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Resumo

Este trabalho aborda o problema de agendamento em maquina tinica com tempos de confi-
guracao dependentes de sequéncia e atrasos de precedéncia, cujo objetivo é a minimizagao
do makespan. Uma abordagem baseada no Algoritmo Genético de Chave Aleatéria Ten-
dencioso (Biased Random Key Genetic Algorithm — BRKGA) integrado a decodificadores
especificamente desenvolvidos para o problema é investigada. Sao considerados dois deco-
dificadores: um método simples de insercao ao final da sequéncia e um decodificador mais
elaborado baseado em uma adaptacao da heuristica construtiva NEH, controlada por um
parametro que define o nimero de posicoes avaliadas durante a insercao. Experimentos
computacionais realizados em instancias de diferentes portes demonstram que a aborda-
gem proposta é competitiva com o algoritmo estado da arte da literatura, apresentando
desempenho superior em instancias médias e grandes. Os resultados evidenciam o papel
central do decodificador na eficiéncia do BRKGA e indicam que a combinacao entre busca
populacional e heuristicas construtivas adaptadas constitui uma estratégia eficaz para o

problema considerado.

Palavras-chave: SMSP, SDST, DP, BRKGA, NEH, Agendamento, Otimizacao, Heuristicas,

Metaheuristicas, Algoritmos Genéticos, Algoritmos Construtivos.



Abstract

This work addresses the single-machine scheduling problem with sequence-dependent se-
tup times and precedence delays, aiming to minimize the makespan. An approach based
on the Biased Random Key Genetic Algorithm (BRKGA), integrated with decoders spe-
cifically developed for the problem, is investigated. T'wo decoders are considered: a simple
method that inserts jobs at the end of the sequence, and a more elaborate decoder based
on an adaptation of the constructive NEH heuristic, controlled by a parameter that defines
the number of positions evaluated during insertion. Computational experiments conduc-
ted on instances of different sizes demonstrate that the proposed approach is competitive
with the state-of-the-art algorithm in the literature, showing superior performance on
medium- and large-sized instances. The results highlight the central role of the decoder
in the efficiency of the BRKGA and indicate that the combination of population-based se-
arch and adapted constructive heuristics constitutes an effective strategy for the problem

considered.

Keywords: SMSP, SDST, DP, BRKGA, NEH, Scheduling, Optimization, Heuristics,

Metaheuristics, Genetic Algorithms, Constructive Algorithms.
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1 Introducao

Problemas de agendamento desempenham um papel central em diversos contextos in-
dustriais e logisticos, estando diretamente associados a utilizagao eficiente de recursos, a
reducao de custos operacionais e ao cumprimento de prazos. Em ambientes produtivos
reais, decisoes relacionadas a ordem de processamento de tarefas influenciam significati-
vamente o desempenho global do sistema, tornando o estudo de modelos de agendamento
um tema recorrente na literatura de Pesquisa Operacional e Otimizacao Combinatéria.

Neste contexto, o problema de agendamento em méquina tnica (Single Machine
Scheduling Problem — SMSP) constitui uma classe fundamental, frequentemente utilizada
como base para o estudo de variantes mais complexas. Apesar de sua aparente simplici-
dade, a introdugao de caracteristicas adicionais, como tempos de configuracao dependentes
da sequéncia (Sequence Dependent Setup Times — SDST) e restrigoes de atrasos de pre-
cedéncia (Delayed Precedence — DP), aumenta a complexidade do problema. A restri¢ao
de SDST ocorre quando o tempo necessario para preparar a maquina antes do proces-
samento de uma tarefa depende diretamente da tarefa processada imediatamente antes.
A consideracao explicita dessa caracteristica em decistes de planejamento da producao
é fundamental em diversos ambientes industriais, pois pode levar a redugoes significati-
vas nos custos de preparacao, eliminacao de desperdicios e aumento da produtividade.
Exemplos tipicos incluem industrias téxtil, grafica, quimica, farmaceéutica e metalirgica,
nas quais trocas de ferramentas, ajustes de parametros operacionais ou procedimentos de
limpeza variam conforme a sequéncia de tarefas executadas (CHOOBINEH; MOHEBBI;
KHOO, 2006; ALLAHVERDI, 2015).

As restricoes de atraso de precedéncia impoem que determinadas tarefas sé pos-
sam iniciar apés um intervalo minimo de tempo decorrido desde a conclusao de suas
predecessoras. Esse atraso ocorre em situagoes nas quais um item precisa aguardar um
periodo antes de ser processado novamente, como no resfriamento de pecas, na secagem de
tintas ou adesivos, ou em processos que exigem etapas separadas por restri¢oes técnicas.

A presenca simultanea de tempos de configuracao dependentes da sequéncia e
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restricoes de atraso de precedéncia elimina diversas propriedades estruturais do pro-
blema classico de méaquina tunica, tornando a minimizagao do tempo total de execucao
na maquina (makespan) fortemente dependente da ordem de processamento das tarefas e
das interagoes entre elas. Um dos primeiros trabalhos a abordar explicitamente essa com-
binagao de restrigoes a partir de um problema pratico é apresentado por (KUO; CHEN;
YEH, 2020), que motiva o estudo do problema com base em um caso real observado em
uma empresa de montagem de amplificadores em Taiwan. Nesse ambiente, o processo pro-
dutivo é dividido em vérias etapas executadas em uma unica maquina, exigindo tempos
de configuracao distintos conforme o tipo de produto ou componente a ser montado. Além
disso, determinados componentes necessitam de um periodo de espera apds a aplicacao
de adesivos especiais para garantir propriedades de impermeabilizacao, caracterizando
atrasos de precedéncia entre etapas.

Outro trabalho de referéncia fundamental nesse contexto é o estudo de (LIN;
YING, 2022), que investiga de forma sistematica o problema de agendamento em méquina
unica com SDST e DP. Os autores apresentam a formulagao formal do problema, anali-
sam suas propriedades estruturais, discutem sua complexidade computacional e propoem
uma abordagem de referéncia (Lean Iterated Greedy — LIG), baseada no algoritmo Itera-
ted Greedy, para a minimizacao do makespan. Além disso, o trabalho disponibiliza um
conjunto de instancias de teste, estabelecendo uma base comparativa para novas aborda-
gens. O presente trabalho adota diretamente a modelagem do problema, as instancias e
os resultados de referéncia propostos por (LIN; YING, 2022), utilizando-os como principal
fundamento para o desenvolvimento e a avaliagao da abordagem do presente trabalho.

Embora a literatura relacionada explore diferentes estratégias heuristicas e de
busca local para esse problema, observa-se a auséncia de abordagens baseadas em algo-
ritmos populacionais, em particular algoritmos genéticos. Nesse cenario, o Algoritmo
Genético de Chave Aleatéria Tendencioso (Biased Random-Key Genetic Algorithm —
BRKGA) surge como uma alternativa promissora, uma vez que permite desacoplar o pro-
cesso evolutivo da construcao da solucao por meio do uso de decodificadores especificos do
problema. A representacao por chaves aleatérias simplifica a manutencao da viabilidade

das solugoes ao longo das geracoes e facilita a incorporacao de conhecimento heuristico
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no processo de decodificacao.

Motivado por essas caracteristicas, este trabalho propoe a aplicacao de um BRKGA
ao problema de agendamento em maquina tnica com tempos de configuracao dependen-
tes da sequéncia e restricoes de precedéncia com atraso. Para isso, sao desenvolvidos dois
decodificadores distintos. O primeiro consiste em um decodificador simples, que ordena as
tarefas (jobs) de acordo com suas chaves aleatdrias e os insere sequencialmente ao final da
solucao parcial, servindo como abordagem de referéncia. O segundo decodificador é base-
ado em uma adaptacao da heuristica construtiva NEH, na qual cada job selecionado pode
ser inserido em diferentes posicoes da solucao parcial, respeitando as restrigoes do pro-
blema. Essa insercao é controlada por um parametro K, que define o nimero maximo de
posicoes a serem avaliadas, permitindo analisar o impacto desse parametro na qualidade
das solugoes obtidas e no custo computacional do método.

Dessa forma, o objetivo é investigar o uso de algoritmos genéticos de chave
aleatéria como uma alternativa viavel para o problema estudado, avaliando o desem-
penho de diferentes estratégias de decodificagao e comparando os resultados obtidos com
aqueles reportados na literatura. Os experimentos computacionais realizados permitem
analisar o comportamento da abordagem proposta frente a diferentes configuragoes do
parametro K e posicionar os resultados em relagao as solugoes de referéncia existentes.

Este trabalho estd organizado da seguinte forma. No Capitulo 2 é apresentada
a definigao formal do problema de agendamento em maquina tnica com tempos de con-
figuracao dependentes da sequéncia e atrasos de precedéncia, incluindo a descricao das
restricoes e da funcao objetivo, bem como uma revisao dos trabalhos relacionados. O
Capitulo 3 apresenta a fundamentacao tedrica que sustenta o desenvolvimento do traba-
lho. O Capitulo 4 descreve a metodologia proposta, detalhando o Algoritmo Genético
de Chave Aleatéria Tendencioso (BRKGA), os mecanismos evolutivos empregados e os
decodificadores desenvolvidos, com énfase na adaptacao da heuristica construtiva NEH.
No Capitulo 5 sao apresentados os experimentos computacionais, o ambiente de testes, a
calibragao dos parametros e a analise comparativa dos resultados obtidos em relacao ao
algoritmo de estado da arte da literatura. Por fim, o Capitulo 6 apresenta as conclusoes

do trabalho e discute possibilidades de extensoes e trabalhos futuros.
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2 Problema de Agendamento de Tarefas em
Maquina Unica com Tempos de
Configuracao Dependentes de Sequéncia e

Atrasos de Precedéncia

Problemas de agendamento sao amplamente estudados na area de pesquisa operacional
devido a sua relevancia préatica em ambientes produtivos, logisticos e computacionais (PI-
NEDO, 2016; BRUCKER, 1999) . Um problema de agendamento consiste em determinar
a ordem e os instantes de execucao de um conjunto de tarefas, denominadas jobs, em um
ou mais recursos limitados, como maquinas, de modo a otimizar um ou mais critérios de
desempenho.

A importancia desses problemas decorre do fato de que decisoes de sequencia-
mento impactam diretamente indicadores como tempo total de processamento, nivel de
utilizagao dos recursos, cumprimento de prazos e custos operacionais. Como consequéncia,
problemas de agendamento surgem em diversos contextos, incluindo sistemas de manufa-
tura, processamento de dados, transporte e servicos.

Uma contribuicao central para a sistematizacao da literatura é a notacao pro-
posta por (GRAHAM et al., 1979), conhecida como notagao «|f|v, na qual o descreve o
ambiente de maquinas, J representa as restrigoes e caracteristicas do problema, e v indica
o critério de otimizacao. Essa notacao permite classificar de forma concisa uma grande
variedade de problemas e facilita a comparacao entre diferentes variantes.

Do ponto de vista da complexidade computacional, muitos problemas de agen-
damento sao NP-dificeis, especialmente quando incorporam restri¢coes adicionais ou ob-
jetivos mais elaborados. Mesmo variantes aparentemente simples podem tornar-se in-
trataveis quando adicionam-se restricoes como tempos de preparacao, precedéncias ou
multiplos critérios de otimizagao, motivando o desenvolvimento de métodos heuristicos e

metaheuristicos.



2.1 Problemas de agendamento em méquina tnica 15

2.1 Problemas de agendamento em maquina tnica

O ambiente de méaquina tnica ocupa um papel central na literatura de agendamento,
sendo frequentemente utilizado como ponto de partida para o estudo de variantes mais
complexas. Nesse ambiente, todos os jobs devem ser processados por uma tinica maquina,
nao sendo permitida sobreposigao no processamento (PINEDO, 2016).

Apesar de sua simplicidade aparente, o problema de maquina tnica apresenta
uma grande diversidade de variantes. Em sua forma mais bésica, a minimizacao do
makespan em uma configuracao sem restrigoes pode ser resolvida trivialmente, uma vez
que qualquer sequéncia produz o mesmo valor de makespan. No entanto, a introducao de
objetivos alternativos, como a minimizacao do tempo médio de conclusao, ou de restrigoes
adicionais, altera significativamente a estrutura do problema.

A relevancia do ambiente de maquina unica também se deve ao fato de que
ele aparece como subproblema em contextos mais gerais, como flow shops, job shops
e sistemas com multiplas maquinas paralelas. Assim, avancos obtidos nesse ambiente

frequentemente podem ser estendidos ou adaptados a configuracoes mais complexas.

2.2 Tempos de configuracao dependentes da sequéncia

Tempos de configuracao dependentes da sequéncia surgem quando o tempo necessario para
preparar a maquina para processar um job depende do job processado imediatamente an-
tes. Essa caracteristica é comum em ambientes industriais nos quais ha troca de ferramen-
tas, ajustes finos ou limpeza de equipamento entre operagoes, como nas industrias textil,
quimica, farmacéutica e metalurgica (ALLAHVERDI, 2015; CHOOBINEH; MOHEBBI,
KHOO, 2006).

A presenca de tempos de configuracao dependentes da sequéncia elimina propri-
edades estruturais importantes do problema classico de maquina tnica. Em particular, o
custo associado a um job passa a depender de seu predecessor imediato, tornando o pro-
blema fortemente dependente da ordem de processamento. Essa caracteristica aproxima
o problema de agendamento de problemas classicos de roteamento, como o Problema do

Caixeiro Viajante assimétrico.
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Diversos estudos demonstram que a introdugao de tempos de configuracao de-
pendentes da sequéncia torna o problema NP-dificil, mesmo para critérios de otimizagao
simples. Revisoes abrangentes sobre esse tema podem ser encontradas em trabalhos como
o de (ALLAHVERDI, 2015), que destacam tanto a relevancia prética quanto os desafios

computacionais associados a essa classe de problemas.

2.3 Atrasos de precedéncia

Restrigoes de atraso de precedéncia, também conhecidas como precedence delays ou time-
lags, impoem que o inicio do processamento de um job ocorra apenas apds um intervalo
minimo de tempo em relagao a conclusao de outro job. Formalmente, para um par (i, j)
sujeito a atraso de precedeéncia, deve-se respeitar a condigao b; > ¢; + d;;.

Esse tipo de restrigao é particularmente relevante em aplicagoes nas quais operacoes
intermediarias exigem periodos de espera, como processos de resfriamento, secagem, cura
de materiais ou estabilizacdo quimica. Diferentemente das precedéncias classicas, que
apenas impoem uma ordem relativa entre tarefas, os atrasos de precedéncia introduzem
uma dimensao temporal explicita no problema.

A literatura mostra que a inclusao de atrasos de precedéncia aumenta substan-
cialmente a complexidade do problema, restringindo o conjunto de solugoes viaveis e
dificultando tanto a modelagem quanto o desenvolvimento de algoritmos eficientes. Tra-
balhos classicos analisam subclasses polinomiais, enquanto estudos mais recentes propoem

heuristicas e metaheuristicas para lidar com instancias de maior porte.

2.4 Problema de Agendamento de Tarefas em Maquina
Unica com Tempos de Configuracao Dependen-
tes de Sequéncia e Atrasos de Precedéncia

O problema abordado neste trabalho consiste no agendamento de um conjunto finito de
tarefas, ou jobs, em uma tnica maquina, com o objetivo de minimizar o tempo total

de conclusao das tarefas, denominado makespan. Assume-se que todos os jobs estao
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disponiveis para processamento no instante inicial e que a maquina pode processar, a
qualquer momento, no maximo um job. Nao é permitida a interrupgao do processamento
de um j0b uma vez iniciado, caracterizando um ambiente sem preempgao.

Cada job possui um tempo de processamento conhecido e deterministico. Além
disso, entre o processamento de dois jobs consecutivos, pode ser necessario um tempo de
configuragao (setup), cujo valor depende diretamente da ordem em que os jobs sdo exe-
cutados. Esses tempos de configuracao dependentes da sequéncia refletem a necessidade
de ajustes, trocas de ferramentas ou preparacoes especificas da maquina, sendo aplicados
sempre que um job sucede outro na sequéncia de processamento.

