frente usando o crowding
distance, que estima a densidade local no espaco objetivo para promover diversidade
(DEB et al., 2002). J4 o NSGA III substitui esse critério por um mecanismo de niching

guiado por pontos de referéncia, no qual os objetivos sao normalizados e cada solugao
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é associada ao ponto mais proximo, priorizando nichos menos ocupados para garantir
melhor cobertura da fronteira (DEB; SUNDAR, 2006). Essa mudanga torna o controle de
diversidade mais robusto em problemas com muitos objetivos, onde o crowding distance
tende a perder poder discriminativo (DEB et al., 2002; DEB; SUNDAR, 2006).

O R-NSGA-III supera as limitagoes de seus predecessores ao combinar o meca-
nismo de pontos de referéncia do R-NSGA-II com a estrutura do NSGA-III, concebida
especificamente para lidar com problemas de muitos objetivos. Dessa forma, o algoritmo
mantém a capacidade de incorporar preferéncias explicitas dos tomadores e tomadoras
de decisao por meio de pontos de referéncia personalizados, ao mesmo tempo que se be-
neficia da distribuicao estruturada de solugoes caracteristica do NSGA-III, favorecendo
maior diversidade em espagos objetivo de alta dimensionalidade (DEB; SUNDAR, 2006;
VESIKAR; DEB; BLANK, 2018).

Essa integracao torna o R-NSGA-III mais eficiente e adequado a aplicacoes praticas,
nas quais os tomadores e tomadoras de decisao estao interessados em regioes especificas
da fronteira de Pareto, permitindo direcionar a busca conforme preferéncias sem compro-
meter a diversidade das solugdes (VESIKAR; DEB; BLANK, 2018).

A Figura 2.10 apresenta, de forma esquematica, um método hibrido. Inicial-
mente, um modelo de avaliagdo do sistema é empregado para gerar uma base de dados
que relaciona variaveis de entrada e respostas de interesse. Em seguida, técnicas de apren-
dizado de maquina sao utilizadas para construir um modelo preditivo capaz de aproximar
o comportamento do sistema, o qual é validado por procedimentos de amostragem e ajuste
de parametros. Por fim, um algoritmo de otimizag¢ao multiobjetivo explora o espago de
solugoes com base nesse modelo preditivo, incorporando preferéncias do tomador e to-
madora de decisao, assim resultando em um conjunto de solugoes de compromisso para

andlise de trade-offs entre os objetivos considerados.
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( N

Simulacao termoenergética

Entrada: clima e parametros do projeto

Saida: base de dados (X, )

l

Modelagem preditiva (ML)

Treinamento e validacao do metamodelo

Saida: preditor do desempenho

l

Otimizacao multiobjetivo (Algoritmo genético)

Busca no espaco de solugoes usando o meta modelo

Saida: conjunto e frente de Pareto

Figura 2.10: Método integrado

Fonte: Elaborado pelo autor.

Enquanto o modelo preditivo é responsavel por estimar, com elevada eficiéncia, o
desempenho do sistema sob diferentes configuragoes de projeto, o algoritmo de otimizacao
atua como um mecanismo de busca inteligente sobre essas estimativas, otimizando si-
multaneamente miltiplos objetivos potencialmente conflitantes. Dessa forma, o modelo
preditivo passa a desempenhar o papel de um metamodelo (ou modelo substituto) do mo-
delo de avaliagao original, possibilitando que o processo de otimizacao explore um grande
nimero de solucoes potenciais em um tempo computacional significativamente inferior ao
requerido por avaliagoes diretas do sistema. Essa integragao nao apenas reduz o tempo de
processamento das analises, mas também amplia a capacidade de exploracao de cenérios,
contribuindo para o desenvolvimento de projetos mais eficientes, sustentaveis e resilientes

frente as mudancas climéticas (CRUZ et al., 2024).
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2.3.4 Estado da Arte

O desempenho termoenergético de edificagdes tem sido amplamente estudado nas tltimas
décadas, impulsionado pela crescente preocupacao com a eficiéncia energética e a sustenta-
bilidade no setor da construgao civil. Esse campo multidisciplinar integra conhecimentos
de arquitetura bioclimatica, ciéncias dos materiais, termodinamica e ciéncia de dados,
com o objetivo de reduzir o consumo energético e as emissoes de gases de efeito estufa
associadas a construgao e operagao dos edificios (BALARAS et al., 2024).

Historicamente, os primeiros estudos do desempenho térmico se concentraram em
métodos empiricos e andlises simplificadas baseadas em balangos térmicos (LAMBERTS
et al., 2010). A partir da década de 1990, o avanco dos recursos computacionais viabi-
lizou o uso de simulacoes termoenergéticas detalhadas, com destaque para ferramentas
como EnergyPlus e TRNSYS, que permitiram representar com maior precisao o compor-
tamento dinamico das edificagoes (CRAWLEY et al., 2001; MUSLIM, 2021). Esses mo-
delos baseados em fisica continuam sendo a principal referéncia para analises de eficiéncia,
embora apresentem desafios relacionados ao tempo de processamento e a calibracao dos
parametros de entrada (MENDES et al., 2024).

Nos tltimos anos, a convergéncia entre técnicas de modelagem fisica e métodos
de ML tem impulsionado uma nova geracao de abordagens hibridas (KUBWIMANA,;
NAJAFI, 2023). De acordo com Balaras et al. (2024), essa integracdo permite superar
limitagoes computacionais e aumentar a capacidade preditiva, utilizando dados simulados
ou empiricos para treinar modelos capazes de estimar o desempenho térmico e energético
de forma rapida e precisa. Conforme as revisoes da literatura realizadas por Balaras et al.
(2024), Coello et al. (2020) e Cruz et al. (2024), verifica-se que os estudos mais recentes
agrupam-se em trés grandes eixos: (i) modelos de previsao de consumo e cargas térmicas,
que aplicam regressoes lineares, redes neurais e gradient boosting para estimar demandas
energéticas; (ii) modelos de controle e otimizagao operacional, voltados ao ajuste dinamico
de sistemas de climatizagao e iluminagao; e (iii) modelos de otimizac¢ao de projeto, que
integram algoritmos evolutivos multiobjetivo com meta-modelos para explorar solugoes
construtivas de melhor desempenho.

Entre as abordagens de otimizagao, destacam-se os algoritmos genéticos, o NSGA-
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IT e suas extensoes, amplamente utilizados na busca de solugoes de compromisso entre
varidveis conflitantes, como custo, consumo e conforto térmico (CRUZ et al., 2024). Esses
algoritmos tém sido aplicados em conjunto com metamodelos baseados em aprendizado
supervisionado, como Rede Neural Artificial, Random Forest, Support Vector Regression
e XGBoost, para reduzir o numero de simulagoes necessarias, mantendo boa precisao
(BARBARESI et al., 2022). A literatura recente evidencia que essa combinagao hibrida
oferece ganhos significativos de eficiéncia, tornando vidvel a aplicacao de métodos de
otimizagdo em larga escala e em diferentes zonas climaticas (CRUZ et al., 2024).

Apesar dos avancos, algumas lacunas permanecem. Muitos estudos ainda se
concentram em condicoes de operacao estaticas, negligenciando a variabilidade climatica
futura, devido as mudancas climaticas, e o conceito de resiliéncia térmica, que se torna
crucial frente as projegoes de aumento de temperaturas médias globais (HONG et al.,
2023). Outro ponto critico é a escassez de bases de dados padronizadas e abertas, o que
dificulta a reprodutibilidade e comparagao entre estudos (TTAN et al., 2021).

Além das lacunas relacionadas a variabilidade climatica futura e a resiliéncia
térmica, observa-se que a maior parte dos estudos concentra-se predominantemente em
métricas associadas ao consumo energético, como CT, enquanto andlises voltadas a edi-
ficagoes naturalmente ventiladas, baseadas em indicadores de conforto térmico como GH e
AT, ainda sao relativamente escassas. Essa assimetria limita a compreensao do desempe-
nho térmico em contextos nos quais estratégias passivas desempenham papel central, espe-
cialmente em climas quentes ou mistos. Diante desse cenario, torna-se relevante o desen-
volvimento de abordagens integradas que considerem simultaneamente multiplas métricas
de desempenho, como CT, GH, AT e RT, avaliadas tanto sob condicoes climaticas atuais
quanto sob cenarios futuros. Ademais, a incorporacao de pontos de referéncia no processo
decisério desponta como uma estratégia promissora para explicitar preferéncias do toma-
dor de decisao na andlise de solugoes de compromisso. Nesse contexto, a integragao entre
modelos preditivos baseados em aprendizado de maquina e técnicas de otimizacao mul-
tiobjetivo apresenta-se como um caminho potencial para viabilizar a exploracao eficiente
do espacgo de solucoes e a andlise sistematica dos trade-offs entre desempenho térmico,

conforto e eficiéncia.
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3 Abordagem Proposta

A abordagem proposta neste trabalho integra simulagoes termoenergéticas, modelagem
preditiva e otimizagao multiobjetivo para identificar combinacoes construtivas que con-
ciliem conforto térmico, eficiéncia energética, custo de materiais e emissoes de CO,. A
metodologia foi organizada para possibilitar a andlise de um grande ntimero de alter-
nativas de projeto sob condigoes climaticas atuais e futuras, considerando trés cidades
brasileiras com climas distintos: Sao Paulo, Belém e Curitiba. Também incorpora as
preferéncias de tomadores e tomadoras de decisao por meio da atribuicao de pesos aos
critérios de otimizacao e da selecao de regioes especificas da fronteira de Pareto conforme

diferentes prioridades. A Figura 3.1 apresenta uma visao geral do método adotado.

Avaliagdo das 3

Daﬁnicﬁes I:!B projeto: estratégias de
« 1 residéncia de — representagad dos
pequeno porte individuos

+ 3 Climas (frio, ameno
e quente)

+ Presente (2021) e
futuro (2080)

Pesos e pontos de

Sistemas construtivos:
+ 28 tipos de parede
+ 48 tipos de cobertura
+ 21 tipos de piso
28.224 combinagdes
construtivas.

Andlise de
desempenho térmico
Andlise de

custo

. f\né.llse de SINAPI

impacto ambiental

Figura 3.1: Fluxograma geral da metodologia da pesquisa

Fonte: Elaborado pelo autor.

Com base nas métricas de desempenho termoenergético, economico e ambiental
apresentadas anteriormente, este trabalho formula um problema de otimizacao multi-
objetivo para apoiar a selecao de sistemas construtivos de edificagoes residenciais. O
objetivo é identificar combinagoes de sistemas de paredes, pisos e coberturas que apresen-
tem solugoes de compromisso entre desempenho térmico, custo e emissoes de didxido de

carbono, considerando simultaneamente cenarios de clima presente e futuro.
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O problema é caracterizado por um espaco de decisao, composto por um con-
junto finito de alternativas construtivas para cada elemento da envoltéria da edificagao.
Para cada combinacao candidata, as fungoes objetivo sao avaliadas a partir dos modelos
computacionais desenvolvidos, permitindo quantificar o impacto da escolha dos sistemas
construtivos sobre o desempenho global da edificacao.

Adota-se uma abordagem de otimizacao multiobjetivo, na qual nao se busca uma
unica solucao 6tima, mas sim um conjunto de solugoes nao dominadas que aproximam a
frente de Pareto do problema. Dessa forma, a formulagao proposta possibilita analisar
explicitamente os conflitos existentes entre os diferentes objetivos, fornecendo subsidios
quantitativos para a tomada de decisao em projetos de edificagoes sob a perspectiva de
eficiéncia energética, viabilidade economica e sustentabilidade ambiental. As equacoes
(3.1) até a (3.3) apresentam a formula¢ao matematica do problema de otimiza¢ao mul-
tiobjetivo considerado neste trabalho, definindo o vetor de fungoes objetivo, o vetor de

variaveis de decisao e o espacgo de busca associado.

mxin F(x) = |CTP™(x), CT™(x), GH"*(x), GH™ (x),
(1 — ATP(x)), (1 — AT™(x)), RTP*(x), RT™(x), (3.1)

Custo(x), CO2(x)

X = (Tpa, Tpis Teo) (3.2)

Tpo €P, 0y €7, 2,,€C = x€eX=PxIxC (3.3)

onde:

e F(x) é o vetor de fungodes objetivo do problema, conforme a equagao (3.1).

e x ¢ o vetor de varidveis de decisdo, composto por trés escolhas: x,, (sistema de
parede), x,; (sistema de piso) e z., (sistema de cobertura), conforme a equagao

(3.2).
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e P ¢é o conjunto finito de alternativas disponiveis para sistemas de parede. Cada
elemento de P corresponde a uma composicao construtiva candidata de parede con-

siderada neste trabalho.

e J é o conjunto finito de alternativas disponiveis para sistemas de piso. Cada elemento
de J corresponde a uma composicao construtiva candidata de piso considerada neste

trabalho.

e C é o conjunto finito de alternativas disponiveis para sistemas de cobertura. Cada
elemento de € corresponde a uma composicao construtiva candidata de cobertura

considerada neste trabalho.

e X ¢é o espaco de busca do problema, isto é, o conjunto de todas as combinagoes
possiveis entre paredes, pisos e coberturas consideradas: X = P x J x €, conforme

a equagao (3.3).

e O sobrescrito pres indica avaliagdo no cendrio de clima presente (ano de re-
feréncia), enquanto fut indica avaliagdo no cendario de clima futuro. Em ambos
0s casos, as métricas sao calculadas a partir das séries simuladas para a edificacao

e para o modelo de ocupacao adotado.
Descricao das fungoes objetivo:

1. OTP(x) e CT™ (x) representam a carga térmica anual total, definida como a soma
das cargas de aquecimento e de resfriamento associadas & solucao x, para 0s cenarios
s b
de clima presente e futuro, respectivamente. Tipicamente, CT" é expresso em energia
) )

anual, por exemplo em kWh /ano.