O problema também incorpora restricoes de precedéncia com atraso, nas quais
determinados pares de jobs estao relacionados por uma dependéncia temporal. Nessas
situagoes, o inicio do processamento de um job sucessor s6 é permitido apds a conclusao
de seu predecessor e o cumprimento de um intervalo minimo de tempo adicional. Esse
atraso representa uma espera obrigatoria entre a finalizacao de um job e o inicio de outro,
decorrente de requisitos técnicos ou operacionais, e deve ser respeitado independentemente
da posicao relativa dos jobs na sequéncia de processamento.

A interagao entre tempos de configuracao dependentes da sequéncia e restrigoes de
precedéncia com atraso torna a determinacao do instante de inicio de cada job dependente
de multiplos fatores. Para cada job, o inicio do processamento é condicionado tanto pela
conclusao do job processado imediatamente antes, considerando o respectivo tempo de
configuracao, quanto pelas restrigoes de precedéncia que possam existir, considerando os
atrasos associados..

Uma solucgao viavel para o problema é definida por uma permutagao dos jobs que
respeite todas as restrigoes de precedéncia e permita o calculo consistente dos tempos
de inicio e conclusao de cada tarefa. O makespan da solugao corresponde ao instante
de conclusao do ultimo job na sequéncia, sendo este o critério adotado para avaliar a
qualidade da solucao. O objetivo do problema consiste, portanto, em determinar uma
sequencia viavel que minimize o makespan, considerando simultaneamente os tempos de
processamento, os tempos de configuracao dependentes da sequéncia e as restricoes de

precedéncia com atraso.
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A préxima secao apresenta a descricao formal do problema, incluindo a notagao
adotada, a fungao objetivo e as restricoes que caracterizam matematicamente o modelo

considerado neste trabalho.

2.4.1 Descricao formal do problema

Esta secao apresenta a formulagao matematica do problema de agendamento em maquina
unica com tempos de configuracao dependentes da sequéncia e restricoes de atraso de
precedéncia, conforme proposta por (LIN; YING, 2022). O problema é modelado por
meio de programacao linear inteira mista.

Na notacao classica de (GRAHAM et al., 1979) para problemas de agendamento,

o problema é representado por

1] s, prec(dij) | Cuax,

onde 1 indica o ambiente de maquina tnica, s;; representa os tempos de configuragao
dependentes da sequéncia e prec(d;;) denota a presenca de restri¢oes de atraso de pre-
cedéncia. O critério de otimizagao adotado é a minimizagao do makespan (Cpax)-

A seguir, sao apresentados os indices, parametros, varidaveis de decisao e a for-

mulacao matematica do problema.

Indices

e i, j: indices dos jobs, com i € {0,1,2,...,n} e j € {0,1,2,...,n}, onde o indice 0

representa um job ficticio (ou tarefa sentinela);

e A: conjunto de pares ordenados (i,7), que representa o conjunto das restri¢oes de
atraso de precedéncia, ou seja, se (i,j) € A, entdo o job j sé pode iniciar apds a
conclusao do job i, respeitando um atraso minimo d;;.

Parametros

e n: numero total de jobs;

e p;: tempo de processamento do job j;
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e s;;: tempo de configuracao necessario para o processamento do job j imediatamente

apoés o job 1;

e d;;: tempo de atraso minimo necessario para que o job j possa ser iniciado apos a

conclusao do job i;

e M: constante positiva suficientemente grande.

Variaveis de decisao

e 1;;: variavel bindria que assume valor 1 se o job j é processado imediatamente apds

o job 1, e 0 caso contrario;
e b,: instante de inicio do processamento do job j;
e ¢;, c;: instantes de conclusao do processamento dos jobs i e j;

e Chax: tempo total de execugdo na maquina (makespan).

Funcgao objetivo

min Chayx (2.1)
Restrigoes

Cmax > Cj7 ] - 1727 7”7 (2 2)
doay=1 i=01,...,n(i#}j), (2.3)

j=0
dwy=1 j=012...,n(i#}) (2.4)

i=0
bJECZ—FSZ]—M(l—.Q?U), Z:1,2,,n,j:1,2,,n(7,7éj>, (25)
bj Z C; + dij; V(’L,j) € A7 (26>

z; €{0,1}; i=0,1,...,n; j=1,2,...,n (1 # j). (2.8)
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A funcao objetivo 2.1 busca minimizar o makespan do cronograma, definido como
o maior tempo de conclusao entre todos os jobs. A restricao 2.2 define o makespan como
um limitante superior para os tempos de conclusao de todos os jobs. As restricoes 2.3 e 2.4
garantem que cada job possua exatamente um sucessor e um predecessor na sequéncia de
processamento, assegurando a construcao de uma permutacao valida dos jobs na maquina
unica. A restrigao 2.5 estabelece a relacao entre o instante de inicio de um job e o tempo
de conclusao de seu predecessor imediato na sequéncia, incorporando explicitamente os
tempos de configuragao dependentes da sequéncia. A restricao 2.6 modela os atrasos de
precedéncia, impondo que, para cada par (i,7) pertencente ao conjunto A, o inicio do
processamento do job j ocorra somente apos a conclusao do job 7, acrescida de um atraso
minimo d;;. A restricao 2.7 define o tempo de conclusao de cada job como a soma de seu
tempo de inicio e de seu tempo de processamento. Por fim, a restricao 2.8 estabelece o

dominio das varidveis de decisao z;;, restringindo-as a valores binarios.

2.5 Trabalhos relacionados

A literatura sobre problemas de agendamento em maquina tnica envolvendo tempos de
configuragao dependentes da sequéncia e restricoes de precedéncia com atraso ¢é relati-
vamente restrita quando comparada a variantes classicas do problema de agendamento.
Ainda assim, diferentes linhas de pesquisa contribuiram de forma complementar para a
compreensao da complexidade e das propriedades estruturais associadas a cada uma des-
sas restricoes, preparando o terreno para estudos que tratam sua combinacao de forma
integrada.

No que se refere as restricoes de precedéncia com atraso, diversos trabalhos in-
vestigaram o impacto dessas dependéncias temporais no problema de maquina tnica.
(WIKUM; LLEWELLYN; NEMHAUSER, 1994) analisaram variantes do problema, iden-
tificando subclasses resolviveis em tempo polinomial e demonstrando a dificuldade compu-
tacional do caso geral. Posteriormente, (BALAS; LENSTRA; VAZACOPOULOS, 1995)
propuseram um algoritmo de branch-and-bound que explora limites inferiores derivados
da estrutura do grafo de precedéncia, evidenciando o aumento significativo da complexi-

dade quando atrasos sao incorporados as restri¢oes de precedéncia. Em uma linha mais
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restrita, (FINTA; LIU, 1996) estudaram o caso em que os atrasos de precedéncia possuem
comprimento unitério, apresentando um algoritmo 6timo com complexidade O(n?), o que
reforga a importancia da magnitude dos atrasos na dificuldade do problema.

De forma paralela, outro corpo de literatura concentrou-se na analise de tempos
de configuracao dependentes da sequéncia no contexto de maquina unica. Esses trabalhos
demonstram que a introducao de setups dependentes da ordem de processamento elimina
propriedades estruturais importantes do problema classico, tornando a avaliagao do ma-
kespan fortemente dependente da sequéncia das tarefas. Estudos como (CHOOBINEH;
MOHEBBI; KHOO, 2006) e (JULA; KONES, 2013) investigaram diferentes variagoes do
problema, combinando tempos de setup dependentes da sequéncia com outros critérios de
desempenho ou restrigoes adicionais, e destacaram a necessidade de abordagens heuristicas
ou metaheuristicas para instancias de maior porte.

Apesar desses avancos, a literatura que trata simultaneamente tempos de confi-
guracao dependentes da sequéncia e restricoes de precedéncia com atraso € significativa-
mente mais limitada. (KUO; CHEN; YEH, 2020) destacam explicitamente essa lacuna
e propoem uma metaheuristica baseada em Variable Neighbourhood Search (VNS) para
a minimizacao do makespan. A abordagem explora diferentes estruturas de vizinhanca e
incorpora mecanismos especificos para garantir a viabilidade das solucoes frente as res-
tricoes de precedéncia atrasadas, representando um dos primeiros esforcos sistematicos
para lidar com a combinacao dessas duas caracteristicas.

Um marco fundamental nessa linha de pesquisa é o trabalho (LIN; YING, 2022),
que constitui a principal referéncia adotada neste estudo. Os autores apresentam uma for-
mulacao abrangente do problema de agendamento em maquina tinica considerando simul-
taneamente tempos de configuracao dependentes da sequéncia e restrigoes de precedéncia
com atraso, discutindo suas propriedades estruturais e demonstrando sua complexidade
computacional. Além disso, o trabalho propoe uma abordagem baseada no algoritmo
Iterated Greedy, denominada Lean Iterated Greedy (LIG), e disponibiliza um conjunto
de instancias de teste. No presente trabalho, tanto a modelagem do problema quanto
o conjunto de instancias e os resultados de referéncia adotados seguem diretamente a

formulagao e os dados apresentados por (LIN; YING, 2022).
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Mais recentemente, algoritmos genéticos de chave aleatoria tém sido explorados
como uma alternativa flexivel para problemas de sequenciamento (LONDE et al., 2025),
uma vez que permitem desacoplar o processo evolutivo da construcao da solucao e torna
facil manter a viabilidade entre as geragoes usando uma codificagao robusta.

Nesse cenario, o presente trabalho se diferencia da literatura existente ao integrar
um BRKGA a um decodificador baseado em uma adaptagao do algoritmo NEH, proje-
tado especificamente para lidar com tempos de configuracao dependentes da sequéncia e
restricoes de precedéncia com atraso. Diferentemente das abordagens baseadas exclusi-
vamente em busca local, como as estratégias VNS propostas anteriormente, a abordagem
adotada explora o potencial dos algoritmos genéticos de chave aleatéria aliados a uma
heuristica construtiva eficiente, posicionando-se como uma alternativa complementar as
estratégias existentes e diretamente alinhada & formulacao estabelecida por (LIN; YING,

2022).
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3 Fundamentacao Tedrica

Este capitulo apresenta os principais conceitos tedricos que fundamentam o desenvolvi-
mento deste trabalho. Sao introduzidos os conceitos centrais de metaheuristicas e algo-
ritmos genéticos, culminando na apresentacao do Algoritmo Genético de Chave Aleatoria
Tendencioso (BRKGA). Por fim, sdo discutidos algoritmos construtivos e, em particular,

a heuristica NEH, que serve de base para o decodificador proposto neste trabalho.

3.1 Metaheuristicas

Metaheuristicas constituem um conjunto de estratégias gerais de busca projetadas para
resolver problemas de otimizacao complexos de forma aproximada. Diferentemente de
métodos exatos, essas abordagens nao garantem a obtencao da solucao 6tima, mas sao
capazes de produzir solugoes de alta qualidade em tempos computacionais reduzidos
(TALBI, 2009).

Um aspecto central das metaheuristicas é o equilibrio entre exploragao do espaco
de busca e intensificagdo em regides promissoras. Estratégias como busca local, simulated
annealing, tabu search, variable neighbourhood search e algoritmos populacionais exploram
esse equilibrio de diferentes maneiras.

Em problemas de agendamento, metaheuristicas sao amplamente utilizadas de-
vido a elevada complexidade combinatoéria envolvida. A flexibilidade dessas abordagens
permite incorporar conhecimento especifico do problema por meio de operadores especi-

alizados, heuristicas construtivas e mecanismos de reparo de solucoes invidveis.

3.2 Algoritmos Genéticos

Algoritmos Genéticos sao metaheuristicas populacionais inspiradas na Teoria da Evolugao
Natural das espécies. Nessa abordagem, uma populacao de solucoes candidatas evolui ao

longo de geragoes por meio de operadores de sele¢ao, cruzamento e mutagdo (HOLLAND,
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1992).

Cada solugao é representada por um cromossomo, cuja estrutura depende do
problema considerado. A qualidade das solugoes é avaliada por meio de uma funcao de
aptidao, que orienta o processo evolutivo. Normalmente, essas solugoes sao divididas em
dois subconjuntos de acordo com a sua qualidade, formando os subconjuntos de solugoes
de elite e de nao elite. Solugoes com melhor desempenho possuem maior probabilidade
de contribuir para a geragao seguinte.

Embora algoritmos genéticos classicos tenham sido aplicados com sucesso a diver-
sos problemas, sua aplicacao direta a problemas de sequenciamento pode ser dificultada
pela necessidade de garantir a viabilidade das solucoes. Isso motivou o desenvolvimento
de representacoes indiretas, nas quais o cromossomo nao codifica diretamente a solucao,

mas fornece informacoes para um procedimento de decodificacao.

3.3 Algoritmo Genético de Chave Aleatéria

O Algoritmo Genético de Chave Aleatéria introduz uma representagao indireta baseada
em vetores de nimeros reais no intervalo [0,1), denominados chaves aleatérias. Cada
cromossomo consiste em um conjunto de chaves aleatérias, que sao interpretadas por um
decodificador especifico do problema para construir uma solucao vidavel (BEAN, 1994).
Essa abordagem separa o mecanismo evolutivo do problema sendo abordado,
permitindo que o algoritmo genético opere em um espaco continuo enquanto o decodifi-
cador incorpora conhecimento estrutural do problema. O Algoritmo Genético de Chave
Aleatéria Tendencioso estende essa ideia ao introduzir um processo de cruzamento envie-
sado, no qual um dos genitores é sempre selecionado do conjunto de elite e a probabilidade

de herdar genes desse genitor é maior que a de herdar do genitor nao elite.

3.4 Algoritmos construtivos

Algoritmos construtivos constroem solugoes de forma incremental, adicionando elementos
passo a passo segundo regras heuristicas (TALBI, 2009). Em problemas de agendamento,

esses métodos sao amplamente utilizados devido a sua simplicidade e eficiéncia computa-
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cional.

Uma caracteristica importante dos algoritmos construtivos é que decisoes toma-
das em etapas iniciais influenciam fortemente a qualidade da solucao final. Por esse
motivo, diversas heuristicas combinam procedimentos construtivos com mecanismos de

refinamento local ou os utilizam como componentes internos de metaheuristicas.

3.5 Algoritmo NEH

O algoritmo NEH, proposto originalmente para o problema de flow shop, é uma das
heuristicas construtivas mais conhecidas e eficazes na literatura de agendamento (NAWAZ;
JR; HAM, 1983). O método constréi a sequéncia de forma incremental, inserindo os jobs
em posicoes que minimizam o makespan parcial.

A eficiencia do NEH decorre de sua estratégia de insercao sistematica, que avalia
diferentes posicoes na sequéncia parcial e seleciona aquela que produz o melhor resultado.

Essa caracteristica torna o algoritmo particularmente atrativo para adaptacoes e extensoes

(RUIZ; MAROTO, 2005).
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4 Abordagem Proposta

A abordagem proposta neste trabalho baseia-se na utilizacao do Algoritmo Genético de
Chave Aleatodria Tendencioso, proposto por (GONCALVES; RESENDE, 2011), como me-
taheuristica de busca global, aliada ao desenvolvimento de decodificadores especializa-
dos capazes de transformar cromossomos compostos por chaves aleatérias continuas em
sequencias viaveis de jobs. A principal contribuicao deste trabalho estd no médulo de

decodificacao, responsavel por incorporar as restrigoes estruturais do problema.

4.1 Processo evolutivo do BRKGA

No contexto do BRKGA, o processo evolutivo atua exclusivamente sobre vetores de cha-
ves aleatdrias, nimeros reais no intervalo [0, 1), enquanto a interpretacao desses vetores
como solucoes factiveis do problema de agendamento ¢ delegada ao decodificador. Essa
separacao permite que os operadores genéticos permanecam independentes das carac-
teristicas especificas do problema, ao mesmo tempo em que o conhecimento estrutural
é explorado de forma eficiente durante a construcao das solugoes. De maneira geral,
o algoritmo opera a partir da evolucao de uma populacao inicial contendo exatamente
p cromossomos gerados aleatoriamente, sendo cada cromossomo composto por n chaves

aleatodrias continuas.