2. GHP™(x) e GH™(x) representam o indicador de Graus-Hora associado ao descon-
forto térmico para a solucao x, nos cendrios de clima presente e futuro, respectiva-

mente. O GH é usualmente expresso em °C-h.

3. ATP™(x) e AT™(x) representam a Autonomia Térmica, definida como o percentual

de horas ocupadas em que a temperatura operativa interna permanece dentro da
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faixa de conforto térmico. Por se tratar de uma métrica de maximizacao, a Autono-
mia Térmica foi convertida para minimizacao por meio das fungdes (1 — ATP*(x))
e (1— AT™(x)). A AT ¢ adimensional e pode ser apresentada em fragao (0 a 1) ou

em percentual (%).

4. RTP*(x) e RT™(x) representam a Resiliéncia Térmica associada & solugao x, cal-
culada para os cendrios de clima presente e futuro. Neste trabalho, a Resiliéncia
Térmica é quantificada por meio da unidade °C h SET. Por se tratar de uma métrica
associada a intensidade do desconforto térmico em condigoes criticas, RT' é tratada
como uma func¢ao objetivo de minimizacao, conforme a definicao do indicador ado-

tada.

5. Custo(x) representa o custo associado a solucao x, calculado a partir da composigao
de materiais e dos critérios economicos definidos. O custo é expresso em moeda

corrente (R$), conforme o escopo econémico adotado.

6. COy (x) representa a emissao de didxido de carbono associada a solugdo x, con-
forme o escopo considerado. Essa métrica representa emissoes incorporadas, sendo

usualmente expressa em kgCOs.

Adicionalmente, este trabalho considera a aplicagao de pesos para refletir a importancia
relativa de cada fungao objetivo. Para isso, os valores das fungoes objetivo sao previamente
normalizados por meio da normalizagao Min-Max, de modo a torna-los comparéaveis em
uma escala adimensional comum. A equacao (3.4) demonstra a normalizacao Min-Max.

F(x) — filx) —
) firee— e

onde f™" e f* representam, respectivamente, os menores e maiores valores observados

i=1,....m (3.4)

para o objetivo 7, e m é o ntimero total de funcgoes objetivo.
Assim, o problema busca identificar solugoes de compromisso que conciliem de-
sempenho termoenergético no clima presente e futuro, reducao de custo e redugao das

emissoes de dioxido de carbono.
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3.1 Sistemas Construtivos

Em estudos preliminares desta equipe de pesquisa, foram catalogados materiais que
compoem 28 tipos de parede, 21 tipos de pisos e 48 tipos de coberturas, totalizando
28.224 combinagoes construtivas (MENDES et al., 2025). No Apéndice A, lista-se cada
um desses sistemas construtivos, onde também foram incluidas propriedades termofisicas,
como resisténcia térmica (R) e a capacidade térmica (Ct) de cada sistema. Também é
listado o custo de construcao e instalagao de cada um deles, bem como o seu respectivo
impacto ambiental (em emissoes de kgCOs). Esses dados foram retirados do estudo de
Arcanjo et al. (2025), que realizou o levantamento com base na Tabela do Sistema Na-
cional de Pesquisa de Custos e Indices da Construcio Civil (SINAPI) e no Sistema de
Informacao do Desempenho Ambiental da Construgao (Sidac). A Figura 3.2 apresenta a
dispersao dos sistemas construtivos analisados, quanto ao custo e emissao de CO,. Por
sua vez, a Figura 3.3 apresenta essa dispersao, em relacao as propriedades termofisicas

(R e Ct). A Tabela 3.1 ilustra 3 exemplos da base de dados.

Tabela 3.1: Exemplos de sistemas construtivos analisados

Sistema Tipo Camadas Espessura total (m) R (m’K/W) Ct (kJ/m?K)

co48 Cobertura Reboco + Laje trelicada de EPS + 0.143 0.31 181.21

Impermeabilizante

pi01 Piso Contrapiso + Argamassa colante + 0.045 0.04 86.00
Porcelanato
pa04 Parede Reboco isolante + Bloco ceramico + 0.140 0.44 131.36

Reboco isolante

Fonte: Elaborado pelo autor.
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Fonte: Elaborado pelo autor.
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Figura 3.3: Dispersao dos sistemas construtivos por resisténcia térmica (R) e capacidade

térmica (Ct)

Fonte: Elaborado pelo autor.

Como as combinagoes construtivas nao apresentam distribuicao continua ou uni-

forme, a comparacao direta com valores extremos nao seria estatisticamente represen-

tativa. Assim, adotou-se uma abordagem baseada em medidas robustas de posi¢ao: o

quartil inferior (Q1), a mediana (Md) e o quartil superior (Q3). Nesse contexto, Q1 e Q3

delimitam a faixa central da distribuigao, correspondendo, respectivamente, aos valores

abaixo dos quais estao 25% e 75% dos resultados. J4 a Md representa o ponto central

dessa distribui¢ao, dividindo os valores em duas metades iguais. A Tabela 3.2 apresenta

as estatisticas dos parametros utilizados nas analises.

Tabela 3.2: Estatisticas dos parametros utilizados nas analises

Parametro Q1 Mediana Q3

R (m?*K)/W 0.22 0.29 0.39
Ct (kJ/(m*K)) 114.07 197.94 265.88
Custo Curitiba (R$) 81170.7 | 89838.8 | 103024.8
Custo Sao Paulo (R$) | 77204.6 | 85955.5 | 99575.0
Custo Belém (R$) 88443.0 | 97318.0 | 111409.8
CO; (kgCO,) 5248.7 6411.4 10170.2

Fonte: FElaborado pelo autor.
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3.2 Edificacao e Climas Analisados

Neste trabalho, foi analisada uma habitacao de interesse social de pequeno porte, com

2 conforme representado na Figura 3.4. A edificacao é térrea, unifa-

area total de 40 m
miliar e possui uma configuracao funcional simples, composta por sala, banheiro e dois
dormitorios.

Para representar diferentes condicoes climaticas do territério brasileiro, foram
selecionadas trés cidades localizadas em distintas zonas bioclimdaticas brasileiras (ZBs),
conforme a NBR 15220 (ABNT, 2024b): Curitiba (ZB 1M), Sao Paulo (ZB 2M) e Belém
(ZB 6A). Ao longo do texto, essas cidades serdo tratadas de forma relativa como clima
frio, ameno e quente, respectivamente, de modo a facilitar a interpretacao dos resultados.

) -

RPN S
. —E=
& s =

Figura 3.4: HIS 1 — Esquerda: maquete 3D. Meio: maquete humanizada. Direita: planta
baixa.

Fonte: (OLIVEIRA, 2025)

Além do clima atual (ABNT, 2024b), o presente trabalho também utiliza arquivos
climaticos projetados para o ano de 2080, permitindo avaliar o desempenho térmico das
edificacoes em cendrios de mudanca climatica. Essa decisao é fundamentada na ABNT
(2024b), que estabelece requisitos de desempenho associados a vida util de projeto, de
modo que a andlise nao se restringe as condigoes climaticas presentes, mas considera a
manutengao do desempenho ao longo do tempo. Assim, o horizonte de 2080 é adotado
como um cenario representativo de longo prazo, possibilitando verificar se as solugoes
avaliadas permanecem adequadas diante de condicoes climaticas futuras. Esses arquivos
foram desenvolvidos por Vaz et al. (2024) por meio do Future Weather Generator (FWG),
utilizando o cenario SSP2-4.5 do CMIP-6, que representa um futuro intermediario, mar-

cado por esforgos moderados de mitigagao de emissoes. Trata-se de um cenario ampla-
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mente empregado em pesquisas de planejamento urbano e resiliéncia térmica por oferecer
projecoes consistentes e realistas para andlises de adaptagao e mitigacao climética (USTA;

TEYMOURI; CHATTERJEE, 2022).

3.3 Modelo Substituto para Avaliacao do Desempe-
nho Térmico

Como se verifica na Tabela 3.3, foi desenvolvido um modelo especifico para prever cada
métrica de desempenho térmico, abrangendo Carga Térmica (CT), Graus-Hora (GH),
Autonomia Térmica (AT) e Resiliéncia Térmica (RT). Cada métrica também possui uma
versao para o presente e outra para o futuro, identificadas pelo subindice ;. Todos os
modelos foram treinados utilizando o conjunto completo de variaveis de entrada, composto
pelos valores de resisténcia térmica (R) e capacidade térmica (Ct) das paredes, do piso e
da cobertura sendo os subindices ,, ,; e . empregados para identificar, respectivamente,

parede, piso e cobertura.

Tabela 3.3: Modelos de aprendizado de maquina desenvolvidos

# | Métrica prevista | Variaveis de entrada

1 CT
CT,
GH
GH,
AT
AT,
RT

Rpa Ctpa Rpi> Ctpi7 Rm th

o | 3| O | O | b= | W | N

RT;

Fonte: Elaborado pelo autor.

Para a elaboragao dos modelos de ML, este trabalho se baseou nos estudos an-
teriores de Mendes et al. (2025), Louback (2025) e Oliveira (2025). Esses estudos desen-
volveram um modelo de ML para prever o desempenho térmico de edificagoes a partir

das métricas de CT e GH no clima presente, com o mesmo banco de dados analisado
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neste trabalho. Para isso, foram realizadas simulagoes no EnergyPlus, avaliando todas as
permutagoes de conjuntos de parede, piso e cobertura, aplicadas a duas residéncias unifa-
miliares de 40 m? em Curitiba (frio), Sao Paulo (ameno) e Belém (quente). As simulagoes
seguiram as configuracoes da NBR, 15575 e geraram valores de CT e GH utilizados como
variaveis-alvo para treinar modelos XGBoost. As propriedades termofisicas de cada com-
binagao construtiva (R e Ct) foram empregadas como varidveis de entrada, e os modelos
foram avaliados por meio de validagao cruzada (k-fold; k=10) e das métricas R?, MAE e
MAPE.

Os resultados evidenciaram alta precisao. Em todos os cenarios analisados, os
modelos apresentaram R? superior a 0,99 e MAPE inferior a 6,1%, frequentemente abaixo
de 1,1%. Exemplos incluem o modelo de CTr em Curitiba, que atingiu R? de 0,9993 e
MAPE de apenas 0,35%, e o modelo de GHc em Sao Paulo, com R? de 0,9995 (OLIVEIRA,
2025).

Adicionalmente, um dos achados mais relevantes de Mendes et al. (2025) foi a
demonstracao da eficacia da reducao do banco de dados. Para testar essa hipdtese, o
conjunto completo de instancias foi gradualmente reduzido para treinos contendo apenas
1% a 10% das amostras, enquanto o restante do banco (99% a 90%) foi utilizado como
teste. Em cada caso, foram realizadas 100 repeticoes para reduzir o efeito de variagoes
aleatdrias. Mesmo com apenas 1% do banco de dados usados para treinamento, os mo-
delos mantiveram R? acima de 0,81. A partir de 2% das instancias, o R? superou 0,90
em todos os testes, apresentando baixa dispersao e desvios-padrao inferiores a 1%. Es-
ses resultados demonstraram que nao é necessario treinar modelos com a totalidade das
simulagoes energéticas: simular apenas 2% do banco no EnergyPlus (procedimento que
leva aproximadamente uma hora em um computador bésico) ja permite treinar modelos
suficientemente precisos para aplicacoes profissionais.

Esse procedimento foi tratado como uma prova de conceito. Para verificar sua
capacidade de generalizagao, em cenarios em que nao foi simulado o banco de dados com-
pleto, simulou-se apenas 10% das combinacoes totais e, posteriormente, essas instancias
foram utilizadas no treinamento do ML. Essa abordagem foi escolhida por ser conserva-

dora e, ainda assim, reduzir cerca de 90% do custo operacional associado & construcao de
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modelos treinados com 100% das instancias. A eficicia desses modelos foi avaliada com
mil instancias aleatérias e independentes do treinamento, que também foram simuladas.
Mais detalhes podem ser consultados em Mendes et al. (2025), Oliveira (2025) e Louback
(2025).

No presente trabalho, foi mantido o uso de 10% do banco de dados para o trei-
namento do modelo, mas aprimorou-se a selecao das instancias de treino por meio de
agrupamento nao supervisionado a partir dos valores de R e Ct de cada sistema cons-
trutivo. O objetivo dessa etapa foi garantir maior diversidade estrutural no conjunto
de treinamento, evitando que o modelo fosse ajustado apenas com combinagoes muito
semelhantes entre si. Para isso, aplicou-se o algoritmo de agrupamento k-means sobre
todas as instancias disponiveis. Do total de grupos definidos (correspondentes a 10% do
total de instancias), cada grupo representa um subconjunto de combinages construtivas
com caracteristicas termofisicas semelhantes. Em seguida, foi selecionada apenas uma
instancia por grupo, garantindo que instancias muito similares nao fossem simultanea-
mente escolhidas. Essa abordagem reduz redundancias e melhora a representatividade do
conjunto utilizado no treinamento. Além disso, para o presente trabalho, foram ampli-
adas as métricas de avaliagdo do desempenho térmico, incorporando também AT e RT,
além de projegoes de desempenho térmico para o futuro (2080).A Tabela 3.4 apresenta os
resultados comparativos entre a formulac¢ao adotada por Oliveira (2025) e a adotada neste
trabalho. Verifica-se uma melhoria no clima ameno e uma aproximagao dos resultados
nos demais climas. Adicionalmente, o presente trabalho estende os modelos por meio da
inclusao de métricas complementares.