4.1.1 Critério de parada

O processo evolutivo é conduzido ao longo de um numero finito de geragoes, até que
um critério de parada previamente definido seja satisfeito. A condic¢ao de parada adotada

neste trabalho baseia-se em um ntimero méaximo de geracoes, critério amplamente utilizado

em aplicacoes do BRKGA.
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4.1.2 Avaliacao da qualidade da populacao

Em cada iteracao do algoritmo, o decodificador é chamado para avaliar a qualidade de
cada vetor de chaves aleatorias na populagao. Apds esta etapa de avaliacao, os individuos
sao ordenados de acordo com seus valores de aptidao, e a populacao é entao particionada
em dois subconjuntos distintos. O primeiro subconjunto corresponde ao conjunto de elite,
formado por p. individuos com os melhores valores de aptidao da geracao corrente. O

segundo subconjunto é composto pelos p — p, individuos restantes, denominados nao elite.

4.1.3 Selecao e cruzamento

Tanto o algoritmo genético de chave aleatdria de Bean quanto o BRKGA utilizam cruza-
mento uniforme parametrizado (SPEARS; JONG, 1995) para a geracao dos descendentes.
A principal diferenca reside no fato de que, no BRKGA, um dos genitores é sempre selecio-
nado a partir do conjunto de elite da populacao, enquanto o outro é escolhido no conjunto
de nao elite. Além disso, o cruzamento é enviesado de forma que a probabilidade de o
descendente herdar a chave aleatdria do genitor pertencente a elite é dada por p. > 0.5.
Mais especificamente, para definir cada posi¢ao j do cromossomo descendente 1,
gera-se um numero aleatério uniforme r;; € [0,1). Caso 1; < p., o descendente herda
a chave aleatéria correspondente do genitor pertencente a elite; caso contrario, a chave
¢ herdada do genitor nao pertencente a elite. Esse viés sistematico impoe uma pressao
seletiva controlada que favorece a propagacao de caracteristicas associadas as melhores
solugoes da populagao, acelerando o processo de convergéncia, ao mesmo tempo em que

preserva diversidade genética suficiente para reduzir o risco de convergéncia prematura.

4.1.4 Mutacao

Em vez de utilizar estratégias classicas de mutagao, o BRKGA emprega o conceito de
imigracao. Isto é, a cada geracao, p,, membros da populacao sao gerados aleatoriamente.
Esse processo evita a convergéncia prematura da populagao, de forma semelhante a um

operador de mutacao, e conduz a uma formulagao simples da convergéncia.
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4.1.5 Formacao da nova populacao

A cada iteracao do BRKGA, uma nova populagao é construida. Cada nova geracao é

formada por:

e p. individuos pertencentes ao conjunto de elite da geracao anterior;
e p,, individuos imigrantes gerados aleatoriamente;

® » — p. — P individuos gerados através de cruzamento.

Esse ciclo de avaliagao, particionamento da populacao e geracao de novos in-
dividuos é repetido sucessivamente ao longo das geracoes, até que o critério de parada
seja satisfeito. Ao final do processo evolutivo, a melhor solucao encontrada ao longo de
todas as geracoes é retornada como resultado do algoritmo. A Figura 4.1 ilustra todo este

Processo.

4.2 Decodificadores

Para a avaliacao dos individuos, foram desenvolvidos dois decodificadores distintos para
transformar os cromossomos em sequéncias de jobs. Nas subsecoes seguintes, 11 representa

a sequéncia e, I1[j] representa o j-ésimo job da sequéncia.

4.2.1 Decodificador simples

O decodificador simples é uma adaptagao do decodificador apresentado por (BEAN, 1994)
para o SMSP com SDST e DP. A cada iteracao, seleciona-se o job elegivel com menor valor
de chave aleatoria. Jobs elegiveis sao aqueles que nao possuem restricoes de precedéncia
ou cujos jobs precedentes ja foram inseridos na solucao parcial. A cada inser¢ao de um
job na solucao, a lista de jobs elegiveis é atualiza. Embora computacionalmente eficiente,
essa estratégia oferece pouca flexibilidade para rearranjos locais da sequéncia, o que pode

limitar a qualidade das solugoes obtidas.
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Gera p vetores de
chaves aleatorias

Cria individuos
mutantes para a

{Decodifica cada vetor
proxima geragao

de chaves aleatodrias

Faz cruzamento dos
individuos elite e ndo
elite e adiciona na
préxima geragao

Condicao de
parada
satisfeita?

A
Classifica individuos Copia individuos elite
como elite ou ndo para a proxima
elite geracao

Figura 4.1: Estrutura basica do BRKGA. Fonte: Imagem adaptada de (GONCALVES;
RESENDE;, 2011).

4.2.2 Decodificador NEH

O decodificador NEH é baseado em uma adaptacao da heuristica construtiva NEH. Assim
como no decodificador simples, a cada iteracao o job elegivel é selecionado para insercao na
sequéncia parcial. Uma vez selecionado o job, sua insercao ¢é testada em multiplas posigoes
da sequéncia parcial, buscando aquela que minimize o makespan da solucao parcial sem
violar as restrigoes de precedéncia. Para controlar o custo computacional do decodificador,
especialmente considerando que ele é executado para cada individuo da populagao em
todas as geracoes, a avaliacao é restrita as tultimas k posicoes possiveis da sequéncia.
Essa janela limitada representa um compromisso entre qualidade da solucao e tempo de
execucao: testar todas as posigoes possiveis exige mais tempo de execucao, enquanto
restringir a insercao a uma unica posicao reduziria significativamente a capacidade de

melhoria local. O parametro k£ permite ajustar esse equilibrio de forma controlada.
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O Algoritmo 1 apresenta o pseudocddigo do decodificador baseado em NEH para

a construcao das sequéncias a partir dos cromossomos gerados pelo BRKGA.

Algoritmo 1: Decodificador baseado no algoritmo NEH
Entrada: Cromossomo r, conjunto de jobs .J, janela k

1 11«0

2 J. < {j € J: j nao possui predecessores}
3 while J. # () do

4 J 4 min;ey, 1;

5 et < 1T U {j}

6 b <— max(0, |II| — k)

7 | pos< |II] -1

8 while pos > (b do

9 if j wiola precedéncias ao ser inserido na posicao pos then
10 ‘ break

11 end if

12 [ew < insere(7, IT, pos)

13 if Crax(Iliew) < Cinax(ITpes;) then
14 ‘ 1_[best < Hnew

15 end if

16 pos <— pos — 1

17 end while

18 IT < Hbest;

19 atualizar J. removendo j e liberando novos jobs elegiveis;
20 end while
21 return II;

Inicialmente, a sequéncia parcial II é inicializada como vazia, e o conjunto J,.
é definido contendo apenas os jobs que nao possuem predecessores, isto €, aqueles que
podem ser escalonados no instante inicial (linhas 1-2). O algoritmo entao executa um lago
principal enquanto houver jobs elegiveis em J. (linha 3). Em cada iteragao, seleciona-se o
job j cujo valor no cromossomo r é minimo entre os jobs elegiveis (linha 4). Em seguida,
uma solucao candidata inicial Il € criada pela insercao do job j no final da sequéncia
parcial II (linha 5). Para limitar o esforgo computacional do processo de inser¢ao, define-
se uma janela de busca de tamanho k, calculando o limite inferior [b para as posigoes
testadas (linha 6). A varidvel pos é inicializada com a tltima posigao valida da sequéncia
(linha 7). O lago interno (linha 8) testa diferentes posi¢oes de inserc¢ao do job j dentro da
janela definida. Caso a insercao de j em uma determinada posicao viole alguma restrigao
de precedencia, o laco é interrompido, uma vez que posicoes anteriores também seriam

invidveis (linhas 9-10). Para cada posigao vidvel, uma nova sequéncia Il é construida



4.3 Calculo do makespan 31

por meio da inser¢ao de j na posi¢ao pos (linha 11). O makespan da nova sequéncia é entao
avaliado, e, se for inferior ao da melhor solucao encontrada até o momento, a solucao Iy e
¢ atualizada (linhas 12-14). A posigao de insercao é decrementada e o processo continua
até que o limite inferior da janela seja atingido (linha 15).

Apos a avaliacao de todas as posicoes viaveis, a sequéncia parcial IT é atualizada
com a melhor solugao encontrada para a inser¢ao do job j (linha 16). O conjunto J, é
entao atualizado, removendo o job recém-inserido e incluindo novos jobs que se tornaram
elegiveis em fungao do atendimento de suas restrigoes de precedéncia (linha 17).

O processo se repete até que todos os jobs tenham sido inseridos na sequéncia.
Por fim, o algoritmo retorna a sequéncia completa II, correspondente a decodificagao do
cromossomo 7 (linha 19).

E importante destacar que o decodificador simples pode ser interpretado como
um caso particular do decodificador baseado em NEH, correspondente a configuracao
k = 0. Nessa situacao, a insercao do job ocorre exclusivamente ao final da sequéncia
parcial, eliminando a avaliagao de posicoes alternativas. Essa relagao estrutural entre os
dois decodificadores permite uma comparacao direta entre estratégias de complexidade

distinta e fundamenta a andlise experimental apresentada no capitulo seguinte.

4.3 Calculo do makespan

Ambos os decodificadores necessitam calcular o makespan (Cpax) para avaliar a aptidao
da solucao. O makespan é definido como o tempo de conclusao do ultimo job da sequéncia.
O tempo de conclusao de um job corresponde ao seu instante de inicio de processamento
na maquina acrescido do tempo necessario para a execucao de sua operagao.

O tempo de inicio do primeiro job da sequéncia é igual a zero. Para os demais
jobs, o instante de inicio do processamento do j-ésimo job é determinado pelo maior valor
entre: (i) o tempo de conclusao do job imediatamente precedente na sequéncia, acrescido
do tempo de setup correspondente; e (ii) o tempo de conclusao de cada job predecessor
sujeito a atraso de precedéncia, isto é, todo job i tal que (i,1I[j]) € A, acrescido do
respectivo tempo de atraso.

A avaliacao de cada insercao candidata exige o calculo do makespan da sequéncia
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resultante. Recalcular integralmente os tempos de conclusao de todas as tarefas a cada
tentativa de insercao tornaria o processo computacionalmente inviavel, sobretudo consi-
derando o elevado nimero de avaliacoes realizadas ao longo do processo evolutivo. Por
essa razao, o calculo do makespan é realizado de forma incremental, atualizando apenas
as porcoes da sequéncia afetadas pela insercao do novo job em uma determinada posicao.

Esse procedimento considera simultaneamente os tempos de processamento, os
tempos de configuracao dependentes da sequéncia e os atrasos de precedéncia, garantindo
a correta avaliacao da solucao sem a realizacao de célculos desnecessarios. O Algoritmo 2

descreve formalmente o procedimento adotado para o cédlculo do makespan.

Algoritmo 2: Célculo incremental do makespan

Entrada: Sequéncia II, tempos p, setups s, atrasos d, indice x
Saida: Chax(I1)
if x =1 then
C[1] « p(II[1])
r—ao+1
end if
for j «+ x to |II| do
b Clj — 1] + s(I1[j — 1], O[j])
for cada predecessor u de 1[j] do
| b < max(b, Clpos(u)] + d(u,II[j]))
end for
Clj) < b+ p(II[j))
end for
return C]|I1]]
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Inicialmente, verifica-se se o indice inicial x é igual a 1 (linha 3). Nesse caso,
o tempo de conclusao do primeiro job da sequéncia é calculado diretamente como o seu
tempo de processamento, isto é, C[1] = p(II[1]) (linha 4). Em seguida, o indice z é
incrementado, indicando que os célculos subsequentes devem partir do segundo job da
sequéncia (linha 5).

O algoritmo entao percorre a sequéncia Il a partir da posi¢ao x até o tultimo job
(linha 7). Para cada job II[j], é inicialmente calculado um tempo de inicio b, correspon-
dente ao instante de conclusao do job anterior somado ao tempo de setup entre os jobs
consecutivos II[j — 1] e II[j] (linha 8).

Em seguida, para cada predecessor u do job II[j], o valor de b é atualizado de

forma a respeitar as restrigoes de precedéncia e os atrasos associados (linha 10). Mais es-
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pecificamente, garante-se que o inicio do processamento de I1[j] ocorra apés a conclusao de
cada predecessor u, acrescida do respectivo atraso d(u, I1[j]), tomando-se o valor méximo
entre essas restrigoes (linha 11).

Apoés a determinacao do instante mais cedo viavel para o inicio do processamento
do job II[j], o seu tempo de conclusao é calculado adicionando-se o tempo de processa-
mento p(II[j]), resultando em Cj] (linha 13).

Esse procedimento é repetido até que todos os jobs da sequéncia tenham sido
avaliados. Por fim, o algoritmo retorna o makespan da sequéncia II, definido como o
tempo de conclusao do ultimo job, C[|II|] (linha 15).

Cabe ressaltar que tanto o BRKGA quanto os decodificadores desenvolvidos apre-
sentam uma caracteristica intrinsecamente paralelizavel. Como a avaliacao de cada cro-
mossomo ¢é independente, a decodificacao de individuos distintos pode ser distribuida
entre multiplos nicleos de processamento sem necessidade de sincronizacao ou troca de
informagoes. Essa propriedade permitiria acelerar significativamente o processo evolutivo
em ambientes multiprocessados, especialmente para instancias de grande porte. Contudo,
a paralelizacao nao foi explorada neste trabalho, uma vez que o foco estd na proposicao
e analise da heuristica de decodificacao, e nao na otimizacao da infraestrutura compu-
tacional. Todas as execugoes foram realizadas em um tnico ntcleo, de modo a isolar o
impacto da técnica proposta sobre a qualidade das solucoes.

Em sintese, a abordagem apresentada combina a capacidade exploratéria do
BRKGA com um decodificador eficiente e adaptado as caracteristicas especificas do pro-
blema de agendamento estudado. A utilizacdo de uma estratégia de insercao incremental
inspirada no NEH, aliada a um célculo otimizado do makespan e a mecanismos explicitos
de respeito aos atrasos de precedéncia, resulta em um método robusto, flexivel e adequado

para a resolucao do problema considerado.
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5 Experimentos e resultados

Experimentos foram conduzidos com o objetivo de avaliar o desempenho do Algoritmo
Genético de Chave Aleatoria Tendencioso proposto para resolver o problema de agenda-
mento em maquina Unica com tempos de configuracao dependentes de sequéncia e atrasos
de precedéncia em relacao ao algoritmo LIG, estado da arte da literatura (LIN; YING,
2022).

5.1 Instancias

Todas as instancias utilizadas nos testes foram obtidas a partir do conjunto disponibi-
lizado por (LIN; YING, 2022). Esse conjunto de testes possui cendrios com ntimeros
de tarefas (n) de 10, 15, 20, 25, 50, 75 e 100; tempos de processamento (p;) uniforme-
mente distribuidos nos intervalos [10,20] e [20, 30]; tempos de configuragao (s;;) unifor-
memente distribuidos nos intervalos [5, 10] e [10, 15]; tempos de atraso d;; uniformemente
distribuidos nos intervalos [20,40] e [40,60]. Para cada combinagao destes parametros,

existem 10 instancias, totalizando 560 instancias.

5.2 Ambiente de testes

Todos os testes para o BRKGA foram executados em uma méquina rodando o sistema
operacional Ubuntu 24.04 com processador Intel Core i5-1135G7 @ 2.40GHz e 16 GB
de memoéria. O algoritmo foi desenvolvimento na linguagem C++ e adotou-se como
base o framework de (TOSO; RESENDE, 2015), que fornece uma implementagao mo-
dular, extensivel e orientada a objetos do BRKGA na linguagem de programagao C++.
Esse framework organiza o algoritmo em trés componentes fundamentais: (i) populagoes
independentes evoluindo em paralelo; (ii) operadores basicos do BRKGA (cruzamento
tendencioso, geragao de mutantes e selegao de elite); e (iii) um decodificador externo res-

ponsavel por mapear cromossomos para solucgoes viaveis do problema. Essa separagao
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entre mecanismo evolutivo e légica de decodificagao facilita a integracao de heuristicas
especificas, como a abordagem proposta neste trabalho. Todo o processo evolutivo, inclu-
indo inicializacao, selecao, cruzamento e mutacao, utiliza as fungoes disponibilizadas pelo
framework, enquanto o calculo do makespan e a construcao das sequéncias sao realizados
através de algoritmos desenvolvidos neste trabalho.

Embora o framework permita paralelizacao em dois niveis, populacao e em nivel
de decodificacao, com threads independentes executando avaliagbes simultaneas, esses
recursos nao foram empregados neste trabalho. Todas as execucoes foram realizadas de
forma sequencial, de modo a manter o foco no comportamento da heuristica proposta e
evitar que efeitos de paralelismo interfiram na comparacao com a literatura, que utiliza

um algoritmo sequencial.

5.3 Configuracao dos parametros

Para a configuragao dos parametros do BRKGA foram utilizados os valores recomendados
em (GONCALVES; RESENDE, 2016) para o BRKGA. Em (PRASETYO et al., 2015),
os autores realizam um levantamento das aplicagoes do BRKGA na literatura, mostrando
que esses parametros recomendados sao validos e utilizados nos estudos existentes. Além
disso, foram realizados testes com instancias que combinavam diferentes caracteristicas
para validar a eficiéncia destes valores. Por fim, a Tabela 5.1 mostra os valores utilizados
para o BRKGA, onde p é o tamanho da populacao, p. o tamanho do conjunto elite, p,, o
numero de individuos mutantes que serao inseridos em cada geracao e p. ¢ a probabilidade

do novo individuo herdar as caracteristicas do genitor de melhor qualidade.

Parametro | Valor
P 100
De 0.2 xp
D 0.1 xp
Pe 0.7

Tabela 5.1: Parametros para o BRKGA
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5.4 Resultados

Com as instancias, o ambiente de testes e os parametros do BRKGA definidos, esta
secao apresenta os resultados obtidos nos experimentos computacionais. Primeiramente,
analisa-se o resultado considerando os decodificadores desenvolvidos, avaliando o impacto
do parametro k, considerando tanto a qualidade das solugoes quanto o tempo de execucao.
Em seguida, o desempenho do decodificador baseado na heuristica NEH, que apresentou
os melhores resultados, é comparado com o algoritmo estado da arte da literatura, LIG

(LIN; YING, 2022).

5.4.1 Comparagao entre decodificadores

Um dos aspectos centrais avaliados nos decodificadores propostos é o tamanho da janela,
dado pelo parametro k, que define quantas das posigoes finais da sequéncia parcial devem
ser analisadas para determinar a melhor posicao de insercao de um job. No decodificador
mais simples, correspondente ao caso k = 0, o job é sempre inserido ao final da sequéncia
parcial, enquanto valores k > 0 caracterizam o decodificador baseado na adaptacao da
heuristica NEH, no qual multiplas posicoes sao avaliadas. Valores reduzidos de k& implicam
menor custo computacional, mas podem limitar a capacidade de refinamento da sequéncia;
por outro lado, valores maiores ampliam o espaco de busca analisado, ao custo de maior
tempo de processamento.

Com o objetivo de comparar o desempenho dos dois decodificadores e analisar o
compromisso entre qualidade da solucao e tempo de execucao, foram realizados experi-
mentos variando-se o valor de k em diferentes escalas relativas ao tamanho das instancias,
adotando-se um critério de parada de 500 geracoes. Os resultados obtidos para a instancia
N100_P(10-20) _S(10-15) _A(20-40) _W50_Wo25_P10, apresentados nas Figuras 5.1 e 5.3,
evidenciam uma relacao clara entre a redugao do makespan das solucoes e o aumento do
tempo computacional a medida que k cresce. Esse padrao de comportamento também
foi observado nas demais instancias avaliadas, variando apenas a magnitude dos ganhos
e dos tempos de execucao.

Em relacao a qualidade das solucoes, observa-se na Figura 5.1 que, independen-

temente do valor de k, o makespan apresenta uma tendéncia de melhora ao longo das
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geracoes. No entanto, ao comparar o comportamento associado aos diferentes valores de

k, verifica-se que, para k = 0, a qualidade da solugao obtida apds 500 geragoes é inferior
aquela alcancada pelos demais valores de k ja nas geracoes iniciais. A Figura 5.2 mos-
tra que, a qualidade encontrada pelo algoritmo, utilizando k& = 0, mesmo apds executar
por 10 segundos, nao consegue encontrar valores de makespan menores do que aqueles

encontrados quando o algoritmo foi executado utilizando £ = 50 e £ = 100 em menos

de 1 segundo.
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Figura 5.1: Desempenho do decodificador para diferentes valores de k.
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Figura 5.3: Geragoes x Tempo

A Figura 5.3 evidencia que o tempo de execugao cresce com o numero de geragoes
para todos os valores de k. Esse comportamento confirma o compromisso entre quali-

dade da solucao e tempo de execucao: valores maiores de k ampliam a capacidade de
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refinamento da sequéncia, mas impoem um custo computacional maior no processo de

decodificacao.

5.4.2 Comparagao com os resultados da literatura

Apoés testes preliminares, observou-se que o algoritmo proposto apresenta tempos de
execucao compativeis mesmo quando se utiliza o maior valor possivel para a janela de
insercao, isto é, k = n. Verificou-se também que, para instancias de pequeno porte, o
algoritmo requer um numero maior de geragoes para atingir solugoes competitivas. Em
contraste, em instancias médias e grandes o algoritmo apresentou uma convergéncia mais
eficiente.

Com base nessas observagoes, o algoritmo foi executado sobre o conjunto com-
pleto de instancias utilizando, para cada caso, o maior valor admissivel de k. O ntmero
maximo de geragoes foi definido em fungao do tamanho da instancia, de modo a equilibrar
qualidade da solugao e tempo computacional: 500 geracoes para instancias com até 50
jobs, 200 geracoes para instancias com 75 jobs e 100 geragoes para instancias com 100
jobs. FEssa estratégia se justifica pelo fato de que, em instancias maiores, cada geragao
envolve um custo computacional significativamente mais elevado, enquanto ganhos mar-
ginais adicionais tendem a diminuir apés um numero relativamente pequeno de iteragoes.

Como citado anteriormente, os testes para o BRKGA foram executados em uma
maquina rodando o sistema operacional Ubuntu 24.04 com processador Intel Core i5-
1135G7 @ 2.40GHz e 16 GB de memdria, enquanto os testes de (LIN; YING, 2022) foram
executados em uma maquina com um processador Intel Xeon E5-1620v2 @ 3.70 GHz,
com 64 GB de memoria, rodando o sistema operacional Windows 10. De acordo com o
website www.cpubenchmark.net, o processador i5-1135G7 possui uma pontuagao de 9400,
enquanto o Xeon E5-1620v2 possui uma pontuacao 6506, resultando em uma razao de
desempenho de aproximadamente 1,4. Essa razao é utilizada para multiplicar os tempos
de execucao do algoritmo proposto para tornar a comparagao entre as abordagens mais
justa.

Assim como nos experimentos de (LIN; YING, 2022), o algoritmo foi executado

5 vezes para cada instancia. Dessas cinco execugoes foram tabelados o melhor makespan
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encontrado pelo BRKGA, a média do makespan nas cinco execugoes e o tempo médio de
execucao. Os resultados completos, comparando BRKGA com LIG para cada instancia
individual, podem ser encontrados nas tabelas no apéndice. A Tabela 5.2 sumariza os
resultados por combinacao dos parametros. Para cada combinagao ¢ apresentada a média
do o tempo médio de execugao do BRKGA em segundos (T_-BRKGA), a média do tempo
médio de execucao do LIG em segundos (T_LIG), em quantas instancias BRKGA conse-
guiu encontrar valores melhores do que o LIG (M), em quantas ele achou valores iguais
(I), quantos ele ndo conseguiu achar valores melhores ou iguais (P) e o desvio percentual
relativo (DPR) entre as melhores solugoes encontradas pelas abordagens, dado por:

CBRKGA _ CLIG

DPR = s (5.1)

max

Tabela 5.2: Resultados por combinacao de parametros

nop Sij d; DPR TBRKGA TLIG M 1 P
10 [10,20] [5,10] [20,40] 0.0 0.06 1.00 0 10 0
10 [10,20] [5,10] [40,60] 0.0 0.06 1.0 0 10 0
10 [10,20] [10,15] [20,40] 0.0 0.06 1.0 0 10 0
10 [10,20] [10,15] [40,60] 0.0 0.06 1.0 0 10 0
10 [20,30] [5,10] [20,40] 0.00 0.06 1.0 0 10 0
10 [20,30] [5,10] [40,60] 0.0 0.06 1.0 0 10 0
10 [20,30] [10,15] [20,40] 0.00 0.06 1.0 0 10 0
10 [20,30] [10,15] [40,60] 0.0 0.06 1.0 0 10 0
15 [10,20] [5,10] [20,40] 0.0 0.19 151 0 10 0
15 [10,20] [5,10] [40,60] 0.0 0.18 151 0 10 0
15 [10,20] [10,15] [20,40] 0.00 0.20 151 0 10 0
15 [10,20] [10,15] [40,60] 0.0 0.19 151 0 10 0
15 [20,30] [5,10] [20,40] 0.0 0.20 151 0 10 0
15 [20,30] [5,10] [40,60] 0.0 0.19 151 0 10 0
15 [20,30] [10,15] [20,40] 0.00 0.19 151 0 10 0
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nop Sij d; DPR TBRKGA TLIG M I P
15 [20,30] [10,15] [40,60] 0.00 0.20 151 0 10 0
20 [10,20] [5,10] [20,40] 0.08 0.37 200 0 7 3
20 [10,20] [5,10] [40,60] 0.10 0.36 201 0 4
20 [10,20] [10,15] [20,40] 0.08 0.37 201 0 4
20 [10,20] [10,15] [40,60] 0.02 0.35 200 0 9 1
20 [20,30] [5,10] [20,40] 0.03 0.37 200 0 8 2
20 [20,30] [5,10] [40,60] 0.07 0.36 200 0 7 3
20 [20,30] [10,15] [20,40] 0.06 0.36 200 0 7 3
20 [20,30] [10,15] [40,60] 0.07 0.35 200 0 6 4
25 [10,20] [5,10] [20,40] 0.10 0.68 251 0 5 5
25 [10,20] [5,10] [40,60] 0.12 0.66 251 1 3 6
25 [10,20] [10,15] [20,40] 0.05 0.67 251 0 7 3
25 [10,20] [10,15] [40,60] 0.08 0.65 251 1 3 6
25 [20,30] [5,10] [20,40] 0.03 0.67 251 0 8 2
25 [20,30] [5,10] [40,60] 0.04 0.70 251 1 5 4
25 [20,30] [10,15] [20,40] 0.04 0.67 251 1 5 4
25 [20,30] [10,15] [40,60] 0.05 0.69 251 0 6 4
50 [10,20] [5,10] [20,40] -0.09  4.47 501 8 1 1
50 [10,20] [5,10] [40,60] -0.02  4.51 501 3 5 2
50 [10,20] [10,15] [20,40] -0.05  4.56 501 7 2 1
50 [10,20] [10,15] [40,60] -0.09  4.71 500 8 1 1
50 [20,30] [5,10] [20,40] -0.02  4.62 500 4 5 1
50 [20,30] [5,10] [40,60] -0.03  4.41 501 5 4 1
50 [20,30] [10,15] [20,40] -0.04  4.51 500 7 2 1
50 [20,30] [10,15] [40,60] -0.04  4.70 5.01 3 1
75 [10,20] [5,10] [20,40] -0.08  5.65 750 9 1 0
75 [10,20] [5,10] [40,60] -0.12  5.61 750 9 1 0
75 [10,20] [10,15] [20,40] -0.07  5.62 750 9 1 0
75 [10,20] [10,15] [40,60] -0.07  5.52 750 9 1 0
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nop Sij d; DPR TBRKGA TLIG M I P
75 [20,30] [5,10] [20,40] -0.06  5.77 750 9 1 0
75 [20,30] [5,10] [40,60] -0.06  5.62 750 10 0 0
75 [20,30] [10,15] [20,40] -0.05  5.55 750 8 2 0
75 [20,30] [10,15] [40,60] -0.05  5.59 750 10 0 0
100 [10,20] [5,10] [20,40] -0.09  5.89 1001 10 0 0
100 [10,20] [5,10] [40,60] -0.12  5.83 1001 10 0 0
100 [10,20] [10,15] [20,40] -0.06  5.86 1001 9 1 0

100 [10,20] [10,15] [40,60] -0.09  5.90 1001 10 0 0

100 [20,30] [5,10] [20,40] -0.05  5.92 1001 9 1 0
100 [20,30] [5,10] [40,60] -0.07  5.86 1001 10 0 0
100 [20,30] [10,15] [20,40] -0.04  5.89 1001 9 1 0
100 [20,30] [10,15] [40,60] -0.06  5.92 1001 10 0 0

Os resultados indicam que o decodificador baseado no NEH, integrado ao BRKGA,
apresenta desempenho limitado em instancias de pequeno porte, nas quais encontra maior
dificuldade em superar as solucoes da literatura. Em contrapartida, para instancias de
médio e grande porte, observa-se uma melhora significativa no desempenho da aborda-
gem proposta. Em particular, nas instancias com 75 e 100 jobs, o BRKGA nao perde em
nenhuma das instancias avaliadas, obtendo resultados superiores na maioria dos casos,
além de apresentar tempos de execugao menores.

Assim, ficou demonstrado que a combinacao do BRKGA com uma heuristica de
construcao adaptada as caracteristicas do problema constitui uma abordagem robusta e
eficiente. Esse resultado reforca o papel central do decodificador no desempenho final do
BRKGA e confirma a adequagao da integracao entre a estrutura do algoritmo evolutivo

e o mecanismo de insercao incremental proposto.
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6 Conclusao

Este trabalho abordou o problema de agendamento de tarefas em maquina tnica com
tempos de configuracao dependentes da sequéncia e atrasos de precedéncia, cujo obje-
tivo é a minimizacao do makespan. Trata-se de um problema de elevada complexidade
combinatoria, especialmente quando essas duas restrigoes sao consideradas simultanea-
mente, o que inviabiliza o uso de métodos exatos para instancias de porte médio e grande.
Motivado por essas caracteristicas e tendo como principal referéncia o trabalho de (LIN;
YING, 2022), foi proposta uma abordagem metaheuristica baseada no Algoritmo Genético
de Chave Aleatéria Tendencioso (BRKGA), combinada a decodificadores especificamente
projetados para o problema em estudo.

A principal contribuicao deste trabalho consiste no desenvolvimento e na analise
de um decodificador baseado em uma adaptacao da heuristica construtiva NEH, capaz de
transformar cromossomos de chaves aleatorias em sequéncias viaveis, respeitando simulta-
neamente os tempos de configuragao dependentes da sequéncia e os atrasos de precedéncia.
Diferentemente de abordagens que operam diretamente sobre representacoes explicitas de
sequéncias, a estratégia adotada permite desacoplar o processo evolutivo da construcao da
solucao, explorando a capacidade do BRKGA de realizar busca global enquanto incorpora
conhecimento estrutural do problema no processo de decodificacao.

Além do decodificador baseado em NEH, foi também implementado um decodi-
ficador mais simples, que insere os jobs diretamente ao final da sequéncia parcial, per-
mitindo analisar o impacto do refinamento local proporcionado pela andlise de multiplas
posigoes. Mostrou-se que esse decodificador simples constitui um caso particular do de-
codificador NEH quando o parametro de janela k é igual a zero, o que possibilitou uma
analise sistematica da influéncia desse parametro no desempenho do algoritmo.

Os experimentos computacionais foram conduzidos utilizando o conjunto de instancias
disponibilizado por (LIN; YING, 2022), permitindo uma comparacao direta com os resul-
tados da literatura. Os resultados indicaram que, para instancias pequenas, o BRKGA nao

apresenta vantagens significativas em relacao ao algoritmo estado da arte, o que pode ser
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explicado pelo espaco de busca reduzido e pela eficiéncia de heuristicas deterministicas
especializadas nesse cenario. No entanto, a medida que o nimero de jobs aumenta, o
BRKGA passa a apresentar desempenho superior, superando consistentemente o método
de referéncia em instancias médias e grandes. Esse comportamento evidencia que abor-
dagens populacionais tornam-se mais adequadas conforme a complexidade combinatoéria
do problema cresce, especialmente quando combinadas com decodificadores capazes de
realizar refinamentos locais eficientes.