Tabela 3.4: Comparativo de desempenho dos modelos desenvolvidos por (OLIVEIRA,
2025) e neste trabalho

Cidade | Métrica R?2 MAE MAPE(%) RMSE
prevista
Oliveira | Pres. Oliveira | Pres. Oliveira | Pres. Oliveira | Pres.
(2024) trab. (2024) trab. (2024) trab. (2024) trab.
CT (MJ) 0,994 0,997 23,659 24,30 0,630 0,377 - 36,381
GH 0,978 0,977 98,343 62,936 1,404 0,423 - 91,18
(“C-h)
Curitiba| RT (°C-h | — 0,990 - 1,652 - 2,158 - 2,211
(frio)
SET)
AT (%) - 0,994 - 0,002 - 0,402 - 0,002
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(continuacao) Comparativo de desempenho dos modelos

Cidade | Métrica R? MAE MAPE(%) RMSE
prevista
Oliveira | Pres. Oliveira | Pres. Oliveira | Pres. Oliveira | Pres.
(2024) | trab. (2024) | trab. (2024) | trab. (2024) | trab.
CTf (MJ) | - 1,000 - 6,263 - 0,125 - 97,123
GHf - 0,997 - 49,979 - 0,855 - 69,246
(“Ch)
RTf (%) - 0,994 - 1,607 - 2,669 - 2,369
ATT (%) - 0,998 - 0,001 - 0,131 - 0,001
CT (MJ) 0,982 0,996 25,994 22,181 0,978 0,496 - 31,507
GH 0,988 0,979 62,252 52,205 1,500 0,653 - 78,605
(*Ch)
Sao PauloRT (°C:h | — 0,949 - 0,065 - 313,0 - 0,118
(ameno
SET)
AT (%) - 0,993 - 0,002 - 0,351 - 0,003
CTf (MJ) | — 0,999 - 0,986 - 0,147 - 141,000
GHf - 0,996 - 74,710 - 0,912 - 105,280
(*Ch)
RTf (%) - 0,995 - 1,728 - 3,545 - 2,516
ATE (%) | — 0,994 - 0,001 - 0,101 - 0,001
CT (MJ) 0,997 0,992 20,379 27,590 0,191 0,263 - 31,16
GH 0,995 0,979 65,696 52,205 0,374 0,653 - 78,605
("Ch)
Belém | RT (°C:h | — 0,995 - 1,312 - 1,312 - 1,915
(quente)
SET)
AT (%) - 0,993 - 0,002 - 0,351 - 0,003
CTf (MJ) | — 0,997 - 35,852 - 0,185 - 47,70
GHf - 0,927 - 108,045 | — 0,228 - 277,116
("Ch)
RTf (%) - 0,994 - 1,697 - 0,370 - 2,375
ATT (%) - 0,992 - 0,003 - 0,194 - 0,004

Fonte: Elaborado pelo autor.

3.4 Otimizacao Multiobjetivo

Na etapa de otimizagao multiobjetivo, os parametros de desempenho térmico (CT, GH,
AT e RT) foram avaliados por meio dos modelos de ML desenvolvidos neste estudo,
enquanto os critérios de impacto ambiental e custo dos materiais foram obtidos a partir
do banco de dados compilado por Arcanjo et al. (2025). Para nao enviesar esses objetivos,
dada suas diferencas de escala, incialmente, esses dados foram normalizados com o método

bésico “min-max” (equagado (3.5))
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_ f(x) — fmin
frnax - fmin

Esses critérios, no entanto, apresentam conflitos naturais entre si, como ja dis-

f'(x) (3.5)

cutido na literatura (Cruz et al., 2024b; Mendes et al., 2024b). Por exemplo, uma com-
binacao construtiva que reduz significativamente CT pode exigir materiais de maior iso-
lamento, o que normalmente eleva o custo e aumentando as emissoes de CO4 associadas a
produgao desses materiais isolantes. De forma semelhante, uma alternativa muito barata
pode apresentar pior desempenho térmico e maior desconforto ao longo do ano. Para lidar
com essas contradigoes e permitir que a ferramenta reflita preferéncias especificas de quem
toma a decisao, optou-se pelo uso do algoritmo Reference-point based Non-dominated Sor-
ting Genetic Algorithm III (R-NSGA-IIT), amplamente reconhecido por sua capacidade
de explorar de forma eficiente regices de interesse da fronteira de Pareto de acordo com
os pesos e os pontos de referéncia definidos pelo usuario. A implementacao foi realizada

com o suporte da biblioteca Pymoo, em Python (BLANK; DEB, 2020).

3.4.1 Selecao da representacao dos individuos

O problema de selecao de sistemas construtivos é de natureza discreta, pois cada pa-
rede, piso e cobertura deve ser escolhida dentro de um conjunto finito de alternativas.
Para aumentar a robustez do modelo de otimizacao, foram avaliadas trés estratégias de
representagao dos individuos da populacdo: inteira, bindria e Gray Code (SHASTRI;
FRACHTENBERG, 2020; ROTHLAUF, 2006). Cada esquema determina como os genes
sao estruturados e manipulados pelos operadores evolutivos, influenciando a capacidade
do algoritmo de explorar o espago de busca e de refinar solugoes localmente (YIQUN; XI-
ANRUI, 2018). A comparacao entre essas representagoes é essencial, uma vez que escolhas
inadequadas de codificagdo podem levar a perda de diversidade, convergéncia prematura
ou dificuldade no refinamento da fronteira de Pareto (YIQUN; XIANRUI, 2018).

Na representacao inteira, cada individuo é descrito por um vetor composto por
trés variaveis inteiras, que indicam os indices da parede, do piso e da cobertura selecio-
nados. Por exemplo, o individuo (2, 8, 5) representa a terceira parede da lista (indice 2),

o nono piso (indice 8) e a sexta cobertura (indice 5). A partir desse triplo construtivo,
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sao extraidos os valores de transmitancia térmica (U), capacidade térmica (Ct) e custos,
que servem como entrada nos modelos de ML, resultando nas previsoes das métricas CT,
GH, AT e RT para os cenarios presente e futuro.

Embora o problema seja discreto, a representacao inteira foi integrada a operado-
res tradicionalmente aplicados em espacos continuos, devidamente adaptados ao dominio
inteiro (BLANK; DEB, 2020). A populagao inicial foi gerada pelo método IntegerRandom-
Sampling, que sorteia cada gene dentro dos limites validos de cada categoria (BLANK;
DEB, 2020). No cruzamento, empregou-se o operador SBX, no qual os descendentes
sao obtidos como combinacoes intermediarias entre dois pais; os valores continuos gera-
dos sao posteriormente arredondados e reparados para garantir coeréncia com os indices
disponiveis (DEB; SUNDAR, 2006). A mutagao foi implementada por meio da mutagao
polinomial, que introduz pequenas perturbacoes continuas sobre os genes inteiros, também
submetidas a arredondamento e reparo para assegurar a validade das solugoes (BLANK;
DEB, 2020).

Na representacao bindaria, cada alternativa é codificada por um bloco de bits,
cujo tamanho corresponde ao niimero minimo necesséario para representar todas as opgoes
disponiveis (SHASTRI; FRACHTENBERG, 2020). Dparede = 28, Dpiso = 21 € Neobertura = 48
os blocos possuem 5, 5 e 6 bits, respectivamente, totalizando 16 bits por individuo. Cada
individuo é, portanto, um vetor binario formado pela concatenacao desses trés blocos. Por
exemplo, o bloco (1, 0, 1, 1, 0) referente & parede é interpretado como o nimero decimal
22, que é convertido em um indice vélido pela operagao de divisao inteira (SHASTRI;
FRACHTENBERG, 2020). Os operadores evolutivos atuam diretamente sobre os bits:
a populacao inicial é gerada por BinaryRandomSampling, o cruzamento é feito por one-
point crossover e a mutacao emprega bit flip com baixa probabilidade, invertendo bits
individuais e gerando novas combinagoes construtivas (BLANK; DEB, 2020).

Na representacao Gray Code, cada alternativa também é codificada por blocos de
bits, porém utilizando um esquema em que nimeros consecutivos diferem por apenas um
bit (ROTHLAUF, 2006). Essa caracteristica promove transi¢goes mais suaves no espaco de
busca, reduzindo saltos abruptos e favorecendo a exploracao de vizinhancas estruturadas.

Por exemplo, enquanto o niimero 2 é representado como 010 no bindrio comum, em Gray
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Code torna-se 011, e o ntimero 3 torna-se 010 (apenas um bit muda entre eles). Cada
individuo é formado pela concatenacao dos blocos de parede, piso e cobertura codificados
em Gray Code, que depois sao decodificados novamente para inteiros antes da avaliacao.
Os operadores evolutivos atuam da mesma forma que na representacao binaria: o cruza-
mento ¢é realizado por one-point crossover, enquanto a mutacao aplica bit flip com baixa
probabilidade, gerando alteragoes graduais nos valores inteiros correspondentes (SHAS-
TRI; FRACHTENBERG, 2020). Apds a decodificagao, padroes que produzam indices
fora dos limites de cada conjunto de alternativas sao considerados nao mapeados e, por-
tanto, descartados e substituidos por novas amostras, garantindo que apenas solugoes
validas sejam avaliadas.

A definigao dos hiperparametros do algoritmo R-NSGA-III (i.e., tamanho da po-
pulagao, taxa de cruzamento, taxa de mutacgao, operador de cruzamento, operador de
mutagao, parametro 1 e numero de geragoes) foi realizada em duas etapas complementa-
res. Inicialmente, empregou-se um random search, que avaliou diversas combinagoes desses
hiperparametros com base no hipervolume das fronteiras de Pareto geradas (BERGSTRA,;
BENGIO; RACHMAD, 2012). Em seguida, os melhores conjuntos foram refinados por
meio do Optuna, que utiliza amostragem eficiente orientada por otimizacao bayesiana
(AKIBA et al., 2019). Essa abordagem reduziu o custo computacional e permitiu concen-
trar a busca em regioes promissoras do espaco de hiperparametros. Cada representacao
(inteira, bindria e Gray Code) teve seu préprio conjunto final de hiperparametros ajustado
antes da comparacao entre elas e seus valores estao apresentados no Apéndice B.

Apoés a etapa de otimizacao dos hiperparametros para cada uma das trés repre-
sentacoes de solucao avaliadas, tornou-se necessario identificar qual delas apresentava o
melhor desempenho global na resolugao do problema multiobjetivo. Para isso, foi con-
duzida uma analise comparativa fundamentada em métricas amplamente consolidadas na
literatura de otimizac@o evolutiva multiobjetivo (YIQUN; XIANRUI, 2018).

Cada representacao foi executada 10 vezes de forma independente. A repeticao
das execugoes permitiu capturar a variabilidade intrinseca aos algoritmos evolutivos, pos-
sibilitando avaliar a robustez estatistica associada a cada forma de representacao. A

comparagao entre as representacoes considerou trés indicadores de qualidade da fronteira
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de Pareto obtida:

1. HV (Hypervolume)
2. IGD™

3. Spacing

3.4.2 Preferéncias do(a) usuario(a) e selecao da melhor com-

binacao construtiva

Apesar da normalizacao inicial das fungoes objetivo, os valores das combinagoes 6timas na
fronteira de Pareto foram propositalmente desbalanceados por meio da aplicacao de pesos
que refletem as preferéncias dos usuarios. Essa estratégia permite resultados mais per-
sonalizados a diferentes cenarios de projeto e uso da edificacao, ajustando a importancia
relativa de cada critério. Os pesos adotados nesta etapa foram definidos de forma hi-
potética para ilustrar dois possiveis cenarios. Além disso, foram estabelecidos pontos de
referéncia para algumas métricas, utilizados exclusivamente durante a execucao do algo-
ritmo com o objetivo de direcionar a busca para regioes especificas da fronteira de Pareto.
J& os pesos foram aplicados apenas posteriormente, durante a andlise da fronteira, para
apoiar a selecao da solucao construtiva mais adequada em cada cenario.

Como se observa na Tabela 3.5, o Cenario 1 atribui maior peso as métricas
de desempenho passivo (GH, AT e RT, presentes e futuras) e ao CO,, refletindo uma
situagdo em que o(a) usudrio(a) prioriza ventila¢ao natural, conforto sem climatizagao e
sustentabilidade. Esse cenario representa edificagoes destinadas a reduzir a dependéncia
de ar-condicionado, valorizando solucoes biocliméticas e maior resiliéncia térmica ao longo
do tempo.

J& o Cenario 2 concentra maior peso em custo inicial e nas métricas de carga
térmica (CT e CTf), correspondendo a um(a) usudrio(a) que busca minimizar gastos
de construcao e custo de utilizacdo da edificagdo (na forma de energia para o sistema
AVAC), tanto no presente quanto no futuro. As métricas passivas permanecem no modelo,
porém com menor relevancia, alinhando-se a um perfil de decisao mais orientado por

eficiéncia economica do que por desempenho passivo. Nesse caso, os pontos de referéncia
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fixados para CT e CTT (3500 kWh e 5500 kWh, respectivamente) orientam o algoritmo a
privilegiar combinagoes com desempenho energético dentro desses limites, aproximando a

otimizacao de uma visao mais pragmatica e economico-energética.

Tabela 3.5: Pesos usados nos cenarios de otimizacao multiobjetivo

Métrica | Cenario 1 | Cenario 2
CT 0,03 0,20
GH 0,18 0,03
RT 0,09 0,02
AT 0,13 0,03
CTt 0,03 0,15
GHf 0,18 0,03
RTf 0,09 0,02
ATt 0,13 0,03

Custo 0,06 0,40
COq 0,08 0,09

Fonte: Elaborado pelo autor.

A selecao da melhor combinagao construtiva em cada cenario foi realizada me-
diante o calculo da distancia euclidiana ponderada em relacao ao ponto ideal, composta
pelos melhores valores obtidos para cada funcao objetivo na fronteira de Pareto. Para
cada alternativa, avaliou-se o afastamento entre seus valores normalizados e o ponto ideal,
ponderando-se essa diferenca pelos pesos atribuidos a cada métrica no respectivo cenario.
Esse procedimento permite quantificar o quao préxima cada solucao esta do desempe-
nho 6timo tedrico, de modo que a alternativa associada ao menor valor de distancia é
considerada a mais adequada dentro das preferéncias do usudrio. O céalculo adotado é

apresentado a na equacao (3.6).

D=/ wi (fi — fiteet)’ (3.6)
onde

e f; valor normalizado da funcao objetivo ¢ para a solugao avaliada
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e f* melhor valor obtido para a func¢ao objetivo i (ponto ideal)
e w,; peso atribuido a funcao objetivo ¢ no cenario considerado

e . numero total de métricas avaliadas

3.5 Analise dos Resultados

Apds a obtencao das solucoes 6timas, realizou-se uma etapa especifica de anélise destinada
a avaliar a consisténcia e a robustez dos resultados. Para cada combinacao de tipologia
de edificacao, clima e cenario, o algoritmo de otimizagao foi executado 100 vezes de
forma independente, com sementes de inicializacao distintas, evitando que as solugoes
dependessem de um tnico caminho de busca (EIBEN; SMITH, 2003). Ao final de cada
execucgao, selecionou-se a solugao com maior valor de hipervolume, resultando em um
conjunto de 100 solugoes étimas por caso analisado. A partir desse conjunto, foram
construidos histogramas de frequéncia que permitiram identificar quais sistemas de parede,
piso e cobertura, bem como quais combinagoes completas, surgiram com maior recorréncia
entre as melhores solugoes.

Essa etapa é fundamental porque permite transformar um conjunto amplo de
solucoes em informagoes claras sobre padroes de preferéncia do algoritmo. Solugoes que
aparecem repetidamente entre as 50 execugoes tendem a ser mais robustas, pois mantém
desempenho elevado mesmo diante das variagoes estocasticas internas do processo de
otimizagao (MANUEL; BRANKE; PAQUETE, 2021). A Figura 3.5 representa um fluxo-

grama ilustrando a andlise adotada.
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Figura 3.5: Fluxo da etapa de avaliagao por multiplas solugoes.

Fonte: Elaborado pelo autor.
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4 Experimentos e Resultados

4.1 Definicao do melhor tipo de representacao

Como apresentado na Tabela 4.1, a comparacao entre as trés representacoes avaliadas
(discreta (inteira), binaria e Gray Code) evidencia diferengas significativas no desempenho
do algoritmo de otimizacao, considerando os indicadores HV, IGD" e Spacing, calculados
ao longo de 10 execucoes independentes.

Tabela 4.1: Comparagao das trés representagoes segundo HV, IGD*' e Spacing (10
execugoes).

Representacdo | HV (média £ desvio) | IGD" (média + desvio) | Spacing (média £ desvio)
Discreta (inteira) 0.959858 £ 0.000156 0.013501 £ 0.001420 0.101037 £ 0.000201
Bindaria 0.944149 £ 0.000013 0.018073 £ 0.000196 0.114499 +£ 0.000230
Gray Code 0.964505 £ 0.000143 0.014643 £ 0.002470 0.095300 £ 0.000155

Fonte: Elaborado pelo autor.

Entre elas, a representacao Gray Code obteve o melhor desempenho global, apre-
sentando o maior valor médio de HV (0,964505 + 0,000143), o que indica maior apro-
ximagao da fronteira de Pareto ideal e melhor cobertura do espaco de solucoes. Além
disso, seu valor de Spacing (0,095300 £+ 0,000155) foi o menor dentre as representagoes
analisadas, sugerindo uma distribuicao mais uniforme das solugoes ao longo da fronteira,
caracteristica desejavel em algoritmos multiobjetivo (ZITZLER; DEB; THIELE, 2000).

Embora a representagao discreta (inteira) tenha apresentado o menor valor de
IGD* (0,013501 + 0,001420), indicando menor distancia média entre sua fronteira e a
fronteira de referéncia, esse beneficio foi acompanhado de maior irregularidade na dis-
tribuicao das solugoes (Spacing = 0,101037 £ 0,000201), o que reduz a diversidade da
fronteira obtida (YIQUN; XIANRUI, 2018). J4 a representacao binéria apresentou os pi-
ores resultados em todas as métricas avaliadas, com destaque para o menor HV (0,944149
+ 0,000013) e o maior Spacing (0,114499 £+ 0,000230), indicando frentes menos diversas,
mais distantes da ideal e menos estaveis entre execugoes (YIQUN; XIANRUI, 2018).

Esses resultados sao coerentes com o comportamento esperado de cada esquema



4.2 Analise das melhores solugoes 71

de codificacao. A representagao Gray Code, ao garantir que niimeros consecutivos diferem
por apenas um bit, promove transicoes mais suaves no espaco de busca e reduz flutuagoes
bruscas decorrentes da mutagao (ROTHLAUF, 2006). Isso favorece uma exploragao mais
estruturada do espaco discreto e contribuindo para a geracao de frentes mais consisten-
tes e equilibradas. Em contraste, o esquema binario tradicional tende a produzir saltos
abruptos no espaco de busca, o que pode prejudicar tanto a convergéncia quanto a diver-
sidade, especialmente em problemas discretos e com alta correlagao entre variaveis, como
o observado neste estudo (EIBEN; SMITH, 2015).

A atuacao dos esquemas de codificacao foi coerente com o esperado na literatura.
A Gray Code apresentou o melhor desempenho global, com maior HV e menor Spacing, re-
sultado associado a sua maior localidade, que reduz saltos fenotipicos e favorece transigoes
suaves no espago de busca (ROTHLAUF, 2006).

Considerando o desempenho numérico obtido, a estabilidade entre execugoes e
a coeréncia tedrica com o comportamento esperado das representacoes, o Gray Code foi
selecionado como representacao definitiva para os demais experimentos realizados neste

trabalho.

4.2 Analise das melhores solucoes

4.2.1 Analise de valores das melhores combinacoes

Com a representacao definida, foram analisadas as melhores solugoes construtivas para
Curitiba, Sao Paulo e Belém, considerando 100 execugoes do algoritmo em dois cenarios
distintos. A Tabela 4.2 apresenta um resumo desses resultados, comparando o desem-
penho das solugoes otimizadas e relacionando-os ao comportamento global do espaco
amostral completo (todas combinagoes possiveis avaliadas pelo algoritmo), o que permite

avaliar o grau de melhoria obtido em relagao as combinagoes possiveis.

Tabela 4.2: Comparacao estatistica entre solugoes otimizadas e espago amostral

Espaco amostral Otimizacao do Otimizagao do

completo Cenério 1 Cenério 2
Cidade| Métri

Q1 Md Q3 Ql Md Q3 Q1 Md Q3

CT

[KWh) 1681.2 1868.7 1917.3 1460.3 1474.6 1495.6 1358.7 1460.1 1470.5

GH

[°Ch] 14702.3 14995.0 15352.0 13849.0 13907.1 14103.0 13849.4 13849.4 13877.6

AT
[%]

40 40 40 50 50 50 50 50 50

Continua na proxima pagina




4.2 Analise das melhores solugoes 72

Espaco amostral Otimizacao do Otimizagao do
Cidadd Mstei completo Cenério 1 Cenério 2
tdade étr Q1 Md Q3 Q1 Md Q3 Q1 Md Q3
RT
5 5
°chsgr 778 93.7 103.6 45.0 50.5 60.9 34.8 44.1 47.6
TT
[kw{] 1341.34 1513.4 1542.9 1207.8 1211.3 1235.4 1111.3 1208.0 1210.7
h
TH
[Oci] 5259.8 6198.6 6689.6 3488.7 3557.6 3912.5 3272.9 3480.2 3534.1
AT
s 70 70 70 70 80 80 80 80 80
(%]
RT
! 47.0 74.2 89.8 15.7 18.4 25.5 10.8 15.1 17.1
[°Ch SET]
Tusto
RS 81170.7 89838.8 103024.8 70336.9 73685.5 79480.4 69370.6 72828.9 74634.9
TO
2 5248.7 6411.4 10170.2 3440.8 4296.4 7265.5 2948.0 9154.9 9570.0
[kgCO2]
TT
[KWh] 1185.5 1320.3 1358.8 928.0 949.7 1021.7 928.3 950.4 1049.3
GH
(°Chl 7728.4 7990.0 8338.1 7084.6 7117.6 7348.5 7078.0 7105.5 7360.4
AT
%] 60 60 60 60 60 60 60 60 60
Sao Payto RT
Pchsdr ©0 0.1 0.5 0 0 0 0 0 0
TT
[kwf.] 1787.9 1987.5 2007.6 1546.1 1547.8 1673.3 1547.0 1551.8 1695.4
GH
[OC}f] 7369.1 8629.8 9282.9 4558.6 4629.6 5278.6 4585.6 4688.1 5351.5
v
AT
s 70 70 70 70 70 70 70 70 70
[%]
RT
f 46.2 72.9 89.4 2.6 3.0 8.1 2.7 3.8 9.8
[°Ch SET]
Custo
[RS] 77204.6 85955.5 99575.0 63869.1 65544.1 69604.1 63962.1 67417.4 72528.7
TO
2 5248.7 6411.4 10170.2 4871.1 9422.8 10001.6 3046.7 9114.0 9477.8
[kgCOs]
TT
[KWh 2830.9 2918.1 2984.3 2822.5 2917.7 2951.0 2769.8 2817.2 2949.8
TH
[°C Al 7728.4 7990.0 8338.1 7570.2 7937.8 8416.4 7381.3 7558.1 7905.1
AT
%] 60 60 60 60 60 60 60 60 60
Belém RT
: 5 5
Pchsdr 43 61.6 74.7 22.4 34.5 73.8 5.5 13.9 28.9
TT
[kwﬁ] 5224.2 5455.4 5546.7 5127.9 5373.6 5464.3 5004.8 5107.6 5288.8
TH7
[Ocﬁ] 46852.9 47847.1 48131.0 45937.9 46504.6 47961.9 45535.1 45834.0 45904.1
AT
s 0 0 0 0 0 0 0 0 0
[%]
RT
o f 452.4 479.1 487.5 423.6 452.4 485.1 410.3 420.8 425.4
[°Ch SHT)
CTusto
[RS) 88443.0 97318.0 111409.8 81670.1 92146.3 100320.6 69363.1 76757.5 81351.4
TO
2 5248.7 6411.4 10170.2 4655.6 5968.2 8706.0 2719.2 4032.0 5721.2
[kgCO5]

Fonte: Elaborado pelo autor.

No Cenario 1, os pesos atribuidos priorizaram as métricas associadas ao conforto
térmico passivo, com maior influéncia de GH e AT, incluindo suas projecgoes futuras.
Como consequéncia, observa-se que a mediana das solugoes otimizadas aproxima-se dos
valores minimos do espaco amostral para GH e GHf, e dos valores maximos para AT e
ATf, com diferencas percentuais variando, em média, entre 3% e 25%, mas Sao Paulo
tendo garantindo a maior variagdo (entre 13% e 20%). Esse comportamento indica que
o algoritmo favoreceu configuragoes capazes de aumentar o niimero de horas em conforto
térmico e reduzir a intensidade do desconforto nos periodos em que a edificacao nao atende
as condigoes ideais, atendendo ao objetivo central de aprimorar o desempenho térmico
passivo.

Em contraste, os valores de CT e CTf apresentam desvios mais acentuados entre

a mediana dos valores otimizados com os menores valores de todo campo amostral (en-
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tre 12% e 20%), o que evidencia sua menor relevancia relativa na fun¢ao objetivo desse
cenario. Ainda assim, o impacto nao é negligenciavel: a mediana das solugoes otimizadas
diferiu 255,03 kWh para CT e 274,53 kWh para CTf em relacao a mediana do espaco
amostral completo, considerando 1 ano de referéncia. Considerando que a maior tarifa
de energia elétrica é no Pard, com R$ 0,93/kWh (ENERGIA, 2025), e a menor é em
Curitiba, com R$ 0,62/kWh (ENERGIA, 2025), essa diferenca pode representar relativas
implicagoes financeiras ao longo de toda a vida 1til da edificacao. O conjunto desses
resultados confirma o comportamento esperado em funcoes multiobjetivo baseadas em
pesos. Critérios com maior importancia atribuida tendem a apresentar solugoes otimiza-
das mais préximas dos valores desejaveis, enquanto métricas menos priorizadas exibem
maior variacao e afastamento em relacao ao desempenho ideal.

No Cenério 2, observou-se o comportamento oposto ao do Cenario 1. Os pesos
foram propositalmente concentrados em custo da construcao, CT e CTf, de modo a repre-
sentar um cendrio de uso consciente de sistemas de climatizagao (AVAC). Para orientar
o processo de otimizagao, foram definidos pontos de referéncia para consumo energético:
2000 kWh para CT e 3000 kWh para CTf. Os resultados mostram a proximidade das
medianas das solugoes otimizadas aos pontos de referéncia de CT (87%) e CTf (87%).
Quanto ao custo, é verificado desvios entre 22,9% e 47,5% entre a mediana dos valores
otimizados com os menores valores de todo campo amostral, destacando a magnitude do
peso que foi dada a esse critério.

Como os pesos atribuidos as métricas permanecem semelhantes entre o periodo
atual e o futuro dentro de cada cenario, as solucoes otimizadas resultam em respostas
equivalentes para ambos os horizontes temporais. Assim, as andlises apresentadas ja re-
fletem simultaneamente os dois momentos, garantindo que as melhorias observadas sejam

validas tanto para as condigoes presentes quanto para as projetadas.

4.2.2 Analise de recorréncia das melhores combinagoes

A Figura 4.1 apresenta as combinagbes construtivas recorrentes (> 2 ocorréncias) entre
as 100 solugoes finais obtidas no Cendario 1. Observa-se uma menor variabilidade em Sao

Paulo, onde uma tinica combinacao (pa34-pi4-co28) foi selecionada em 15 execugoes, indi-
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cando forte predominancia dessa solugao e sugerindo maior estabilidade da configuracao
ideal nesse clima. Em Curitiba, a dispersdo é maior: duas combinagoes (pa34-pid-col9
e pa34-pid-co28) apresentaram recorréncia moderada (5 aparigdes cada), enquanto o res-
tante das solucoes apresentou distribuicao pulverizada ao longo das execucoes. Ja em
Belém, apenas quatro combinacgoes se repetiram, sendo a pad3-pil0-co20 a mais frequente,
com trés aparicoes. As outras trés ocorreram apenas duas vezes, reforcando o carater al-
tamente distribuido das solucoes.