A anédlise do parametro k& demonstrou que existe um compromisso claro entre
custo computacional e qualidade da solugao. Valores muito pequenos limitam a capaci-
dade de melhoria da sequéncia, enquanto valores muito grandes aumentam o tempo de
execugao sem ganhos proporcionais de qualidade. Os resultados indicaram que valores
intermediarios de k oferecem a melhor relacao entre tempo e desempenho, reforcando a
importancia do ajuste adequado do decodificador no contexto do BRKGA.

Como trabalhos futuros, diversas extensoes metodologicas podem ser investiga-
das a partir da abordagem proposta. Uma possibilidade natural é a exploracao de es-
tratégias baseadas em multiplas populagoes independentes, que podem evoluir de forma
parcialmente desacoplada e trocar informagoes periodicamente, aumentando a diversidade
genética e reduzindo o risco de convergéncia prematura. De forma complementar, meca-
nismos de restart controlado podem ser incorporados ao processo evolutivo, permitindo
reinicializar parcialmente a populagao quando nao hé melhora significativa ao longo de
varias geracoes.

Outra direcao promissora consiste na integracao do BRKGA com procedimentos
de busca local, resultando em uma abordagem hibrida. Nesse contexto, o decodifica-
dor poderia ser estendido para aplicar movimentos locais adicionais sobre as sequéncias
construidas, explorando vizinhangas mais amplas apds a etapa de decodificacao e poten-
cialmente refinando ainda mais as solugoes obtidas pelo algoritmo evolutivo.

Além disso, a estratégia de decodificacao baseada na heuristica NEH adaptada
pode ser estendida para outras variantes do problema de agendamento. Em particular, a
generalizagao do modelo para ambientes com multiplas maquinas representa uma linha de

pesquisa relevante, uma vez que muitas aplicagoes praticas envolvem configuragoes mais



6 Conclusao 45

complexas do que a maquina unica. A adaptacao do decodificador e do célculo incremen-
tal do makespan para esses ambientes permitiria avaliar a robustez e a flexibilidade da

abordagem proposta em cenarios ainda mais desafiadores.
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7 Apéndice

7.1 Apéndice A: Resultados por instancias

Neste apéndice sao encontrados os resultados dos testes executados para o BRKGA e
a comparacao destes resultados com os resultados da literatura para cada instancia no
conjunto de testes. O tempo médio do BRKGA foi multiplicado pela constante de per-
fomance, assim como explicado na Subsecao 5.4.2 para tornar esta comparagao mais
justa. As tabelas que seguem mostram, para cada instancias, o makespan médio, o tempo
de execugao médio em segundos e o melhor makespan encontrado para o LIG e para o
BRKGA e esses dois resultados sao comparados utilizando a desvio percentual relativo

(DPR).
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Tabela 7.1: Resultados para instancias com 10 jobs

LIG BRKGA
Instancia Crnax médio T médio (s) Ciax melhor  Cipax médio T médio (s) Ciax melhor DPR
N10_P(10-20)_S(5-10)_A(20-40) W5 Wo2 P1 193.0 1.01 193 193.0 0.06 193 0.0
NlOP(lO-ZO),S(5-10)A(20-40),W5,W02P2 188.0 1.0 188 188.0 0.05 188 0.0
N10_P(10-20)_S(5-10)_A (20-40)_W5_Wo2_P3 190.0 1.0 190 190.0 0.07 190 0.0
N10_P(10-20)_S(5-10)_A (20-40)_'W5_Wo2_P4 196.0 1.0 196 196.0 0.07 196 0.0
N10_P(10-20)_S(5-10)_A(20-40) W5 Wo2_P5 201.0 1.0 201 201.0 0.06 201 0.0
N10_P(10-20)_S(5-10)_A(20-40) W5 Wo2 P6 223.0 1.0 223 223.0 0.06 223 0.0
NlOP(lO-ZO),S(5-10)A(20-40),W5,W02P7 198.0 1.0 198 198.0 0.06 198 0.0
N10_P(10-20)_S(5-10)_A (20-40)_W5_Wo2_P8 195.0 1.0 195 195.0 0.07 195 0.0
N10_P(10-20)_S(5-10)_A (20-40)_'W5_Wo2_P9 190.0 1.0 190 190.0 0.06 190 0.0
N10_P(10-20)_S(5-10)_A(20-40) _-W5_Wo02_P10 209.0 1.01 209 209.0 0.06 209 0.0
N10_P(10-20)_S(5-10)_A (40-60) W5 Wo2 P1 193.0 1.01 193 193.0 0.06 193 0.0
N10_P(10-20)_S(5-10)_A (40-60)_'W5_Wo2_P2 192.0 1.01 192 192.0 0.06 192 0.0
N10_P(10-20)_S(5-10)_A (40-60)_W5_Wo2_P3 190.0 1.01 190 190.0 0.06 190 0.0
N10_P(10-20)_S(5-10)_A (40-60) _'W5_Wo2 P4 197.0 1.01 197 197.0 0.06 197 0.0
N10_P(10-20)_S(5-10)_A (40-60) _-W5_Wo2_P5 254.0 1.01 254 254.0 0.05 254 0.0
N10_P(10-20)_S(5-10)_A (40-60) W5 Wo2_P6 267.0 1.01 267 267.0 0.06 267 0.0
N10_P(10-20)_S(5-10)_A (40-60)_'W5_Wo2_P7 202.0 1.01 202 202.0 0.07 202 0.0
N10_P(10-20)_S(5-10)_A(40-60) _'W5_Wo2_P8 195.0 1.01 195 195.0 0.06 195 0.0
N10_P(10-20)_S(5-10)_A(40-60)_'W5_Wo2_P9 192.0 1.01 192 192.0 0.06 192 0.0
N10_P(10-20)_S(5-10)_A(40-60) W5 Wo2 P10 211.0 1.01 211 211.0 0.06 211 0.0
N10_P(10-20)_S(10-15)_A (20-40) W5 Wo2_P1 236.0 1.01 236 236.0 0.06 236 0.0
N10_P(10-20)_S(10-15)_A(20-40)_W5_Wo2_P2 231.0 1.01 231 231.0 0.05 231 0.0
N10_P(10-20)_S(10-15)_A(20-40)_-W5_Wo2_P3 235.0 1.01 235 235.0 0.07 235 0.0
N10_P(10-20)_S(10-15)_A(20-40)_'W5_Wo2_P4 241.0 1.01 241 241.0 0.06 241 0.0
N10_P(10-20)_S(10-15)_A(20-40) W5 Wo2 P5 246.0 1.01 246 246.0 0.06 246 0.0
N10_P(10-20)_S(10-15)_A(20-40) W5 Wo2_P6 264.0 1.01 264 264.0 0.06 264 0.0
N10_P(10-20)_S(10-15)_A (20-40)_W5_Wo2_P7 243.0 1.01 243 243.0 0.06 243 0.0
N10_P(10-20)_S(10-15)_A(20-40)_-W5_Wo2_P8 240.0 1.0 240 240.0 0.06 240 0.0
N10_P(10-20)_S(10-15)_A(20-40)_-W5_Wo2_P9 235.0 1.01 235 235.0 0.06 235 0.0
N10_P(10-20)_S(10-15)_A(20-40) W5 Wo2 P10 252.0 1.01 252 252.0 0.06 252 0.0
N10_P(10-20)_S(10-15)_A (40-60) W5 Wo2_P1 238.0 1.0 238 238.0 0.06 238 0.0
N10_P(10-20)_S(10-15)_A(40-60)_-W5_Wo2_P2 235.0 1.01 235 235.0 0.06 235 0.0
N10_P(10-20)_S(10-15)_A(40-60) - W5_Wo2_P3 235.0 1.01 235 235.0 0.07 235 0.0
N10_P(10-20)_S(10-15)_A(40-60)_'W5_Wo2_P4 241.0 1.01 241 241.0 0.06 241 0.0
N10_P(10-20)_S(10-15)_A (40-60) W5 Wo2_P5 264.0 1.01 264 264.0 0.06 264 0.0
N10_P(10-20)_S(10-15)_A (40-60) W5 Wo2_P6 281.0 1.01 281 281.0 0.06 281 0.0
N10_P(10-20)_S(10-15)_A (40-60)_W5_Wo2_P7 243.0 1.01 243 243.0 0.06 243 0.0
N10_P(10-20)_S(10-15)_A(40-60)_-W5_Wo2_P8 240.0 1.01 240 240.0 0.07 240 0.0
N10_P(10-20)_S(10-15)_A (40-60)_-W5_Wo2_P9 235.0 1.01 235 235.0 0.06 235 0.0
N10_P(10-20)_S(10-15)_A(40-60) W5 Wo2 P10  255.0 1.01 255 255.0 0.06 255 0.0
NlOP(ZO-?}O),S(5-10)A(20-40),W5,W02P1 291.0 1.01 291 291.0 0.06 291 0.0
N10_P(20-30)_S(5-10)_A (20-40) _'W5_Wo2_P2 286.0 1.01 286 286.0 0.05 286 0.0
N10_P(20-30)_S(5-10)_-A(20-40) W5_Wo2_P3 290.0 1.01 290 290.0 0.08 290 0.0
N10_P(20-30)_S(5-10) _A(20-40) _'W5_Wo2 P4 296.0 1.01 296 296.0 0.06 296 0.0
N10_P(20-30)_S(5-10)_A(20-40)_-W5_Wo2_P5 301.0 1.01 301 301.0 0.06 301 0.0
N10_P(20-30)_S(5-10)_A(20-40) W5 Wo2_P6 319.0 1.01 319 319.0 0.06 319 0.0
N10_P(20-30)_S(5-10)_A (20-40)_'W5_Wo2_P7 298.0 1.01 298 298.0 0.07 298 0.0
N10_P(20-30)_S(5-10)_-A(20-40) W5_Wo2_P8 295.0 1.01 295 295.0 0.07 295 0.0
N10_P(20-30)_S(5-10)_A (20-40)_'W5_Wo2_P9 290.0 1.0 290 290.0 0.06 290 0.0
N10_P(20-30)_S(5-10)_A (20-40) W5 Wo2 P10 307.0 1.01 307 307.0 0.07 307 0.0
N10_P(20-30)_S(5-10)_A(40-60) W5 Wo2 P1 293.0 1.01 293 293.0 0.07 293 0.0
N10_P(20-30)_S(5-10)_-A(40-60) _'W5_Wo2_P2 290.0 1.01 290 290.0 0.06 290 0.0
N10_P(20-30)_S(5-10)_A(40-60) _'W5_Wo2_P3 290.0 1.01 290 290.0 0.07 290 0.0
N10_P(20-30)_S(5-10)_A (40-60)_'W5_Wo2_P4 296.0 1.0 296 296.0 0.06 296 0.0
N10_P(20-30)_S(5-10)_A (40-60) W5 Wo2_P5 317.0 1.01 317 317.0 0.06 317 0.0
N10_P(20-30)_S(5-10)_A (40-60) _-W5_Wo2_P6 336.0 1.01 336 336.0 0.06 336 0.0
N10_P(20-30)_S(5-10)_-A(40-60) _W5_Wo2_P7 298.0 1.01 298 298.0 0.06 298 0.0
N10_P(20-30)_S(5-10)_-A(40-60) _'W5_Wo2_P8 295.0 1.01 295 295.0 0.06 295 0.0
N10_P(20-30)_S(5-10) A (40-60)_'W5_Wo2_P9 290.0 1.01 290 290.0 0.05 290 0.0
N10_P(20-30)_S(5-10)_A (40-60) _-W5_Wo2_P10 310.0 1.01 310 310.0 0.06 310 0.0
N10_P(20-30)_S(10-15)_A (20-40) W5 Wo2_P1 336.0 1.01 336 336.0 0.07 336 0.0
N10_P(20-30)_S(10-15)_A (20-40)_W5_Wo2_P2 331.0 1.01 331 331.0 0.05 331 0.0
N10_P(20-30)_S(10-15)_A(20-40)_-W5_Wo2_P3 335.0 1.01 335 335.0 0.07 335 0.0
N10_P(20-30)_S(10-15)_A(20-40)_'W5_Wo2_P4 341.0 1.01 341 341.0 0.07 341 0.0
N10_P(20-30)_S(10-15)_A(20-40)_-W5_Wo2_P5 343.0 1.01 343 343.0 0.07 343 0.0
N10_P(20-30)_S(10-15)_A(20-40)_-W5_Wo2_P6 364.0 1.01 364 364.0 0.06 364 0.0
N10_P(20-30)_S(10-15)_A(20-40)_-W5_Wo2_P7 343.0 1.01 343 343.0 0.07 343 0.0
N10_P(20-30)_S(10-15)_A(20-40)_'W5_Wo2_P8 340.0 1.01 340 340.0 0.06 340 0.0
N10_P(20-30)_S(10-15)_A(20-40)_'W5_Wo2_P9 335.0 1.0 335 335.0 0.06 335 0.0
N10_P(20-30)_S(10-15)_A(20-40)_-W5_Wo2_P10 352.0 1.01 352 352.0 0.06 352 0.0
N10_P(20-30)_S(10-15)_A(40-60)_-W5_Wo2_P1 338.0 1.01 338 338.0 0.07 338 0.0
N10_P(20-30)_S(10-15)_A(40-60)_-W5_Wo2_P2 333.0 1.0 333 333.0 0.06 333 0.0
N10_P(20-30)_S(10-15)_A (40-60)_'W5_Wo2_P3 335.0 1.0 335 335.0 0.07 335 0.0
N10_P(20-30)_S(10-15)_A (40-60)_W5_Wo2_P4 341.0 1.0 341 341.0 0.07 341 0.0
N10_P(20-30)_S(10-15)_A (40-60)_-W5_Wo2_P5 346.0 1.01 346 346.0 0.06 346 0.0
N10_P(20-30)_S(10-15)_A(40-60)_-W5_Wo02_P6 368.0 1.01 368 368.0 0.06 368 0.0
N10_P(20-30)_S(10-15)_A(40-60) - W5_Wo2_P7 343.0 1.01 343 343.0 0.06 343 0.0
N10_P(20-30)_S(10-15)_A (40-60)_'W5_Wo2_P8 340.0 1.01 340 340.0 0.07 340 0.0
N10_P(20-30)_S(10-15)_A(40-60)_'W5_Wo2_P9 335.0 1.01 335 335.0 0.06 335 0.0

N10_P(20-30) S(10-15)_A(40-60) W5 Wo2 P10 354.0 1.01 354 354.0 0.06 354 0.0
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Tabela 7.2: Resultados para instancias com 15 jobs