Esse comportamento evidencia diferencas no grau de convergéncia das solugoes
entre os climas. Em cendrios como Sao Paulo (e parcialmente Curitiba) a maior re-
corréncia sugere que a otimizagao identifica um caminho construtivo mais consistente,
indicando que pequenas variagoes nos materiais tendem a impactar menos significativa-
mente o desempenho térmico. Por outro lado, em Belém, a baixa repetibilidade pode
refletir dois fenomenos de forma separada ou integrada: (i) maior flexibilidade proje-
tual, em que multiplas combinagdes apresentam desempenho semelhante, ou (ii) menor
influéncia isolada da envoltéria no conforto térmico passivo, dada a predominancia de
condicoes externas adversas em clima quente e timido.

Essa hipotese é reforgada pela observacao de que, em Belém (e, em menor escala,
em Curitiba) pequenas mudangas nos componentes construtivos resultam em variagoes
discretas nos indicadores GH e AT (para presente e futuro). Isso reduz a dominancia
de uma solugao unica na otimizagao e sugere que, nesses contextos, estratégias comple-
mentares de projeto passivo, como sombreamento, ventilagao cruzada, orientacao solar e
modulacao de aberturas, podem exercer papel tao ou mais relevante que o ajuste isolado

dos materiais da envoltéria.
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Figura 4.1: Melhores combinagoes no Cendrio 1 com frequéncia maior ou igual a 2 para
cada clima. Tons mais escuros representam maior frequéncia de selecao dos sistemas.

Fonte: Elaborado pelo autor.

A Figura 4.2 apresenta o mesmo mapeamento para o Cenario 2. Nesse caso,
observou-se maior convergeéncia dos resultados para Sao Paulo e Curitiba. Em Curitiba, a
combinagao pa34-pid-co28 foi registrada 20 vezes (o maior valor de recorréncia entre com-
binagoes construtivas de todo o estudo) indicando um forte consenso computacional sobre
sua adequacao quando consideradas as ponderagoes do segundo cenério. Em Sao Paulo,
uma Uunica, e a mesma solucao do Cendrio 1, concentrou a maior parte das ocorréncias
(pa34-pil-co28), desta vez em 14 execugoes. Ja Belém apresentou comportamento seme-
lhante ao observado no Cenario 1, com solugoes variadas. Nesse cenario, houve somente
uma combinagdo (pal-pil0-col6) com frequéncia > 1, sendo igual a 2, demonstrando
novamente baixa convergéncia.

A frequéncia por si sé nao garante que uma combinacao seja competitiva em
termos absolutos. Por isso, as Tabelas 4.3 e 4.4 apresentam estatisticas descritivas do
espaco avaliado, permitindo posicionar as melhores solugoes em relagao ao minimo, a
mediana e a0 maximo observados para custo total e emissoes totais de COs.

Em termos de custo, as melhores combinagoes em Curitiba e Sao Paulo per-
manecem claramente abaixo das medianas de suas respectivas localizagoes, ficando mais
préoximas dos minimos do que do centro da distribuicao, o que caracteriza solucoes econo-
micamente competitivas dentro do conjunto analisado. Em Belém, a melhor solucao do
Cenario 1 aproxima se da mediana, enquanto a do Cenério 2 desloca se para uma faixa
intermediaria entre o minimo e a mediana, reduzindo o custo total em relacao ao Cenério

1. Para as emissoes, observa se que os valores das melhores combinagoes permanecem
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distantes do maximo global, com destaque para Belém no Cenario 2, cuja emissao total
(5654,6 kgCO,) fica abaixo da mediana (6411,4 kgCOy). Ja Curitiba e Sao Paulo apre-
sentam emissoes acima da mediana, porém ainda em patamar moderado frente ao limite
superior observado.

Assim, a Tabela 4.5 consolida as combinacoes escolhidas por localizagao e cenario,
a0 passo que as estatisticas fornecem o referencial necessario para interpretar o quao
préximas essas solucoes estao dos melhores valores observados no conjunto, evidenciando

o equilibrio entre custo total e CO, total em cada contexto climatico.

Combinagoes (parede-piso-cobertura)
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Figura 4.2: Melhores combinagoes no Cendrio 2 com frequéncia maior ou igual a 2 para
cada clima. Tons mais escuros representam maior frequéncia de selecao dos sistemas.

Fonte: Elaborado pelo autor.

Tabela 4.3: Estatisticas do custo total (R$) por localizagdo: minimo, mediana e maximo

Localizacao Minimo (R$) Mediana (R$) Méximo (R$)

BL 62469.79 97318.01 186965.97
CB 54405.05 89838.85 177862.87
SP 50507.83 85955.53 176672.73

Tabela 4.4: Estatisticas das emissoes totais de CO5 (kgCOsz): minimo, mediana e méximo

Minimo (kgCO5) Mediana (kgCOy) Maximo (kgCO,)

2000.0 6411.4 16663.2
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Tabela 4.5: Melhores combinacoes por localizacao e cendrio: custo total e emissoes totais
de COQ

Localizagao Cenério Combinagao Custo total (R$) COs total (kgCO2)
Curitiba 1 pa34pildcol9 66470.29 10472.40
Curitiba 2 pa34pil4co28 66067.96 9477.80
Sao Paulo 1 pa34pil4co28 65876.33 9248.02
Sao Paulo 2 pa34pillco28 63034.24 9477.80
Belém 1 pa33pil0co20 96663.75 6814.50
Belém 2 pa0lpilOcol6 80501.06 5654.60

Embora essa distribuicao heterogénea sugira a auséncia de uma solugao universal-
mente dominante, a segdo seguinte (Secao 4.3) aprofunda e organiza os padroes observa-
dos, destacando os sistemas construtivos que mais se sobressairam ao longo das execugoes.
Com isso, torna-se possivel uma interpretacao mais objetiva, comparativa e integrada dos

resultados.

4.3 Melhores sistemas construtivos

A interpretacao dos resultados deve considerar que o comportamento das solugoes oti-
mizadas estd diretamente associado as prioridades definidas na funcao objetivo. Como
ja visto, a distribuicao dos pesos resulta em diferencas marcantes entre os dois cenarios.
No Cenario 1, as métricas térmicas relacionadas a GH, AT, RT e suas projecoes futuras
representaram 80% da influéncia total, enquanto o custo e o consumo energético (CT +
CTf) tiveram participagdo marginal, ambos com apenas 6%. Em contraste, o Cendrio
2 apresenta um perfil quase inverso. O peso atribuido as métricas térmicas para con-
dicionamento passivo do ambiente interno foi reduzido para 13%, enquanto CT + CTf

alcancaram 35% e o custo tornou-se o critério dominante, com 40% de influéncia.
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Cenario 1
Curitiba

A Figura 4.3 apresenta as frequéncias (> 2) dos sistemas construtivos das melhores com-
binacoes construtivas apontadas pelo algoritmo de otimizacao para o Cenario 1, em Cu-

ritiba. Segundo a ABNT (2024a) trata-se de uma cidade localizada na ZB 1M (”muito

fria com inverno moderado”).
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(a) Recorréncia > 2 dos sistemas construtivos nas solugdes otimizadas para o
Cenario 1 em Curitiba.
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(b) R vs Ct dos sistemas construtivos com recorréncia > 2 nas solugoes otimizadas
para o Cendrio 1 em Curitiba.

Figura 4.3: Materiais recorrentes para Curitiba. Tons mais escuros representam maior
frequéncia de selegao dos sistemas.

Fonte: Elaborado pelo autor.

No Cenario 1, a pa30 foi a solucao mais recorrente, com 59 aparigoes, composta
por bloco de concreto de 14 cm sem revestimento, apresentando baixa resisténcia térmica
(R = 0,15 (m*-K)/W) e baixa capacidade térmica (Ct = 132,39 kJ/(m?K))). A com-
binagao desses valores relativamente baixos de resisténcia e capacidade térmica resultou
em uma envoltoria leve e pouco inercial, permitindo resposta mais rapida as condigoes
internas consideradas e reduzindo o tempo em desconforto por frio segundo o indicador

AT e a intensidade desse frio, avaliado por GH, métricas priorizadas no Cenario 1.
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A segunda parede mais frequente foi a pa34, presente em 24 solugdes finais, com-
posta por bloco ceramico assentado na posicao deitado, com 9 c¢m, resultando em uma
resisténcia térmica mais alta (R = 0,35 (m?.K)/W) e capacidade térmica mais baixa (Ct
= 97,27 kJ/(m?-K)). Em climas frios, como Curitiba, classificada como ZB 1M (muito frio
com inverno moderado) (ABNT, 2005), maior resisténcia térmica reduz perdas de calor
para o ambiente externo e contribui para estabilidade térmica interna (LAMBERTS et
al., 2016). Desta forma, enquanto a pa30 atua acelerando o aquecimento interno, a pa34 o
faz minimizando sua dissipacgao, caracterizando duas estratégias térmicas distintas, porém
equivalentes em desempenho segundo os critérios otimizados.

A recorréncia do piso pi4, contabilizando 36 aparicoes, reforca esse padrao. Esse
sistema, composto por contrapiso sem laje com acabamento em cimento queimado, apre-
senta R = 0,04 (m*K)/W e Ct = 97,5 kJ/(m*-K), favorecendo o acoplamento térmico
com o solo, que tanto em climas frios quanto quentes, tende a apresentar menor variagao
térmica ao longo do tempo e atuar como moderador natural. A baixa massa térmica desse
sistema evita atraso térmico excessivo e favorece estabilizagao mais rapida da temperatura
interna.

A cobertura mais frequente foi co28, composta por telha ceramica com forro de
PVC e auséncia de laje, apresentando R = 0,25 (m*-K) /W e Ct = 40,08 kJ/(m?-K). Assim
como as demais solugoes predominantes, trata-se de um sistema leve, cuja rapida resposta
térmica permitiu aproveitar os ganhos solares diurnos e reduzir o desconforto por frio. A
auséncia de casos recorrentes de superaquecimento nas simulacoes reforca a adequacao
dessa escolha no clima analisado.

A interpretagao conjunta dos resultados revela um comportamento consistente:
a maior parte das solugoes selecionadas apresenta baixos valores de R e Ct, indicando
preferéncia do algoritmo por envoltorias leves e responsivas, capazes de aproveitar ganhos
solares e ajustar a temperatura interna rapidamente. No entanto, a recorréncia, ainda
que menor, de sistemas com propriedades térmicas mais elevadas, como o piso pi8 (Ct =
316,0 kJ/(m?-K)), a cobertura co3 (R = 0,50 (m?-K)/W) e a cobertura col (Ct = 296,60
kJ/(m?K)), indica que o processo de otimizacao também identificou cendrios nos quais

maior isolamento ou maior amortecimento térmico se mostraram vantajosos. Assim, a
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selecao final nao reflete uma tnica abordagem térmica dominante, mas sim um equilibrio
adaptativo entre rapida resposta ao ambiente e maior estabilidade térmica interna, con-
dicionado pelas caracteristicas climaticas, pela interacao entre os demais componentes da

envoltdria e pelos pesos atribuidos aos critérios de anédlise.

Sao Paulo

A Figura 4.4 apresenta as frequéncias superior a 1 dos sistemas construtivos das melhores
combinagoes construtivas em Sao Paulo para o Cendrio 1. Segundo a ABNT (2024a), Sao
Paulo ¢ uma cidade pertencente a ZB 2M (“fria com inverno moderado”).
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(a) Recorréncia > 2 dos sistemas construtivos nas solugdes otimizadas para o
Cenério 1 em Sao Paulo.
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(b) R vs Ct dos sistemas construtivos com recorréncia > 2 nas solugoes otimizadas
para o Cenario 1 em Sao Paulo.

Figura 4.4: Materiais recorrentes para Sao Paulo. Tons mais escuros representam maior
frequéncia de selecao dos sistemas.

Fonte: Elaborado pelo autor.

A parede pa34 e a cobertura co28 também se destacaram em Sao Paulo, com
75 e 35 recorréncias, respectivamente, demonstrando desempenho ainda mais expressivo
do que em Curitiba. Esse resultado reforca a capacidade desse conjunto construtivo

em atender aos critérios priorizados no Cenério 1, pelos mesmos mecanismos previamente
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discutidos: barreira térmica eficiente devido a maior resisténcia (no caso da pa34) e rédpida
resposta térmica devido a baixa capacidade térmica (no caso da co28). Além disso, a baixa
capacidade térmica reduz o risco de superaquecimento, pois limita o armazenamento de
calor ao longo do dia e facilita o resfriamento noturno (LAMBERTS et al., 2016).

O comportamento observado no piso acompanha essa tendéncia. O sistema predo-
minante em Sao Paulo consiste em contrapiso revestido com porcelanato (pil), resultando
em valores de R = 0,04 (m?-K)/W e Ct = 86,00 kJ/(m?-K), muito préximos aos observa-
dos para o piso pi4, solucao mais frequente em Curitiba e segunda mais recorrente em Sao
Paulo, com 37 apari¢oes. Assim como no clima mais frio, trata-se de um componente leve
e sem laje, o que favorece rapida adaptacao térmica interna com a temperatura amena
do solo, sem induzir atraso térmico significativo.