LIG BRKGA
Instancia Crnax médio T médio (s) Ciax melhor  Cipax médio T médio (s) Ciax melhor DPR
N15_P(10-20)_S(5-10)_A(20-40) W7 _Wo3_P1 285.0 1.51 285 285.0 0.25 285 0.0
N15P(10-20),S(5-10)A(20-40),W7,W03P2 278.0 1.5 278 278.0 0.18 278 0.0
N15_P(10-20)_S(5-10)_A (20-40) _'W7_Wo3_P3 284.0 1.51 284 284.0 0.19 284 0.0
N15_P(10-20)_S(5-10)_A(20-40) W7_Wo3_P4 296.0 1.51 296 296.0 0.21 296 0.0
N15_P(10-20)_S(5-10)_A(20-40) W7 _Wo3_P5 282.0 151 282 282.0 0.14 282 0.0
N15_P(10-20)_S(5-10)_A(20-40) W7_Wo3 P6 311.0 1.51 311 311.0 0.19 311 0.0
N15P(10-20),S(5-10)A(20-40),W7,W03P7 298.0 1.51 298 298.0 0.17 298 0.0
N15_P(10-20)_S(5-10)_A (20-40) _'W7_Wo3_P8 294.0 1.51 294 294.0 0.18 294 0.0
N15_P(10-20)_S(5-10)_A(20-40)_W7_Wo3_P9 290.0 1.51 290 290.0 0.19 290 0.0
N15_P(10-20)_S(5-10)_A(20-40) _-W7_Wo03_P10 306.0 1.51 306 306.0 0.22 306 0.0
N15_P(10-20)_S(5-10)_A (40-60) W7 _Wo3_P1 285.0 1.51 285 285.0 0.2 285 0.0
N15_P(10-20)_S(5-10)_A (40-60)_'W7_Wo3_P2 278.0 1.51 278 278.2 0.16 278 0.0
N15_P(10-20)_S(5-10)_A (40-60)_'W7_Wo3_P3 285.0 1.51 285 285.0 0.19 285 0.0
N15_P(10-20)_S(5-10)_A (40-60) _W7_Wo3_P4 297.0 1.51 297 297.0 0.21 297 0.0
N15_P(10-20)_S(5-10)_A (40-60) W7 _Wo3_P5 284.0 151 284 284.0 0.17 284 0.0
N15_P(10-20)_S(5-10)_A (40-60) W7 _Wo3_P6 313.0 1.51 313 313.0 0.17 313 0.0
N15_P(10-20)_S(5-10)_A (40-60)_'W7_Wo3_P7 298.0 1.51 298 298.0 0.16 298 0.0
N15_P(10-20)_S(5-10)_-A(40-60) _W7_Wo3_P8 295.0 1.51 295 295.0 0.16 295 0.0
N15_P(10-20)_S(5-10)_A (40-60) _'W7_Wo3_P9 290.0 15 290 290.0 0.21 290 0.0
N15_P(10-20)_S(5-10)_A (40-60) _-W7_Wo03_P10 306.0 1.51 306 306.0 0.19 306 0.0
N15_P(10-20)_S(10-15)_A (20-40) W7 Wo3_P1 355.0 1.51 355 355.0 0.2 355 0.0
N15_P(10-20)_S(10-15)_A (20-40)_W7_Wo3_P2 348.0 1.51 348 348.0 0.22 348 0.0
N15_P(10-20)_S(10-15)_A(20-40)_-W7_Wo3_P3 353.0 1.51 353 353.0 0.22 353 0.0
N15_P(10-20)_S(10-15)_A(20-40)_'W7_Wo3_P4 366.0 1.51 366 366.0 0.22 366 0.0
N15_P(10-20)_S(10-15)_A(20-40) W7 Wo3_P5 351.0 151 351 351.0 0.17 351 0.0
N15_P(10-20)_S(10-15)_A (20-40) W7 Wo3_P6 380.0 1.51 380 380.0 0.21 380 0.0
N15_P(10-20)_S(10-15)_A (20-40)_'W7_Wo3_P7 368.0 1.51 368 368.0 0.21 368 0.0
N15_P(10-20)_S(10-15)_A(20-40) _-W7_Wo3_P8 363.0 1.51 363 363.0 0.19 363 0.0
N15_P(10-20)_S(10-15)_A(20-40)_'W7_Wo3_P9 360.0 1.51 360 360.0 0.17 360 0.0
N15_P(10-20)_S(10-15)_A(20-40) W7 Wo3_ P10  376.0 1.51 376 376.0 0.2 376 0.0
N15_P(10-20)_S(10-15)_A (40-60) W7 Wo3_P1 355.0 1.51 355 355.0 0.21 355 0.0
N15_P(10-20)_S(10-15)_A (40-60)_W7_Wo3_P2 348.0 1.51 348 348.0 0.16 348 0.0
N15_P(10-20)_S(10-15)_A(40-60) - W7_Wo3_P3 354.0 1.51 354 354.0 0.19 354 0.0
N15_P(10-20)_S(10-15)_A (40-60)_'W7_Wo3_P4 366.0 1.51 366 366.0 0.22 366 0.0
N15_P(10-20)_S(10-15)_A(40-60)_-W7_Wo3_P5 352.0 1.51 352 352.0 0.16 352 0.0
N15_P(10-20)_S(10-15)_A (40-60) W7 Wo3_P6 382.0 1.51 382 382.0 0.19 382 0.0
N15_P(10-20)_S(10-15)_A (40-60)_'W7_Wo3_P7 368.0 1.51 368 368.0 0.19 368 0.0
N15_P(10-20)_S(10-15)_A(40-60) - W7_Wo3_P8 364.0 1.51 364 364.8 0.17 364 0.0
N15_P(10-20)_S(10-15)_A(40-60)_'W7_Wo3_P9 360.0 1.51 360 360.0 0.22 360 0.0
N15_P(10-20)_S(10-15)_A(40-60) W7 Wo3 P10  376.0 1.51 376 376.0 0.18 376 0.0
N15_P(20-30)_S(5-10)_A(20-40) W7_Wo3_P1 435.0 1.51 435 435.0 0.24 435 0.0
N15_P(20-30)_S(5-10)_A (20-40) _'W7_Wo3_P2 428.0 1.51 428 428.0 0.2 428 0.0
N15_P(20-30)_S(5-10)_A(20-40) W7_Wo3_P3 433.0 1.51 433 433.0 0.22 433 0.0
N15_P(20-30)_S(5-10)_A (20-40)_'W7_Wo3_P4 446.0 1.51 446 446.0 0.2 446 0.0
N15_P(20-30)_S(5-10)_A(20-40) W7 _Wo3_P5 431.0 1.51 431 431.0 0.17 431 0.0
N15_P(20-30)_S(5-10)_A (20-40) W7 _Wo3_P6 460.0 15 460 460.0 0.18 460 0.0
N15_P(20-30)_S(5-10)_A (20-40)_'W7_Wo3_P7 448.0 1.51 448 448.0 0.18 448 0.0
N15_P(20-30)_S(5-10)_-A(20-40) W7_Wo3_P8 443.0 1.51 443 443.0 0.18 443 0.0
N15_P(20-30)_S(5-10)_A(20-40)_W7_Wo3_P9 440.0 1.51 440 440.0 0.23 440 0.0
N15_P(20-30)_S(5-10)_A(20-40) _-W7_Wo3_P10 456.0 1.51 456 456.0 0.19 456 0.0
N15_P(20-30)_S(5-10)_A (40-60) W7 _Wo3_P1 435.0 1.51 435 435.0 0.18 435 0.0
N15_P(20-30)_S(5-10)_-A(40-60) _W7_Wo3_P2 428.0 1.51 428 428.0 0.21 428 0.0
N15_P(20-30)_S(5-10)_A(40-60) _W7_Wo3_P3 434.0 1.51 434 434.0 0.16 434 0.0
N15_P(20-30)_S(5-10)_A(40-60) _W7_Wo3_P4 446.0 1.51 446 446.0 0.22 446 0.0
N15_P(20-30)_S(5-10)_A (40-60) W7 _Wo3_P5 432.0 1.51 432 432.0 0.16 432 0.0
N15P(20-30),5(5-10)A(40-60),W7,W03P6 462.0 1.51 462 462.0 0.2 462 0.0
N15_P(20-30)_S(5-10)_-A(40-60) W7_Wo3_P7 448.0 1.51 448 448.0 0.19 448 0.0
N15_P(20-30)_S(5-10)_A (40-60) _W7_Wo3_P8 444.0 1.51 444 444.0 0.16 444 0.0
N15_P(20-30)_S(5-10)_A (40-60)_'W7_Wo3_P9 440.0 1.51 440 440.0 0.17 440 0.0
N15_P(20-30)_S(5-10)_A (40-60) _-W7_Wo03_P10 456.0 1.51 456 456.0 0.22 456 0.0
N15_P(20-30)_S(10-15)_A (20-40) W7 Wo3_P1 505.0 1.51 505 505.0 0.23 505 0.0
N15_P(20-30)_S(10-15)_A(20-40) - W7_Wo3_P2 497.0 1.51 497 497.0 0.14 497 0.0
N15_P(20-30)_S(10-15)_A(20-40) - W7_Wo3_P3 503.0 1.51 503 503.0 0.22 503 0.0
N15_P(20-30)_S(10-15)_A(20-40)_'W7_Wo3_P4 516.0 1.51 516 516.0 0.19 516 0.0
N15_P(20-30)_S(10-15)_A(20-40)_-W7_Wo3_P5 501.0 1.51 501 501.0 0.19 501 0.0
N15_P(20-30)_S(10-15)_A(20-40)_-W7_Wo03_P6 530.0 1.51 530 530.0 0.17 530 0.0
N15_P(20-30)_S(10-15)_A (20-40)_W7_Wo3_P7 518.0 1.51 518 518.0 0.18 518 0.0
N15_P(20-30)_S(10-15)_A(20-40)_'W7_Wo3_P8 513.0 1.5 513 513.0 0.17 513 0.0
N15_P(20-30)_S(10-15)_A(20-40)_'W7_Wo3_P9 510.0 1.51 510 510.0 0.22 510 0.0
N15_P(20-30)_S(10-15)_A(20-40)_-W7_Wo3_P10 526.0 1.51 526 526.0 0.14 526 0.0
N15_P(20-30)_S(10-15)_A(40-60)_-W7_Wo3_P1 505.0 1.51 505 505.0 0.2 505 0.0
N15_P(20-30)_S(10-15)_A(40-60) - W7_Wo3_P2 498.0 1.51 498 498.0 0.23 498 0.0
N15_P(20-30)_S(10-15)_A (40-60)_'W7_Wo3_P3 504.0 1.51 504 504.0 0.2 504 0.0
N15_P(20-30)_S(10-15)_A (40-60)_W7_Wo3_P4 516.0 15 516 516.0 0.2 516 0.0
N15_P(20-30)_S(10-15)_A (40-60) W7 Wo3_P5 502.0 15 502 502.0 0.17 502 0.0
N15_P(20-30)_S(10-15)_A(40-60)_-W7_Wo03_P6 531.0 1.51 531 531.0 0.18 531 0.0
N15_P(20-30)_S(10-15)_A (40-60)_W7_Wo3_P7 518.0 1.51 518 518.0 0.2 518 0.0
N15_P(20-30)_S(10-15)_A (40-60)_'W7_Wo3_P8 514.0 1.51 514 514.0 0.18 514 0.0
N15_P(20-30)_S(10-15)_A (40-60)_'W7_Wo3_P9 510.0 1.51 510 510.0 0.21 510 0.0

N15_P(20-30)_S(10-15)_A(40-60)_-W7_Wo03_P10 526.0 1.51 526 526.0 0.21 526 0.0
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Tabela 7.3: Resultados para instancias com 20 jobs

LIG BRKGA
Instancia Chnax médio T médio (s) Chax melhor  Cpax médio T médio (8)  Chax melhor DPR
N20_P(10-20)_S(5-10)_-A(20-40) - W10_Wo5_P1 386.0 2.01 386 386.0 0.4 386 0.0
N20_P(10-20)_S(5-10)_A(20-40) _W10_Wo5_P2 369.0 2.01 369 370.0 0.42 370 0.27
N20_P(10-20)_S(5-10)_A (20-40)_W10_Wo5_P3 385.0 2.01 385 385.6 0.39 385 0.0
N20_P(10-20)_S(5-10)_A(20-40) ' W10_Wo5_P4 395.8 2.01 395 396.0 0.31 396 0.25
N20_P(10-20)_S(5-10)_A (20-40)_W10_Wo5_P5 375.0 2.01 375 376.0 0.4 376 0.27
N20_P(10-20)_S(5-10)_A(20-40)_W10_-Wo5_P6 415.0 2.01 415 415.6 0.35 415 0.0
N20_P(10-20)_S(5-10)_A (20-40)_W10_Wo5_P7 396.0 2.01 396 396.4 0.35 396 0.0
N20_P(10-20)_S(5-10)_A(20-40)_W10_-Wo5_P8 388.2 2.01 388 389.2 0.36 388 0.0
N20_P(10-20)_S(5-10)_A(20-40) . W10_Wo5_P9 406.0 2.01 406 406.0 0.32 406 0.0
N20_P(10-20)_S(5-10)_A(20-40)_W10_-Wo5_P10 393.0 2.01 393 393.0 0.41 393 0.0
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_P1 386.0 2.01 386 386.6 0.37 386 0.0
N20_P(10-20)_S(5-10)_A (40-60)_W10_-Wo5_P2 369.4 2.01 369 370.0 0.41 370 0.27
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_P3 385.0 2.0 385 386.0 0.39 386 0.26
N20_P(10-20)_S(5-10)_A (40-60)_W10_-Wo5_P4 396.0 2.01 396 396.4 0.38 396 0.0
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_P5 375.6 2.01 375 376.0 0.35 376 0.27
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_P6 415.0 2.01 415 416.0 0.31 416 0.24
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_P7 396.0 2.01 396 396.6 0.41 396 0.0
N20_P(10-20)_S(5-10)_A (40-60)_W10_-Wo5_P8 390.0 2.01 390 390.2 0.32 390 0.0
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_P9 414.0 2.01 414 4148 0.3 414 0.0
N20_P(10-20)_S(5-10)_A (40-60)_W10_Wo5_ P10  393.0 2.01 393 393.0 0.4 393 0.0
N20_P(10-20)_S(10-15)_A(20-40)_-W10_-Wo5_P1 481.0 2.01 481 481.0 0.38 481 0.0
NZO,P(10—20),5(10-15),A(20-40),WIO,W05,P2 464.0 2.01 464 465.0 0.41 465 0.22
N20_P(10-20)_S(10-15)_A(20-40)_-W10_-Wo5_P3 479.0 2.01 479 479.0 0.37 479 0.0
NZO,P(10-20),5(10-15),A(20-40),WIO,W05,P4 490.6 2.01 490 491.0 0.37 491 0.2
N20_P(10-20)_S(10-15)_A(20-40)_-W10_-Wo5_P5 469.0 2.01 469 469.0 0.38 469 0.0
N20_P(10-20)_S(10-15)_A(20-40)_W10_-Wo5_P6 510.0 2.01 510 510.8 0.32 510 0.0
N20_P(10-20)_S(10-15)_A(20-40) _-W10_-Wo5_P7 491.0 2.01 491 4914 0.39 491 0.0
NZO,P(10—20),5(10-15),A(20-40),WIO,W05,P8 483.0 2.01 483 484.0 0.34 484 0.21
N20_P(10-20)_S(10-15)_A(20-40)_-W10_-Wo5_P9 501.0 2.01 501 501.0 0.29 501 0.0
NZO,P(10-20),5(10-15),A(20-40),WIO,W05,P10 488.0 2.01 488 489.0 0.43 489 0.2
N20_P(10-20)_S(10-15)_A(40-60) _-W10_-Wo5_P1 481.0 2.01 481 481.0 0.31 481 0.0
N20_P(10-20)_S(10-15)_A(40-60) _-W10_-Wo5_P2 464.0 2.01 464 464.4 0.35 464 0.0
N20_P(10-20)_S(10-15)_A(40-60)_-W10_Wo5_P3 480.0 2.01 480 480.8 0.31 480 0.0
N20_P(10-20)_S(10-15)_A(40-60) _-W10_-Wo5_P4 490.2 2.01 490 490.8 0.41 490 0.0
N20_P(10-20)_S(10-15)_A(40-60)_-W10_Wo5_P5 470.0 2.01 470 471.0 0.33 471 0.21
N20_P(10-20)_S(10-15)_A(40-60) _-W10_-Wo5_P6 510.0 2.01 510 510.0 0.34 510 0.0
N20_P(10-20)_S(10-15)_A(40-60) _W10_Wo5_P7 491.0 2.01 491 4914 0.41 491 0.0
N20_P(10-20)_S(10-15)_A (40-60)_W10_Wo5_P8 483.2 2.01 483 4842 0.39 483 0.0
N20_P(10-20)_S(10-15)_A(40-60) _W10_Wo5_P9 505.0 2.01 505 505.0 0.32 505 0.0
N20_P(10-20)_S(10-15)_A(40-60) W10_Wo5_ P10  488.0 2.01 488 488.6 0.35 488 0.0
N20_P(20-30)_S(5-10)_A(20-40)_W10-Wo5_P1 586.0 2.01 586 586.0 0.39 586 0.0
N20_P(20-30)_S(5-10)_A (20-40)_W10_Wo5_P2 569.0 2.01 569 569.4 0.41 569 0.0
N20_P(20-30)_S(5-10)_A(20-40)_W10_-Wo5_P3 584.0 2.01 584 584.0 0.36 584 0.0
N20_P(20-30)_S(5-10)_A (20-40)_W10_Wo5_P4 595.6 2.01 595 596.0 0.41 596 0.17
N20_P(20-30)_S(5-10) _A (20-40)_W10_Wo5_P5 574.0 2.01 574 574.8 0.33 574 0.0
N20_P(20-30)_S(5-10)_A (20-40)_W10_Wo5_P6 615.0 2.01 615 615.2 0.31 615 0.0
N20_P(20-30)_S(5-10)_A(20-40)_W10_-Wo5_P7 596.0 2.01 596 596.0 0.42 596 0.0
N20_P(20-30)_S(5-10)_A (20-40)_W10_Wo5_P8 588.2 2.01 588 589.0 0.34 589 0.17
N20_P(20-30)_S(5-10)_A(20-40)_W10_-Wo5_P9 606.0 2.01 606 606.0 0.32 606 0.0
N20_P(20-30)_S(5-10)_A (20-40)_W10_Wo5_P10 593.0 2.01 593 593.4 0.37 593 0.0
N20_P(20-30)_S(5-10)_A (40-60)_W10_-Wo5_P1 586.0 2.01 586 586.0 0.32 586 0.0
N20_P(20-30)_S(5-10)_A(40-60) . W10_Wo5_P2 569.0 2.01 569 570.6 0.33 570 0.18
N20_P(20-30)_S(5-10)_A (40-60)_W10_-Wo5_P3 585.0 2.01 585 585.2 0.34 585 0.0
N20_P(20-30)_S(5-10)_A (40-60)_W10_Wo5_P4 595.2 2.01 595 596.0 0.43 596 0.17
N20_P(20-30)_S(5-10)_A (40-60)_W10_-Wo5_P5 575.0 2.0 575 575.0 0.41 575 0.0
N20_P(20-30)_S(5-10)_A (40-60)_W10_Wo5_P6 615.0 2.01 615 615.0 0.32 615 0.0
N20_P(20-30)_S(5-10)_A (40-60)_W10_-Wo5_P7 596.0 2.01 596 596.0 0.44 596 0.0
N20_P(20-30)_S(5-10)_A(40-60) _W10_Wo5_P8 588.6 2.0 588 590.0 0.35 590 0.34
N20_P(20-30)_S(5-10)_A (40-60)_W10_-Wo5_P9 610.0 2.01 610 610.0 0.3 610 0.0
N20_P(20-30)_S(5-10)_A(40-60) _W10_Wo5_P10 593.0 2.01 593 593.0 0.35 593 0.0
N20_P(20-30)_S(10-15)_A (20-40)_W10_Wo5_P1  681.0 2.0 681 681.0 0.32 681 0.0
N20_P(20-30)_S(10-15)_A(20-40) _'W10_-Wo5_P2 664.0 2.01 664 664.6 0.42 664 0.0
N20_P(20-30)_S(10-15)_A(20-40)_W10_Wo5_P3 679.0 2.01 679 679.0 0.39 679 0.0
N20_P(20-30)_S(10-15)_A(20-40)_W10_-Wo5_P4 690.6 2.01 690 691.0 0.4 691 0.14
N20_P(20-30)_S(10-15)_A(20-40) _-W10_-Wo5_P5 669.0 2.01 669 669.2 0.39 669 0.0
N20_P(20-30)_S(10-15)_A(20-40) _-W10_-Wo5_P6 710.0 2.01 710 711.0 0.3 711 0.14
N20_P(20-30)_S(10-15)_A(20-40)_-W10_-Wo5_P7 691.0 2.01 691 691.0 0.35 691 0.0
N20_P(20-30)_S(10-15)_A(20-40)_W10_Wo5_P8 683.2 2.01 683 685.0 0.36 685 0.29
N20_P(20-30)_S(10-15)_A (20-40)_W10_Wo5_P9 701.0 2.01 701 701.0 0.33 701 0.0
N20_P(20-30)_S(10-15)_A(20-40) ' W10_Wo5_P10 688.0 2.01 688 688.4 0.35 688 0.0
N20_P(20-30)_S(10-15)_A(40-60) _-W10_-Wo5_P1 681.0 2.01 681 681.0 0.3 681 0.0
N20_P(20-30)_S(10-15)_A(40-60) _W10_Wo5_P2 664.0 2.01 664 665.2 0.36 665 0.15
N20_P(20-30)_S(10-15)_A (40-60)_W10_Wo5_P3 680.0 2.01 680 680.0 0.37 680 0.0
N20_P(20-30)_S(10-15)_A(40-60)_-W10_-Wo5_P4 690.8 2.01 690 691.2 0.38 691 0.14
N20_P(20-30)_S(10-15)_A (40-60)_W10_Wo5_P5 669.6 2.01 669 670.0 0.42 670 0.15
N20_P(20-30)_S(10-15)_A(40-60)_-W10_-Wo5_P6 710.0 2.01 710 710.2 0.33 710 0.0
N20_P(20-30)_S(10-15)_A (40-60)_W10_Wo5_P7 691.0 2.01 691 691.0 0.39 691 0.0
N20_P(20-30)_S(10-15)_A(40-60)_W10_Wo5_P8 683.2 2.01 683 685.0 0.3 685 0.29
N20_P(20-30)_S(10-15)_A (40-60)_W10_Wo5_P9 701.0 2.01 701 701.0 0.3 701 0.0
N20_P(20-30)_S(10-15)_A(40-60)_-W10_-Wo5_P10 688.0 2.01 688 688.2 0.35 688 0.0