A recorréncia semelhante das solugdes entre Curitiba e Sao Paulo sugere forte
influéncia do regime climético no processo de otimizagao. Embora os dois locais apresen-
tem intensidades distintas de frio, ambos sao classificados como regioes de predominancia
térmica fria segundo a (ABNT, 2024a), o que pode explicar a similaridade das solugoes
predominantes. No entanto, em Sao Paulo a variabilidade observada em Curitiba é menos
evidente: as solugoes se concentram essencialmente em uma unica regiao dos graficos R
versus Ct, indicando menor necessidade de estratégias térmicas distintas para atender aos
critérios otimizados. Essa maior convergéncia pode estar associada a menor severidade
térmica e a amplitude diaria mais moderada, que reduzem os beneficios adicionais de
solucoes mais isolantes ou com maior massa térmica e tornam mais eficiente a adocao de

sistemas com baixa inércia térmica.

Belém

A Figura 4.5 apresenta apenas os sistemas construtivos que se repetiram ao menos duas
vezes entre as melhores combinagoes obtidas para Belém no Cenério 1. Segundo a (ABNT,

2024a), essa cidade estd localizada na ZB 6A (“muito quente e imida”).
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(a) Recorréncia > 2 dos sistemas construtivos nas solugdes otimizadas para o
Cenario 1 em Belém.
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(b) R vs Ct dos sistemas construtivos com recorréncia > 2 nas solugoes otimizadas
para o Cendario 1 em Belém.

Figura 4.5: Materiais recorrentes para Belém. Tons mais escuros representam maior
frequéncia de selegao dos sistemas.

Fonte: Elaborado pelo autor.

A parede pa33 apresentou 21 recorréncias em Belém no Cenario 1. Trata-se de
uma alvenaria simples de bloco ceramico de 11,5 ¢cm, sem reboco, com R = 0,21 (m?.K)/W
e Ct = 55,57 kJ/(m?-K), valores relativamente baixos dentro do conjunto analisado. Esse
comportamento favorece uma resposta térmica mais rapida e contribui para dissipar calor
acumulado sempre que héa possibilidade de resfriamento natural, o que é desejavel em
clima quente e imido, onde as cargas térmicas tendem a ser predominantemente positi-
vas. Nos demais componentes da envoltéria, a auséncia de predominancia de uma tnica
solugao reforca a interpretacao de que diferentes sistemas apresentaram desempenhos
muito préximos, indicando que, em Belém, a envoltéria isoladamente exerce influéncia li-
mitada no conforto térmico passivo devido a forte predominancia das condi¢oes externas.
Essa tendéncia é evidente, por exemplo, ao comparar o pi7 com o pi2l, que tiveram 13 e 10
recorréncias, respectivamente. O pi7 tem R = 0,11 (m*K)/W e Ct = 60,50 kJ/(m?-K),

enquanto o pi2l, tem valores significativamente maiores (R = 0,50 (m*K)/W e Ct =
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291,08 kJ/(m?K)), sugerindo que tanto solugoes leves quanto mais isoladas alcangaram
desempenho semelhante sob as prioridades estabelecidas no Cenario 1.

Em Belém, as solugoes recorrentes distribuem-se por uma faixa ampla de valores
de R e Ct, indicando auséncia de uma estratégia dominante. Esse comportamento é con-
sistente com a baixa repetibilidade observada anteriormente na andlise das combinagoes
construtivas, sugerindo que multiplas combinagoes alcancaram desempenho semelhante e

que a influéncia isolada da envoltéria é limitada no clima quente-timido.
Cenario 2

Curitiba

A Figura 4.6 apresenta apenas os sistemas construtivos recorrentes (> 2 ocorréncias) entre
as combinagcoes selecionadas como melhores pelo algoritmo no Cenario 2, para o caso de

Curitiba.
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(a) Recorréncia > 2 dos sistemas construtivos nas solugdes otimizadas para o
Cenario 2 em Curitiba.
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(b) Custo dos sistemas construtivos com recorréncia > 2 nas solugdes otimizadas

para o Cenario 2 em Curitiba.
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(c) R vs Ct dos sistemas construtivos com recorréncia > 2 nas solugoes otimizadas
para o Cendrio 2 em Curitiba.

Figura 4.6: Materiais recorrentes para Curitiba. Tons mais escuros representam maior
frequéncia de selecao dos sistemas.

Fonte: Elaborado pelo autor.

No Cenario 2, a parede pa34 apresentou 81 recorréncias em Curitiba, constituindo

o maior numero registrado em todo o estudo. Como descrito anteriormente, trata-se de

uma alvenaria formada por bloco ceramico assentado na posicao deitado, com 9 cm de es-

pessura, resultando em uma resisténcia térmica relativamente alta (R = 0,35 (m*-K)/W)

e capacidade térmica relativamente baixa (Ct = 97,27 kJ/(m?-K)). A auséncia de reves-
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timento contribui para um custo final mais reduzido (R$ 568,76/m?), o que pode ter
favorecido sua recorréncia no Cenario 2, considerando o peso dominante atribuido a custo
e demanda energética. Além disso, essa configuracao tende a favorecer o desempenho
energético quando ha uso de sistemas AVAC, pois a combinagao de maior resisténcia
térmica com baixa inércia permite resposta mais rapida ao condicionamento artificial e
reduz a troca térmica com o exterior, tornando a edificacao menos dependente das va-
riacoes climaticas externas.

No caso do piso, os sistemas pid (51 recorréncias) e pil (47 recorréncias), bem
como a cobertura co28 (35 recorréncias), voltaram a se destacar como solugoes otimizadas
para o clima de Curitiba no Cenario 2, pelos mesmos mecanismos ja discutidos. Agora, en-
tretanto, o piso pi4 apresenta maior predominancia em um cendrio ainda mais exigente em
relagdo ao custo, o que pode estar relacionado ao seu baixo valor unitério (R$ 106,70/m?).
Embora pil também apresente um custo relativamente competitivo (R$147,82/m?), o pi4
se sobressai como opgao economicamente mais atrativa, sem comprometer o desempe-
nho energético exigido pelo Cenério 2. A cobertura co28 mantem valores relativamente
inferiores quando comparada as alternativas de cobertura (R$ 205,66/m?).

Além disso, observa-se uma coincidéncia relevante entre os sistemas com menor
custo unitario e os agrupamentos mais frequentes no grafico R versus Ct. As solugoes que
se repetem tendem a ocupar uma faixa concentrada de valores térmicos intermediarios
e custo reduzido, sugerindo que, no Cendrio 2, essa sobreposicao entre desempenho ade-
quado ao uso condicionado e competitividade economica se tornou o principal direcio-
nador das escolhas otimizadas. Essa relacao reforca que o processo de otimiza¢ao nao
apenas identificou alternativas energeticamente compativeis com climatizacao artificial,
mas também priorizou aquelas cuja viabilidade financeira favorece sua adogao pratica no

contexto construtivo analisado.

Sao Paulo

A Figura 4.7 retne os sistemas construtivos com recorréncia igual ou superior a duas
aparicoes entre as melhores solucoes do Cenario 2 em Sao Paulo. Os mesmos padroes foram

observados em Sao Paulo, com destaque para a parede pa34 (71 ocorréncias, custo de R$
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540,43 /m?), os pisos pil (60, R$ 133,32/m?) e pid (35, R$168,14/m?), e a cobertura co28
(28, R$ 219,14/m?), indicando uma tendéncia semelhante & encontrada em Curitiba nas
solucoes otimizadas do Cenario 2. Assim como no clima mais frio, as solucoes recorrentes
se concentram em uma faixa estreita do grafico R versus Ct, indicando que o peso atribuido
ao custo e ao desempenho energético sob climatizacao artificial direcionou a selecao para
sistemas de menor custo e com propriedades térmicas semelhantes, resultando em um

agrupamento consistente e menor diversidade de alternativas.
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(a) Recorréncia > 2 dos sistemas construtivos nas solugdes otimizadas para o
Cenario 2 em Sao Paulo.
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(b) Custo dos sistemas construtivos com recorréncia > 2 nas solugdes otimizadas
para o Cenario 2 em Sao Paulo.
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(c) R vs Ct dos sistemas construtivos com recorréncia > 2 nas solugoes otimizadas
para o Cenario 2 em Sao Paulo.

Figura 4.7: Materiais recorrentes para Sao Paulo. Tons mais escuros representam maior
frequéncia de selecao dos sistemas.

Fonte: Elaborado pelo autor.

Belém

Por fim, a Figura 4.8 mostra os sistemas construtivos recorrentes (> 2 ocorréncias) entre

as solucoes selecionadas como 6timas para Belém no Cenario 2.
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Cenario 2 em Belém.
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(b) Custo dos sistemas construtivos com recorréncia > 2 nas solugdes otimizadas
para o Cenario 2 em Belém.

Ct [k)/(m*K)]

500

400 4

300+

2004

100 A

500

400 -

500

400 4

¥ 300 §0'0 0% ¥ 3001 o)
5 £ ° °o
& = = o5 ®
£ ? 2 200 { £ 2004 o cl)%c?’
- 4
o o0 © v &
e @ 1007 B4 100 A
o0 o o
. ‘ | o ‘ ‘ | 0 §(§J ‘ ‘
0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6 0.0 0.2 0.4 0.6
R [(m?-K)/W1] R [(m?-K)/W1] R [(m?-K)/W]

(c) R vs Ct dos sistemas construtivos com recorréncia > 2 nas solugoes otimizadas
para o Cendrio 2 em Belém.

Figura 4.8: Materiais recorrentes para Belém. Tons mais escuros representam maior
frequéncia de selecao dos sistemas.

Fonte: Elaborado pelo autor.

Observa-se que nenhum sistema construtivo apresentou predominancia expres-

siva em relacao aos demais no Cendrio 2 para Belém. A maior recorréncia ocorreu para a

parede pal, com 13 aparicoes, mas ainda assim sem formar uma tendéncia dominante den-

tro da categoria. Esse comportamento refor¢a a interpretacao ja identificada no Cenario

1 para Belém: diferentes sistemas, mesmo com caracteristicas fisicas distintas, obtive-
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ram desempenho semelhante, sugerindo que a envoltéria, isoladamente, exerce influéncia
limitada no resultado da otimizacao para esse clima quente e imido.

Essa dispersao ¢é ainda mais evidente no Cenario 2, comparado ao 1. Nem mesmo o
critério de custo, que é responsavel pelo maior peso na fungao objetivo, gerou convergéncia
para uma solucao Unica ou um agrupamento mais consistente. A comparacao do custo
entre sistemas ilustra esse comportamento: a parede pal, apesar de ser a mais recorrente,
apresenta um valor relativamente baixo (R$ 538,92/m?), situando-se préximo ao primeiro
quartil da distribuicao de custos; enquanto a parede pal8, com 10 recorréncias, possui
custo superior (R$ 632,42/m?), posicionando-se acima da mediana.

A andlise dos graficos confirma esse padrao: os sistemas recorrentes permanece-
ram distribuidos em diferentes faixas de custo e de propriedades térmicas, sem formagao
de um agrupamento claro. Mesmo com o custo como critério dominante no Cenario 2,
nao houve convergéncia para solucoes mais baratas ou termicamente semelhantes, indi-
cando que, em Belém, diferentes combinacgoes continuam apresentando comportamento

equivalente no processo de otimizacao.
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5 Conclusao

Este trabalho investigou a aplicacao de técnicas de otimizacao multiobjetivo para apoiar
a selecao de materiais de construcao de forma integrada ao desempenho térmico, custo
e emissoes operacionais. A abordagem proposta combinou simulagoes termoenergéticas
realizadas no EnergyPlus, metamodelos baseados em XGBoost para acelerar a avaliagao
de solugdes e o algoritmo evolutivo R-NSGA-III para conduzir o processo de busca dos
melhores conjuntos em cendrios atuais e futuros. A andlise contemplou trés cidades com
climas diferentes (Curitiba, Sdo Paulo e Belém), refor¢ando a variedade de demandas
térmicas presentes no territorio brasileiro.

Os resultados mostraram que o uso de metamodelos exigiu um custo computacio-
nal significativamente baixo da otimizacao, ao invés de varios dias caso todos os conjuntos
fossem simulados separadamente (8 min para cada conjunto em um computador pessoal
convencional). Essa redugao possibilitou a andlise eficiente de mais de 199123 combinagoes
construtivas ao longo das execugoes realizadas.

Na comparagao entre as representagoes avaliadas, o Gray Code apresentou o me-
lhor desempenho global, obtendo um valor médio de HV = 0,964505 e Spacing = 0,095300,
superando as representacoes discreta e bindria.

A andlise das solugoes otimizadas revelou comportamentos distintos entre os
cenarios. No Cenario 1, no qual o foco é o conforto térmico obtido por estratégias passi-
vas, os resultados indicam uma melhora consistente no desempenho térmico das solugoes
otimizadas quando comparadas ao conjunto total de alternativas avaliadas. De modo ge-
ral, as solugoes selecionadas apresentaram uma redugao nos valores de Graus-Hora (GH)
e um aumento na autonomia térmica (AT), com variagoes tipicas entre 6% e 10%, a de-
pender da cidade analisada. Isso significa que, apds a otimizagao, as edificacoes tendem
a apresentar menos horas de desconforto térmico e uma maior propor¢ao do tempo em
condigoes aceitaveis de conforto. No caso de Sao Paulo, esse efeito foi mais pronunciado,
com uma reducao de aproximadamente 7% em GH e um aumento de cerca de 17% em

AT, evidenciando o potencial da abordagem para melhorar o conforto térmico sem o uso
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de estratégias ativas. Ainda que CT e CTf tivessem pesos menores, as medianas ainda
apresentaram diferenca em torno de 180 kWh, o que pode representar variacao de R$ 112
a R$ 167 anuais no presente dependendo da tarifa energética local.