7.1 Apéndice A: Resultados por instancias 50
Tabela 7.4: Resultados para instancias com 25 jobs
LIG BRKGA
Instancia Cinax médio T médio (s) Cpax melhor  Cpax médio T médio (s)  Chax melhor DPR
N25_P(10-20)_S(5-10)_A(20-40) W12 Wo6_P1 482.4 2.5 482 483.6 0.67 483 0.21
N25_P(10-20)_S(5-10)_A(20-40)_W12_Wo6_P2 465.0 2.5 465 465.8 0.74 465 0.0
N25_P(10-20)_S(5-10)_A(20-40) _'W12_Wo6_P3 478.0 2.5 478 479.0 0.66 479 0.21
N25_P(10-20)_S(5-10)_A(20-40) W12 Wo6_P4 489.0 2.51 489 489.4 0.73 489 0.0
N25_P(10-20)_S(5-10)_A(20-40)_'W12_Wo6_P5 468.2 251 468 468.8 0.71 468 0.0
N25I’(10-20),S(5-10)A(20-40),W12,W06,P6 504.0 2.51 504 504.0 0.69 504 0.0
N25_P(10-20)_S(5-10)_A(20-40) W12 _Wo6_P7 490.8 2.51 490 491.0 0.64 491 0.2
N25P(10-20),S(5-10)A(20-40),W12,W06,P8 492.0 2.51 491 491.6 0.58 491 0.0
N25I’(10-20),S(5-10)A(20-40),W12,W06,P9 480.8 2.51 480 481.8 0.55 481 0.21
N25_P(10-20)_S(5-10)_A(20-40) _-W12_Wo6_P10 488.8 2.51 488 489.0 0.78 489 0.2
N25P(10-20),S(5-10)A(40-60),W12,W06,P1 483.0 2.51 483 483.2 0.73 482 -0.21
N25P(10—20),S(5—10)A(40—60),W12,W06,P2 464.4 2.51 464 465.4 0.71 465 0.22
N25_P(10-20)_S(5-10)_A (40-60)_W12_Wo6_P3 478.2 251 478 479.0 0.57 479 0.21
N25_P(10-20)_S(5-10)_A (40-60) _'W12_Wo6_P4 489.8 251 489 490.0 0.62 490 0.2
N25_P(10-20)_S(5-10)_A(40-60) _-W12_Wo6_P5 468.6 2.51 468 469.6 0.67 468 0.0
N25_P(10-20)_S(5-10)_A (40-60)_W12_Wo6_P6 503.8 25 503 504.4 0.67 504 0.2
N25_P(10-20)_S(5-10)_A (40-60) _'W12_Wo6_P7 491.0 25 491 491.0 0.69 491 0.0
N25_P(10-20)_S(5-10)_A(40-60) _W12_Wo6_P8 491.4 2.51 491 492.6 0.71 492 0.2
N25_P(10-20)_S(5-10)_A (40-60) _'W12_Wo6_P9 481.4 2.5 480 482.6 0.53 482 0.42
N25P(10-20),S(5-10)A(40-60),W12,W06,P10 489.2 2.5 489 489.6 0.68 489 0.0
N25_P(10-20)_S(10-15)_A(20-40) - W12_Wo6_P1 602.8 2.51 602 603.0 0.73 603 0.17
N25_P(10-20)_S(10-15)_A (20-40) _W12_Wo6_P2 584.8 251 584 584.2 0.64 584 0.0
N25I’(10-20),S(10-15),A(20-40),W12,W064P3 598.2 2.51 598 599.0 0.6 599 0.17
N25_P(10-20)_S(10-15)_A(20-40) - W12_Wo6_P4 609.0 2.51 609 609.0 0.71 609 0.0
N25P(10-20),S(10-15),A(20-40),W12,W06P5 588.2 2.51 588 588.4 0.67 588 0.0
N25P(10-20),S(10-15),A(20-40),W12,W06J?6 623.6 2.51 623 624.2 0.81 624 0.16
N25_P(10-20)_S(10-15)_A(20-40) - W12_Wo6_P7 610.6 2.5 610 610.8 0.67 610 0.0
N25P(10-20),S(10—15),A(20-40),W12,W06P8 611.6 2.5 611 611.8 0.6 611 0.0
N25_P(10-20)_S(10-15)_A(20-40) W12 Wo6_P9 601.0 25 601 601.6 0.62 601 0.0
N25_P(10-20)_S(10-15)_A(20-40)_'W12_Wo6_P10  609.0 2.51 609 609.2 0.68 609 0.0
N25_P(10-20)_S(10-15)_A (40-60)_W12_Wo6_P1 602.4 251 602 603.0 0.71 603 0.17
N25_P(10-20)_S(10-15)_A(40-60) - W12_Wo6_P2 585.0 2.51 585 586.4 0.66 586 0.17
N25_P(10-20)_S(10-15)_A (40-60) _W12_Wo6_P3 598.2 2.51 598 598.6 0.63 598 0.0
N25_P(10-20)_S(10-15)_A (40-60)_W12_Wo6_P4 609.0 251 609 609.0 0.55 609 0.0
N25_P(10-20)_S(10-15)_A(40-60) - W12_Wo6_P5 588.4 2.51 588 589.6 0.67 589 0.17
N25_P(10-20)_S(10-15)_A (40-60) _'W12_Wo6_P6 624.0 251 624 624.2 0.66 623 -0.16
N25P(10-20),8(10—15),A(40-60),W12,W06P7 611.0 2.5 611 611.0 0.65 611 0.0
N25_P(10-20)_S(10-15)_A(40-60) - W12_Wo6_P8 612.2 2.5 611 612.4 0.6 612 0.16
N25_P(10-20)_S(10-15)_A (40-60) _'W12_Wo6_P9 600.6 251 600 601.2 0.59 601 0.17
N25I’(10-20),S(10-15),A(40-60),W12,W064P10 608.8 2.51 608 609.0 0.76 609 0.16
N25_P(20-30)_S(5-10)_A(20-40) W12 _Wo6_P1 732.6 2.51 732 733.0 0.75 733 0.14
N25_P(20-30)_S(5-10)_A(20-40)_'W12_Wo6_P2 715.0 2.5 715 715.0 0.69 715 0.0
N25I’(20-30),S(5-10)A(20-40),W12,W06,P3 728.4 2.51 728 728.8 0.64 728 0.0
N25_P(20-30)_S(5-10)_A(20-40) W12 Wo6_P4 739.0 2.51 739 739.0 0.7 739 0.0
N25_P(20-30)_S(5-10)_A(20-40)_'W12_Wo6_P5 718.2 25 718 718.8 0.7 718 0.0
N25P(20-30),S(5-10)A(20-40),W12,W06,P6 753.8 2.5 753 754.0 0.6 754 0.13
N25_P(20-30)_S(5-10)_A (20-40)_W12_Wo6_P7 741.0 251 741 741.0 0.65 741 0.0
N25_P(20-30)_S(5-10)_A(20-40)_'W12_Wo6_P8 742.2 25 742 742.4 0.63 742 0.0
N25P(20—30),S(5—10)A(20—40),W12,W06,P9 730.6 2.51 730 730.8 0.68 730 0.0
N25_P(20-30)_S(5-10)_A (20-40)_'W12_Wo6_P10 739.0 2.51 739 739.0 0.66 739 0.0
N25_P(20-30)_S(5-10)_A (40-60) _'W12_Wo6_P1 732.4 251 732 732.8 0.78 732 0.0
N25_P(20-30)_S(5-10)_A(40-60) _W12_Wo6_P2 714.8 2.51 714 715.6 0.8 714 0.0
N25_P(20-30)_S(5-10)_A (40-60) _'W12_Wo6_P3 728.2 251 728 729.4 0.77 729 0.14
N25_P(20-30)_S(5-10)_A (40-60) _W12_Wo6_P4 739.0 251 739 739.8 0.73 739 0.0
N25_P(20-30)_S(5-10)_A(40-60) _W12_Wo6_P5 718.2 2.51 718 719.0 0.68 719 0.14
N25_P(20-30)_S(5-10)_A (40-60)_W12_Wo6_P6 753.6 251 753 754.2 0.73 754 0.13
N25P(20-30),S(5-10)A(40-60),W12,W06,P7 741.0 2.5 741 741.0 0.64 741 0.0
N25_P(20-30)_S(5-10)_A(40-60) _W12_Wo6_P8 742.0 2.51 741 741.8 0.59 741 0.0
N25_P(20-30)_S(5-10)_A (40-60)_'W12_Wo6_P9 730.6 251 730 731.8 0.56 731 0.14
N25I’(20-30),S(S-IO)A(40-60),W12,W06,P10 739.0 2.51 739 738.8 0.7 738 -0.14
N25_P(20-30)_S(10-15)_A(20-40) - W12_Wo6_P1 852.2 2.51 852 853.0 0.74 853 0.12
N25P(20-30),S(10—15),A(20-40),W12,W06P2 835.0 2.51 835 835.6 0.62 835 0.0
NZSI’(20-30),S(10-15),A(20-40),W12,W064P3 848.0 2.51 848 849.0 0.63 849 0.12
N25_P(20-30)_S(10-15)_A (20-40)_W12_Wo6_P4 859.0 251 859 859.0 0.71 859 0.0
N25P(20-30),S(10—15),A(20-40),W12,W06P5 838.2 2.51 838 838.4 0.64 838 0.0
N25P(20—30),S(10—15),A(20—40),W12,W064P6 873.6 2.5 873 873.6 0.68 873 0.0
N25_P(20-30)_S(10-15)_A (20-40) _W12_Wo6_P7 860.6 25 860 861.2 0.77 861 0.12
N25_P(20-30)_S(10-15)_A (20-40) _'W12_Wo6_P8 862.0 251 861 862.8 0.65 862 0.12
N25_P(20-30)_-S(10-15)_A(20-40) - W12_Wo6_P9 850.6 2.5 850 851.2 0.62 850 0.0
N25_P(20-30)_S(10-15)_A (20-40)_'W12_Wo6_P10  859.0 2.51 859 858.6 0.64 858 -0.12
N25_P(20-30)_S(10-15)_A (40-60)_W12_Wo6_P1 852.2 251 852 852.4 0.68 852 0.0
N25_P(20-30)_S(10-15)_A(40-60) - W12_Wo6_P2 834.8 2.5 834 835.6 0.64 835 0.12
N25_P(20-30)_S(10-15)_A (40-60) _'W12_Wo6_P3 848.0 251 848 848.4 0.7 848 0.0
N25P(20-30),S(10—15),A(40-60),W12,W064P4 859.0 2.51 859 859.4 0.81 859 0.0
N25_P(20-30)_S(10-15)_A(40-60) - W12_Wo6_P5 838.2 2.51 838 838.6 0.67 838 0.0
N25_P(20-30)_S(10-15)_A (40-60) _'W12_Wo6_P6 873.4 25 873 874.0 0.7 874 0.11
N25I’(20-30),5(10-15),A(40-60),W12,W064P7 860.8 2.5 860 861.0 0.66 861 0.12
N25_P(20-30)_S(10-15)_A(40-60) - W12_Wo6_P8 862.4 2.51 862 863.0 0.68 863 0.12
N25P(20-30),S(10-15),A(40-60),W12,W06P9 850.8 2.51 850 851.2 0.65 850 0.0
N25I’(20-30),S(10-15),A(40-60),W12,W064P10 859.0 2.51 859 859.0 0.75 859 0.0
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Tabela 7.5: Resultados para instancias com 50 jobs