No Cendrio 2, com maior peso para custo, carga térmica (CT) e carga térmica
no clima futuro (CTf), houve forte convergéncia para solugdes especificas. As medianas
otimizadas aproximaram-se dos pontos de referéncia definidos, atingindo 87% de aderéncia
para CT e 87% para CTf. Esse comportamento foi mais evidente em Curitiba e Sao Paulo,
onde algumas combinacoes apareceram entre 12 e 20 vezes dentro das 100 execucgoes. Ja
em Belém, a maior dispersao permaneceu: a combinacao mais frequente ocorreu apenas
2 vezes, reforcando a menor sensibilidade da envoltdria construtiva nesse clima quente-
umido. Observa-se ainda que, em todos os casos, as solugoes recorrentes concentram-
se predominantemente em faixas de custo mais baixo para paredes, pisos e coberturas,
evidenciando que a otimizacao, ao priorizar custo e carga térmica, favorece materiais
economicamente mais acessiveis.

No total, a otimizacao permitiu identificar solucoes capazes de reduzir custos ope-
racionais e melhorar o desempenho térmico de forma integrada. Comparando as melhores
solucoes de cada cendrio com o espaco amostral, verificaram-se ganhos globais entre 8%
e 22% nos indicadores priorizados, demonstrando o potencial da abordagem como ferra-
menta de apoio ao projeto.

Como possibilidades de aprimoramento e continuidade deste estudo, destaca-se
que as analises foram conduzidas considerando uma tnica tipologia de edificagao residen-
cial, o que restringe a abrangéncia dos resultados a esse modelo especifico. A ampliacao
da metodologia para diferentes tipologias arquitetonicas, com variagoes geométricas e fun-
cionais, permitiria avaliar a robustez da abordagem frente a configuracoes construtivas
distintas. Além disso, o espago de solugoes foi limitado a um conjunto finito e previamente
definido de sistemas construtivos para paredes, pisos e coberturas. Investigagoes futuras
podem expandir esse espago de busca, incorporando novas alternativas construtivas ou
variagoes mais amplas de propriedades termofisicas, de modo a explorar um conjunto
mais diverso de solucoes potenciais. Adicionalmente, uma extensao relevante consiste em

incorporar o custo operacional ao modelo de avaliagao, considerando o consumo energético
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anual e sua conversao em custos ao longo do ciclo de vida. Nesse contexto, também se
mostra promissora a inclusao de cendarios de geracao distribuida, como sistemas fotovoltai-
cos, permitindo estimar o impacto de energias renovaveis na reducao do custo operacional
e das emissoes de COq associadas a operacao da edificagao.

Em conclusao, os achados indicam que nao existe uma solucao universal, mas
sim alternativas sensiveis ao clima, e aos pesos atribuidos. Portanto, o desenvolvimento
desta ferramenta evidenciou o potencial da integragao entre simulacao termoenergética,
aprendizado de maquina e otimizacao multiobjetivo como um caminho robusto, escalavel e
aplicavel para apoiar decisoes construtivas mais racionais e alinhadas as demandas atuais

e futuras do setor.
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Tabela A.1: Materiais e propriedades térmicas equivalentes dos sistemas de paredes

U Ct
Nimero| Materiais e (m) A p c
[W/(m?K)]| [J/(m?K)]
do Sis-
(W/m.K))(kg/m?) | (J/kg.K)| equivalente | equivalente
tema
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
1 Bloco Ceramico 0.0900 | 0.4846 | 860.0833 | 689.4000 4.7213 111.8647
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
2 Bloco Ceramico 0.0900 | 0.4846 | 860.0833 | 689.4000 4.5351 131.3647
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
3 Bloco Ceramico 0.0900 | 0.4846 | 860.0833 | 689.4000 4.3630 150.8647
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
4 Bloco Ceramico 0.0900 | 0.4846 | 860.0833 | 689.4000 2.2951 131.3647
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
5 Bloco Ceramico 0.1150 | 0.5422 | 806.5978 | 599.1000 4.1984 114.0718
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
6 Bloco Ceramico 0.1150 | 0.5422 | 806.5978 | 599.1000 4.0505 133.5718
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
7 Bloco Ceréamico 0.1150 | 0.5422 | 806.5978 | 599.1000 3.9127 153.0718
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U Ct
Numero| Materiais e (m) A p c
[J/(m*K)] | [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema

Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000

8 Bloco Ceramico 0.1150 | 0.5422 | 806.5978 | 599.1000 2.1640 133.5718
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000

9 Bloco ceramico 0.1900 | 0.5420 | 968.4167 | 528.6220 2.6549 155.7660
9cm deitado
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000

10 Bloco ceramico 0.1900 | 0.5420 | 968.4167 | 528.6220 2.5950 175.2660
9cm deitado
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000

11 Bloco ceramico 0.1900 | 0.5420 | 968.4167 | 528.6220 2.5377 194.7660
9cm deitado
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000

12 Bloco ceramico 0.1900 | 0.5420 | 968.4167 | 528.6220 1.6651 175.2660
9cm deitado
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000

13 Bloco ceramico 0.1900 | 0.5565 | 870.1685 | 591.6180 2.7212 156.3134
11.5cm deitado
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000

14 Bloco ceramico 0.1900 | 0.5565 | 870.1685 | 591.6180 2.6583 175.8134
11.5cm deitado
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000

15 2.5982 195.3134
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U Ct
Numero| Materiais e (m) A p c
[J/(m*K)] | [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema

Bloco ceramico 0.1900 | 0.5565 | 870.1685 | 591.6180
11.5cm deitado
Reboco 0.0250 | 1.1500 | 1950.0000 | 1000.0000
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000

16 Bloco ceramico 0.1900 | 0.5565 | 870.1685 | 591.6180 1.6909 175.8134
11.5cm deitado
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
Reboco 0.0150 | 1.1500 | 1950.0000 | 1000.0000

17 Tijolo macico 0.1000 | 0.9517 |1592.8570 | 921.9790 7.6245 205.3581
Reboco 0.0150 | 1.1500 | 1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000

18 Tijolo macigo 0.1000 | 0.9517 |1592.8570 | 921.9790 7.1504 224.8581
Reboco 0.0200 | 1.1500 | 1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000

19 Tijolo macico 0.1000 | 0.9517 |1592.8570 | 921.9790 6.7318 244.3581
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000

20 Tijolo macigo 0.1000 | 0.9517 |1592.8570 | 921.9790 2.8163 224.8581
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
Reboco 0.0150 | 1.1500 | 1950.0000 | 1000.0000

21 Bloco de Concreto | 0.1400 | 0.9050 |1166.0803 | 810.9400 5.5314 190.8870
Reboco 0.0150 | 1.1500 | 1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000

22 Bloco de Concreto |0.1400 | 0.9050 |1166.0803 | 810.9400 5.2775 210.3870
Reboco 0.0200 | 1.1500 | 1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000

23 Bloco de Concreto | 0.1400 | 0.9050 |1166.0803 | 810.9400 5.0460 229.8870
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
Reboco isolante 0.0250 | 1.1500 |2023.4000 | 2000.0000

24 5.0460 334.7270
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U Ct
Numero| Materiais e (m) A p c
[J/(m*K)] | [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Bloco de Concreto | 0.1400 | 0.9050 |1166.0803 | 810.9400
Reboco isolante 0.0250 | 1.1500 |2023.4000 | 2000.0000
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
25 Bloco de Concreto |0.0900 | 0.7131 |1506.4027 | 928.7600 6.5665 184.4178
Reboco 0.0150 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
26 Bloco de Concreto | 0.0900 | 0.7131 |1506.4027 | 928.7600 6.2118 203.9178
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
27 Bloco de Concreto | 0.0900 | 0.7131 | 1506.4027 | 928.7600 5.8935 223.4178
Reboco 0.0250 | 1.1500 |1950.0000 | 1000.0000
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
28 Bloco de Concreto | 0.0900 | 0.7131 |1506.4027 | 928.7600 2.6582 203.9178
Reboco isolante 0.0250 | 0.2000 | 1560.0000 | 1000.0000
29 Tijolo macigo 0.1000 | 0.9517 |1592.8570 | 921.9790 9.5175 146.8581
30 Bloco de Concreto |0.1400 | 0.9050 |1166.0803 | 810.9400 6.4641 132.3870
31 Bloco de Concreto | 0.0900 | 0.7131 | 1506.4027 | 928.7600 7.9239 125.9178
32 Bloco Ceramico 0.0900 | 0.4846 | 860.0833 | 689.4000 5.3844 53.3647
33 Bloco Ceramico 0.1150 | 0.5422 | 806.5978 | 599.1000 4.7148 55.5718
34 Bloco ceramico 0.1900 | 0.5420 | 968.4167 | 528.6220 2.8524 97.2660
9cm deitado
35 Bloco ceramico 0.1900 | 0.5565 | 870.1685 | 591.6180 2.9291 97.8134
11.5cm deitado
A.2 Pisos
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Tabela A.2: Materiais e propriedades térmicas equivalentes dos sistemas de pisos
U Ct
Nimero| Materiais e (m) A p c ) )
[W/(m2K)]| [3/(mK)]
do Sis-
(W/m.K))(kg/m3) | (J/kg.K)| equivalente | equivalente
tema
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
1 Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000 25.7944 86.0000
Porcelanato 0.0100 | 1.2000 | 2000.0000 | 850.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
2 10.5205 82.6200
Taco de madeira 0.0200 | 0.2900 | 900.0000 |1340.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
3 27.7108 63.4920
Vinil 0.0040 | 0.4000 |1300.0000 | 960.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
4 23.0000 97.5000
Cimento queimado | 0.0200 | 1.1500 |1950.0000 | 1000.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
5 14.0673 77.6475
Madeira laminada | 0.0090 | 0.2000 | 925.0000 |2300.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
6 Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000 26.9531 112.6800
Granito 0.0200 | 3.0000 |2600.0000 | 840.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
7 9.1391 60.5000
Carpete 0.0050 | 0.0600 | 160.0000 |2500.0000
Laje 0.1000 | 1.7500 | 2300.0000 | 1000.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
8 10.4263 316.0000
Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000
Porcelanato 0.0100 | 1.2000 |2000.0000 | 850.0000
Laje 0.1000 | 1.7500 | 2300.0000 | 1000.0000
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
9 6.3880 323.1200
Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000
Taco de madeira 0.0200 | 0.2900 | 900.0000 | 1340.0000
Laje 0.1000 | 1.7500 | 2300.0000 | 1000.0000
10 Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000 10.7262 293.4920
Vinil 0.0040 | 0.4000 | 1300.0000 | 960.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
11 9.9383 327.5000
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U Ct
Numero| Materiais e (m) A p c ) )
W/ (m2K)]| [3/(mK)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema

Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000
Cimento queimado | 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000

12 Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000 7.7985 307.6475
Madeira laminada | 0.0090 | 0.2000 | 925.0000 |2300.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000

13 10.6107 342.6800
Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000
Granito 0.0200 | 3.0000 |2600.0000 | 840.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000

14 Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000 6.0037 290.5000
Carpete 0.0050 | 0.0600 | 160.0000 | 2500.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Manta 1a de vidro | 0.0150 | 0.0450 | 55.0000 | 700.0000

15 Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000 2.3297 316.5775
Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000
Porcelanato 0.0100 | 1.2000 |2000.0000 | 850.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Manta ter- 0.0150 | 0.0450 | 55.0000 | 700.0000

16 2.0596 313.1975
moacustica
Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000
Taco de madeira 0.0200 | 0.2900 | 900.0000 | 1340.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Manta ter- 0.0150 | 0.0450 | 55.0000 | 700.0000

17 2.3443 294.0695
moacustica
Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000
Vinil 0.0040 | 0.4000 | 1300.0000 | 960.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000

18 2.3044 328.0775



A.3 Cobertura 99
U Ct
Numero| Materiais e (m) A p c ) )
W/ (m2K)]| [3/(mK)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema

Manta ter- 0.0150 | 0.0450 | 55.0000 | 700.0000
moacustica
Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000
Cimento queimado | 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Manta ter- 0.0150 | 0.0450 55.0000 | 700.0000

19 2.1666 308.2250
moacustica
Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000
Madeira laminada | 0.0090 | 0.2000 | 925.0000 |2300.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Manta ter- 0.0150 | 0.0450 55.0000 | 700.0000

20 moacustica 2.3388 343.2575
Contrapiso 0.0300 | 1.1500 | 1950.0000 | 1000.0000
Argamassa Colante | 0.0050 | 1.1500 |2100.0000 | 1000.0000
Granito 0.0200 | 3.0000 |2600.0000 | 840.0000
Laje 0.1000 | 1.7500 |2300.0000 | 1000.0000
Manta ter- 0.0150 | 0.0450 | 55.0000 | 700.0000

21 2.0004 291.0775
moacustica
Contrapiso 0.0300 | 1.1500 |1950.0000 | 1000.0000
Carpete 0.0050 | 0.0600 | 160.0000 |2500.0000

A.3 Cobertura

Tabela A.3: Materiais e propriedades térmicas equivalentes dos sistemas de cobertura

U Ct
Nimero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K))(kg/m?) | (J/kg.K)| equivalente | equivalente
tema
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
1 3.6462 296.6000



A.3 Cobertura 100
U Ct
Numero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
Caixa de ar 0.1500 Rt = - -
0,1775
(m%-K)/W
Telha de ceramica | 0.0200 | 0.9000 | 1500.0000 | 920.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
2 2.9184 247.4645
ceramica
Caixa de ar 0.2000 Rt = - -
0,1775
(m%-K)/W
Telha de ceramica | 0.0200 | 0.9000 | 1500.0000 | 920.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
3 2.0168 204.2113
EPS
Caixa de ar 0.2000| Rt = - -
0,1775
(m?2-K)/W
Telha de ceramica | 0.0200 | 0.9000 | 1500.0000 | 920.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
4 3.7956 315.0000
Caixa de ar 0.2000 Rt = - -
0,1775
(m%-K)/W
Telha de concreto 0.0200 | 1.7500 | 2300.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.9559 |1629.7620| 924.8000
5 3.0134 265.8645
ceramica




A.3 Cobertura 101
U Ct
Numero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Caixa de ar 0.2000 Rt = - -
0,1775
(m2-K)/W
Telha de concreto | 0.0200 | 1.7500 |2300.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
6 2.0617 222.6113
EPS
Caixa de ar 0.2000 Rt = - -
0,1775
(m2-K)/W
Telha de concreto 0.0200 | 1.7500 |2300.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
7 3.8707 278.0720
Caixa de ar 0.2000 Rt = - -
0,1775
(m%-K)/W
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
8 3.0605 228.9365
ceramica
Caixa de ar 0.2000 Rt = - -
0,1775
(m2-K)/ W
Telha de fibroci- 0.0060 | 0.9500 |1800.0000 | 840.0000
mento
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
9 2.0837 185.6833
EPS




A.3 Cobertura 102
U Ct
Numero| Materiais e (m) A p c
[W/(m?K)]| [1/(m?K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Caixa de ar 0.2000 | Rt = - -
0,1775
(m2-K)/W
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
10 Caixa de ar 0.2000 | Rt = - - 3.0840 296.6202
0,1775
(m2-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de ceramica | 0.0200 | 0.9000 |1500.0000 | 920.0000
Reboco 0.0200 | 1.1500 | 1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
11 ceramica 2.5468 247.4846
Caixa de ar 0.2000 | Rt = - -
0,1775
(m2-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de ceramica | 0.0200 | 0.9000 |1500.0000 | 920.0000
Reboco 0.0200 | 1.1500 | 1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
12 |EPS 1.8321 204.2315
Caixa de ar 0.2000 | Rt = - -
0,1775
(m? K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica




A.3 Cobertura 103
U Ct
Numero| Materiais e (m) A p c
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Telha de ceramica | 0.0200 | 0.9000 |1500.0000 | 920.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
13 Caixa de ar 0.2000 | Rt = - - 3.1902 315.0202
0,1775
(m%-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de concreto | 0.0200 | 1.7500 | 2300.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
14 ceramica 2.6188 265.8846
Caixa de ar 0.2000 | Rt = - -
0,1775
(m? K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de concreto | 0.0200 | 1.7500 |2300.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
15 |EPS 1.8690 222.6315
Caixa de ar 0.2000 | Rt = - -
0,1775
(m-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de concreto | 0.0200 | 1.7500 |2300.0000 | 1000.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
16 3.2431 278.0922



A.3 Cobertura 104
U Ct
Numero| Materiais e (m) A p c
[W/(m?K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Caixa de ar 0.2000 | Rt = - -
0,1775
(m-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Reboco 0.0200 | 1.1500 | 1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
17 ceramica 2.6543 228.9566
Caixa de ar 0.2000 | Rt = - -
0,1775
(m?K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Reboco 0.0200 | 1.1500 | 1950.0000 | 1000.0000
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
18 | EPS 1.8871 185.7035
Caixa de ar 0.2000 | Rt = - -
0,1775
(m? K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Painel de gesso 0.0125| 0.3500 | 875.0000 | 840.0000
19 Caixa de ar 0.2000 | Rt = - - 4.2474 36.7875
0,1775
(m%-K)/W




A.3 Cobertura 105

U Ct
Numero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Telha de ceramica | 0.0200 | 0.9000 |1500.0000| 920.0000
Painel de gesso 0.0125| 0.3500 | 875.0000 | 840.0000
20 Caixa de ar 0.2000| Rt = - - 4.4515 55.1875
0,1775
(m.K)/W
Telha de concreto 0.0200 | 1.7500 |2300.0000 | 1000.0000
Painel de gesso 0.0125| 0.3500 | 875.0000 | 840.0000
21 Caixa de ar 0.2000 Rt = - - 4.5552 18.2595
0,1775
(m2-K)/W
Telha de fibroci- 0.0060 | 0.9500 |1800.0000 | 840.0000
mento
Painel de gesso 0.0125| 0.3500 | 875.0000 | 840.0000
Caixa de ar 0.2000 Rt = - -
22 3.5034 36.8077
0,1775
(m2-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de ceramica | 0.0200 | 0.9000 | 1500.0000 | 920.0000
Painel de gesso 0.0125| 0.3500 | 875.0000 | 840.0000
Caixa de ar 0.2000 Rt = - -
23 3.6411 55.2077
0,1775
(m2-K) /W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de concreto 0.0200 | 1.7500 |2300.0000 | 1000.0000
Painel de gesso 0.0125| 0.3500 | 875.0000 | 840.0000
Caixa de ar 0.2000 Rt = - -
24 3.7102 18.2797
0,1775
(m-K)/W




A.3 Cobertura 106
U Ct
Numero| Materiais e (m) A p c
[W/(m?K)]| [1/(m?K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Forro de PVC 0.0100 | 0.2000 |1300.0000 | 960.0000
Caixa de ar 0.2000 | Rt = - -
25 3.3592 247.0790
0,1775
(m2-K)/W
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Forro de PVC 0.0100 | 0.2000 | 1300.0000 | 960.0000
Caixa de ar 0.2000 | Rt = - -
26 2.7316 197.9435
0,1775
(m-K)/W
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
ceramica
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Forro de PVC 0.0100 | 0.2000 | 1300.0000 | 960.0000
Caixa de ar 0.2000 | Rt = - -
27 1.9258 154.6903
0,1775
(m2K) /W
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
EPS
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Forro de PVC 0.0100 | 0.2000 |1300.0000 | 960.0000
28 Caixa de ar 0.2000| Rt = - - 4.0044 40.0800
0,1775
(m%-K)/W
Telha de ceramica | 0.0200 | 0.9000 |1500.0000 | 920.0000
Forro de PVC 0.0100 | 0.2000 | 1300.0000 | 960.0000
29 4.1854 58.4800



A.3 Cobertura 107
U Ct
Numero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Caixa de ar 0.2000 Rt = - -
0,1775
(m2-K)/W
Telha de concreto | 0.0200 | 1.7500 |2300.0000 | 1000.0000
Forro de PVC 0.0100 | 0.2000 |1300.0000 | 960.0000
30 Caixa de ar 0.2000 Rt = - - 4.2769 21.5520
0,1775
(m%-K)/W
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Forro de PVC 0.0100 | 0.2000 |1300.0000 | 960.0000
Caixa de ar 0.2000 Rt = - -
31 3.3364 40.1002
0,1775
(m%-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de ceramica | 0.0200| 0.9000 | 1500.0000 | 920.0000
Forro de PVC 0.0100 | 0.2000 |1300.0000 | 960.0000
Caixa de ar 0.2000 Rt = - -
32 3.4611 58.5002
0,1775
(m%-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de concreto 0.0200 | 1.7500 |2300.0000 | 1000.0000
Forro de PVC 0.0100 | 0.2000 |1300.0000 | 960.0000
Caixa de ar 0.2000 Rt = - -
33 3.5234 21.5722
0,1775
(m2-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica




A.3 Cobertura 108
U Ct
Numero| Materiais e (m) A p c ) )
[W/(m?K)]| [1/(m?K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Telha de fibroci- 0.0060 | 0.9500 |1800.0000 | 840.0000
mento
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
Caixa de ar 0.2000 Rt = - -
34 3.5585 237.9490
0,1775
(m2K) /W
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
Caixa de ar 0.2000 Rt = - -
35 2.8619 188.8135
0,1775
(m2-K)/W
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
ceramica
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
Caixa de ar 0.2000 Rt = - -
36 1.9897 145.5603
0,1775
(m2-K)/W
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
EPS
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
37 Caixa de ar 0.2000 Rt = - - 4.2908 30.9500
0,1775
(m?2-K)/W
Telha de ceramica | 0.0200 | 0.9000 |1500.0000| 920.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
38 4.4992 49.3500




A.3 Cobertura 109
U Ct
Numero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Caixa de ar 0.2000 Rt = - -
0,1775
(m2-K)/W
Telha de concreto | 0.0200 | 1.7500 |2300.0000 | 1000.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
39 Caixa de ar 0.2000| Rt = - - 4.6051 12.4220
0,1775
(m%-K)/W
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
Caixa de ar 0.2000 Rt = - -
40 3.5329 30.9702
0,1775
(m%-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de ceramica | 0.0200 | 0.9000 |1500.0000| 920.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
Caixa de ar 0.2000 Rt = - -
41 3.6729 49.3702
0,1775
(m%-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica
Telha de concreto 0.0200 | 1.7500 |2300.0000 | 1000.0000
Forro de madeira 0.0050 | 0.1500 | 500.0000 |1340.0000
Caixa de ar 0.2000 Rt = - -
42 3.7432 12.4422
0,1775
(m2-K)/W
Manta ter- 0.0020 | 0.0400 12.0000 | 840.0000
moacustica




A.3 Cobertura 110
U Ct
Numero| Materiais e (m) A p c
[W/(m*K)]| [J/(m?*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Telha de fibroci- 0.0060 | 0.9500 | 1800.0000 | 840.0000
mento
Painel de gesso 0.0125 | 0.3500 | 875.0000 | 840.0000
Caixa de ar 0.2000 | Rt = - -
43 3.5286 243.7865
0,1775
(m2K) /W
Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Painel de gesso 0.0125 | 0.3500 | 875.0000 | 840.0000
Caixa de ar 0.2000| Rt = - -
44 2.8426 194.6510
0,1775
(m-K)/W
Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000
ceramica
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Painel de gesso 0.0125 | 0.3500 | 875.0000 | 840.0000
Caixa de ar 0.2000 | Rt = - -
45 1.9803 151.3978
0,1775
(m?K)/W
Laje trelicada de 0.1200 | 0.4305 |1289.8000 | 889.1000
EPS
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
46 Laje de concreto 0.1000 | 1.7500 |2300.0000 | 1000.0000 11.4184 273.5990
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
47 Laje trelicada de 0.1200 | 0.9559 |1629.7620 | 924.8000 6.4115 224.4635
ceramica
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
Reboco 0.0200 | 1.1500 |1950.0000 | 1000.0000
48 3.2346 181.2103




A3 Cobertura 111
U Ct
Numero| Materiais e (m) A p c ) )
[W/(m*K)]| [J/(m*K)]
do Sis-
(W/m.K)(kg/m?3) | (J/kg.K)| equivalente | equivalente
tema
Laje treligada de 0.1200 | 0.4305 |1289.8000 | 889.1000
EPS
Impermeabilizante | 0.0030 | 0.2300 | 1050.0000 | 1460.0000
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B Tabelas de calibracao de hiperparametros

B.1 Random search na representacao discreta

Tabela B.1: Configuragoes gerais utilizadas no random search para a representagao dis-

creta.

Configuracao

Descrigao

Numero de tentativas (trials)

20 execucoes

Operador de amostragem

IntegerRandomSampling

Operador de cruzamento

SBX

Operador de mutagao

PM (Polynomial Mutation)

Eliminacao de duplicatas

Ativada (eliminate duplicates=True)

Critério de avaliacao

Hipervolume (HV)

Indicador de HV

ref_point = [1.1] * 10

Tabela B.2: Faixas de hiperparametros
creta).

obtidas pelo random search (representacao dis-

Hiperparametro

Faixa (min—maéx)

pop_per_ref_point

1-2

pm_prob

0.01035821 — 0.0171512

pm_eta

14.34564 — 18.7204

sbx_eta

11.454559 — 22.00091

sbx_prob

0.905015 — 0.94675

n_gen

97 - 99




B.2 Random search na representacao binéria 113

Tabela B.3: Melhor conjunto de hiperparametros obtido pelo Optuna (representacao dis-
creta).

Hiperparametro | Valor 6timo
pop-per_ref_point 1
pm_prob 0.0143118
pm_eta 17.6370
sbx_eta 21.8359
sbx_prob 0.923585
n_gen 99
Hipervolume (HV)|  0.959858

B.2 Random search na representacao binaria

Tabela B.4: Configuragoes gerais utilizadas no random search para a representacao
binaria.

Configuragao Descricao
Numero de tentativas (trials) 20 execugoes
Operador de amostragem BinaryRandomSampling

Operadores de cruzamento avaliados |HUX, single point, two point, uniform

Operador de mutagao BitflipMutation
Eliminagao de duplicatas Ativada (eliminate _duplicates=True)
Critério de avaliacao Hipervolume (HV)

Indicador de HV ref point = [1.1] * 10
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Tabela B.5:
bindria).

Hiperparametro

Faixa (min—max)

pop_per_ref_point

1-4

mut_prob 0.0111832 - 0.01633134
sbx_prob 0.912424256 — 0.954234
n_gen 80 — 85
crossover two_point

Faixas de hiperparametros obtidas pelo random search (representagao

Tabela B.6: Melhor conjunto de hiperparametros obtido pelo Optuna (representacao

bindria).

Hiperparametro | Valor 6timo

pop-per_ref_point 1
mut_prob 0.0143118
sbx_prob 0.9334565321
crossover two_point
n_gen 81

Hipervolume (HV)|  0.944688
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B.3 Random search na representacao Gray Code

Tabela B.7: Configuracoes gerais utilizadas no random search para a representacao Gray
Code.

Configuracgao Descrigao
Numero de tentativas (trials) 20 execugoes
Operador de amostragem BinaryRandomSampling

Operadores de cruzamento avaliados |HUX, single point, two point, uniform

Operador de mutagao BitflipMutation

Eliminacao de duplicatas Ativada (eliminate duplicates=True)
Critério de avaliagao Hipervolume (HV)

Indicador de HV ref_point = [1.1] * 10

Tabela B.8: Faixas de hiperparametros obtidas pelo random search (representagdo Gray
Code).

Hiperparametro| Faixa (min—maéx)

pop-per_ref_point 1-4
mut_prob 0.01167 — 0.01519844
sbx_prob 0.9225617 — 0.95328967
n_gen 81 - 83

crossover two_point
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Tabela B.9: Melhor conjunto de hiperparametros obtido pelo Optuna (representagao Gray
Code).

Hiperparametro | Valor 6timo
pop-per_ref_point 1
mut_prob 0.0143
sbx_prob 0.9376651123
Crossover two_point
n_gen 81
Hipervolume (HV) 0.9560
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