LIG BRKGA
Instancia Chnax médio T médio (s)  Chax melhor  Ciax médio T médio (s) Ciax melhor DPR
N50_P(10-20)_S(5-10)_A(20-40) - W25_Wo12_P1 984.0 5.01 984 984.8 4.16 983 -0.1
N50_P(10-20)_S(5-10)_A(20-40) - W25_Wo12_P2 950.6 5.01 950 949.4 4.59 949 -0.11
N50_P(10-20)_S(5-10)_A(20-40) - W25_Wo12_P3 974.2 5.01 973 973.8 4.38 973 0.0
N50_P(10-20)_S(5-10)_A(20-40) - W25_Wo12_P4 964.2 5.01 964 963.0 4.73 962 -0.21
N50_P(10-20)_S(5-10)_A (20-40)_W25_Wo12_P5 956.4 5.01 956 954.8 4.55 954 -0.21
N50_P(10-20)_S(5-10)_A (20-40)_W25_Wo12_P6 957.6 5.01 957 956.8 4.33 956 0.1
N50_P(10-20)_S(5-10)_A (20-40)_W25_Wo12_P7 971.2 5.01 971 969.6 4.45 969 -0.21
N50_P(10-20)_S(5-10)_A (20-40)_W25_Wo12_PS§ 988.6 5.01 988 987.2 4.39 987 0.1
N50_P(10-20)_S(5-10)_A (20-40)_W25_Wo12_P9 954.6 5.01 954 953.4 4.62 953 0.1
N50_P(10-20)_S(5-10)_A (20-40)_W25_Wo12_P10 961.0 5.0 959 961.4 4.49 961 0.21
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P1 985.4 5.01 984 986.0 4.47 984 0.0
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P2 950.8 5.01 950 951.4 4.31 950 0.0
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P3 974.8 5.01 973 975.2 4.64 974 0.1
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P4 963.8 5.01 963 963.2 4.68 962 -0.1
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P5 956.0 5.01 955 955.4 4.16 954 -0.1
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P6 957.8 5.01 956 957.6 4.55 956 0.0
N50_P(10-20)_S(5-10)_A (40-60)_W25_Wol2_P7 970.6 5.01 970 971.0 4.57 970 0.0
N50_P(10-20)_S(5-10)_A (40-60)_W25_Wo12_P8 989.0 5.0 988 988.4 4.95 988 0.0
N50_P(10-20)_S(5-10)_A(40-60) _W25_Wo12_P9 955.2 5.01 955 953.4 4.28 952 -0.31
NSOP(10-20),5(5-10)A(40-60),W25,W012,P10 964.4 5.01 962 966.2 4.51 964 0.21
N50_P(10-20)_S(10-15)_A(20-40)_-W25_Wo12_P1 1228.8 5.01 1228 1228.6 4.27 1227 -0.08
N50_P(10-20)_S(10-15)_A (20-40)_W25_Wo12_P2 1195.4 5.01 1195 1194.8 4.21 1194 -0.08
N50_P(10-20)_S(10-15)_A(20-40) - W25_Wo12_P3 1219.0 5.01 1218 1218.4 4.39 1218 0.0
N50_P(10-20)_S(10-15)_A(20-40)-W25_Wol12_P4 1208.8 5.0 1208 1208.2 4.65 1208 0.0
N50_P(10-20)_S(10-15)_A (20-40)-W25_Wo12_P5 1200.4 5.0 1200 1200.2 4.76 1199 -0.08
N50_P(10-20)_S(10-15)_A(20-40) _W25_Wol12_P6 1202.8 5.0 1202 1202.0 4.28 1201 -0.08
N50_P(10-20)_S(10-15)_A(20-40)_W25_Wol2_P7  1216.0 5.01 1215 1215.0 5.06 1214 -0.08
N50_P(10-20)_S(10-15)_A (20-40)_W25_Wo12_P8 1233.8 5.0 1233 1232.6 4.68 1232 -0.08
N50_P(10-20)_S(10-15)_A (20-40)_W25_Wo12_P9 1198.6 5.01 1198 1197.0 4.59 1197  -0.08
N50_P(10-20)_S(10-15)_A(20-40) _W25_Wo12_P10 1205.6 5.01 1204 1205.8 4.71 1205 0.08
N50_P(10-20)_S(10-15)_A(40-60) _W25_Wo12_P1 1229.4 5.01 1229 1228.6 4.58 1226 -0.24
N50_P(10-20)_S(10-15)_A(40-60) _W25_Wol12_P2 1196.0 5.01 1195 1195.4 4.3 1194 -0.08
N50_P(10-20)_S(10-15)_A (40-60) _W25_Wo12_P3 1219.2 5.01 1218 1218.8 4.84 1218 0.0
N50_P(10-20)_S(10-15)_A(40-60) _W25_Wol2_P4 1208.8 5.01 1208 1208.8 4.47 1207 -0.08
N50_P(10-20)_S(10-15)_A (40-60) _W25_Wo12_P5 1201.4 5.01 1201 1199.6 4.67 1199 -0.17
N50_P(10-20)_S(10-15)_A (40-60) _W25_Wo12_P6 1203.4 5.01 1203 1202.0 4.93 1201 -0.17
N50_P(10-20)_S(10-15)_A(40-60) _W25_Wol12_P7 1216.8 5.01 1216 1215.2 4.57 1214 -0.16
N50_P(10-20)_S(10-15)_A (40-60) _W25_Wo12_P8 1233.6 5.01 1233 1233.2 4.78 1232 -0.08
N50_P(10-20)_S(10-15)_A (40-60) _W25_Wo12_P9 1199.2 5.01 1198 1198.6 5.0 1197 -0.08
N50_P(10-20)_S(10-15)_A(40-60)_-W25_Wo12_P10 1207.6 5.01 1206 1209.0 4.94 1208 0.17
N50_P(20-30)_S(5-10)_A(20-40) W25_Wo12_P1 1483.4 5.01 1482 1482.8 4.17 1482 0.0
N50_P(20-30)_S(5-10)_A(20-40) - W25_Wo12_P2 1450.4 5.0 1450 1449.6 4.75 1449 -0.07
N50_P(20-30)_S(5-10)_A(20-40) _W25_Wo12_P3 1473.6 5.01 1473 1473.6 4.79 1473 0.0
N50_P(20-30)_S(5-10)_A (20-40)_W25_Wo12_P4 1463.8 5.01 1463 1463.2 4.67 1463 0.0
N50_P(20-30)_S(5-10)_A(20-40) _W25_Wo12_P5 1455.4 5.01 1454 1455.6 4.09 1455 0.07
N50_P(20-30)_S(5-10)_A(20-40) _W25_Wo12_P6 1458.0 5.0 1457 1456.4 4.22 1456 -0.07
N50_P(20-30)_S(5-10)_A(20-40) _W25_Wol2_P7 1470.8 5.01 1470 1470.0 4.78 1469 -0.07
N50_P(20-30)_S(5-10)_A(20-40) _W25_Wo12_P8 1488.4 5.01 1487 1488.4 5.0 1487 0.0
N50_P(20-30)_S(5-10)_A (20-40)_W25_Wo12_P9 1453.6 5.01 1453 1452.8 4.54 1452 -0.07
N50_P(20-30)_S(5-10)_A(20-40) ' W25_Wo12_P10 1460.6 5.0 1459 1460.0 5.15 1459 0.0
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P1 1484.6 5.01 1484 1484.2 4.1 1484 0.0
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P2 1450.6 5.01 1449 1450.2 4.33 1450 0.07
N50_P(20-30)_S(5-10)_A (40-60)_W25_Wo12_P3 1474.0 5.01 1474 1473.6 4.45 1473 -0.07
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P4 1463.8 5.01 1463 1463.2 4.25 1463 0.0
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P5 1456.6 5.0 1456 1456.2 4.53 1455 -0.07
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P6 1458.2 5.01 1458 1457.4 4.7 1457 -0.07
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P7 1470.6 5.01 1470 1471.8 4.37 1470 0.0
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P8 1489.0 5.01 1488 1487.6 4.34 1487 -0.07
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo12_P9 1454.2 5.0 1453 1453.0 4.33 1452 -0.07
N50_P(20-30)_S(5-10)_A(40-60) _W25_Wo012_P10 1462.0 5.0 1461 1463.2 4.74 1461 0.0
N50_P(20-30)_S(10-15)_A (20-40) W25_Wo12_P1 1729.4 5.01 1728 1726.8 4.21 1726 -0.12
N50_P(20-30)_S(10-15)_A(20-40) W25_Wo12.P2  1695.4 5.01 1605 1695.0 4.32 1694  -0.06
N50_P(20-30)_S(10-15)_A (20-40)_-W25_Wo12_P3 1719.0 5.01 1718 1718.0 5.0 1718 0.0
N50_P(20-30)_S(10-15)_A(20-40)-W25_Wo12_P4 1708.6 5.01 1708 1708.2 4.64 1708 0.0
N50_P(20-30)_S(10-15)_A(20-40)_W25_Wo12_P5 1700.8 5.01 1700 1699.8 4.9 1699 -0.06
N50_P(20-30)_S(10-15)_A(20-40)_W25_Wo12_P6 1702.4 5.0 1702 1702.6 4.2 1701 -0.06
N50_P(20-30)_S(10-15)_A(20-40)-W25_Wol2_P7 1715.2 5.01 1714 17154 4.35 1715 0.06
N50_P(20-30)_S(10-15)_A (20-40)-W25_Wo12_P8 1733.8 5.01 1733 1733.0 4.76 1732 -0.06
N50_P(20-30)_S(10-15)_A(20-40) _W25_Wol12_P9 1698.8 5.01 1698 1697.4 4.29 1697 -0.06
N50_P(20-30)_S(10-15)_A (20-40)_W25_Wo12_P10  1706.2 5.01 1706 1706.6 4.4 1705 -0.06
N50_P(20-30)_S(10-15)_A (40-60)_W25_Wo12_P1 1729.0 5.01 1729 1727.6 4.39 1726 -0.17
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wol12_ P2 1695.6 5.01 1695 1694.6 4.4 1694 -0.06
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wo12_P3 1719.0 5.01 1718 1719.0 5.02 1718 0.0
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wol2_ P4 1709.0 5.01 1708 1708.6 4.6 1708 0.0
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wo12_P5 1701.2 5.01 1700 1700.2 4.3 1700 0.0
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wo12_P6 1702.4 5.01 1702 1701.0 5.26 1701 -0.06
N50_P(20-30)_S(10-15)_A(40-60) _W25_Wol2_P7 1715.6 5.0 1715 1714.4 4.88 1714 -0.06
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wo12_P8 1733.4 5.01 1733 1732.6 4.84 1732 -0.06
N50_P(20-30)_S(10-15)_A (40-60) _W25_Wo12_P9 1698.8 5.01 1698 1697.4 4.36 1697 -0.06
N50_P(20-30)_S(10-15)_A(40-60) _-W25_Wo12_P10 1706.6 5.01 1705 1706.2 4.98 1706 0.06
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Tabela 7.6: Resultados para instancias com 75 jobs

LIG BRKGA

Instancia Chnax médio T médio (s)  Chax melhor  Ciax médio T médio (s) Ciax melhor DPR
N75_P(10-20)_S(5-10)_A(20-40) - W37_Wo18_P1 1451.0 7.51 1450 1449.0 5.78 1449 -0.07
N75_P(10-20)_S(5-10)_A(20-40) - W37_Wo18_P2 1438.4 7.51 1438 1437.6 5.95 1437 -0.07
N75_P(10-20)_S(5-10)_A(20-40) - W37_Wo18_P3 1455.0 7.51 1454 1453.4 5.71 1453 -0.07
N75_P(10-20)_S(5-10)_A(20-40) - W37_Wo18_P4 1457.0 7.51 1456 1455.2 6.11 1455 -0.07
N75_P(10-20)_S(5-10)_A(20-40) W37_Wo18_P5 1440.6 7.51 1439 1439.8 5.13 1439 0.0

N75_P(10-20)_S(5-10)_A (20-40)_W37_Wo18_P6 1457.0 7.51 1456 1454.6 5.76 1454 -0.14
N75_P(10-20)_S(5-10)_A (20-40)_W37_Wo18_P7 1459.6 7.51 1459 1458.2 5.59 1458 -0.07
N75_P(10-20)_S(5-10)_A (20-40)_W37_Wo18_P$ 1466.8 7.5 1466 1465.2 5.29 1465  -0.07
N75_P(10-20)_S(5-10)_A (20-40)_W37_Wo18_P9 1453.6 7.51 1452 1451.8 5.65 1451 -0.07
N75_P(10-20)_S(5-10)_A (20-40)_W37_Wo18_P10 1432.8 7.5 1432 1431.2 5.53 1430  -0.14
N75_P(10-20)_S(5-10)_A(40-60) W37_Wo18_P1 1451.4 7.51 1451 1449.2 5.87 1449 -0.14
N75_P(10-20)_S(5-10)_A(40-60) _W37_Wo18_P2 1439.2 7.51 1439 1437.6 5.44 1437 -0.14
N75_P(10-20)_S(5-10)_A(40-60) W37_Wo18_P3 1455.0 7.51 1453 1453.0 5.59 1453 0.0

N75_P(10-20)_S(5-10)_A(40-60) W37_Wo18_P4 1457.0 7.51 1456 1455.6 5.68 1455 -0.07
N75_P(10-20)_S(5-10)_A(40-60) W37_Wo18_P5 1441.0 7.5 1440 1439.2 5.46 1438 -0.14
N75_P(10-20)_S(5-10)_A(40-60) _W37_Wo18_P6 1458.0 7.51 1457 1455.2 5.52 1454 -0.21
N75_P(10-20)_S(5-10)_A(40-60) _W37_Wo18_P7 1459.6 7.51 1459 1458.4 5.36 1458 -0.07
N75_P(10-20)_S(5-10)_A (40-60) _'W37_Wo18_P8 1467.6 751 1467 1465.4 5.7 1465  -0.14
N75_P(10-20)_S(5-10)_A (40-60)_W37_Wo18_P9 1453.6 7.51 1453 1452.4 5.68 1452 -0.07
N75f(10-20)75(5-10)A(40-60),W37,W018,P10 1433.4 7.51 1433 1431.4 5.83 1430 -0.21
N75_P(10-20)_S(10-15)_A(20-40)_W37_Wo18_P1 1820.4 7.51 1820 1819.2 6.3 1819 -0.05
N75_P(10-20)_S(10-15)_A (20-40)_W37_Wo18_P2 1809.4 7.51 1809 1807.2 5.31 1807 -0.11
N75_P(10-20)_S(10-15)_A(20-40)_W37_Wo18_P3 1825.4 7.51 1825 1823.2 5.83 1823 -0.11
N75_P(10-20)_S(10-15)_A(20-40)_W37_Wo18_P4 1826.6 7.51 1826 1825.2 5.5 1825 -0.05
N75_P(10-20)_S(10-15)_A (20-40)_W37_Wo18_P5 1810.2 7.5 1809 1808.0 5.41 1808 -0.06
N75_P(10-20)_S(10-15)_A(20-40) _W37_Wo18_P6 1826.8 7.5 1826 1824.6 6.15 1824 -0.11
N75_P(10-20)_S(10-15)_A(20-40) _W37_Wo18_P7 1829.2 7.51 1828 1828.0 5.23 1828 0.0

N75_P(10-20)_S(10-15)_A (20-40)_W37_Wo18_P8 1836.6 7.5 1836 1835.2 5.48 1835  -0.05
N75_P(10-20)_S(10-15)_A (20-40)_W37_Wo18_P9 1823.0 7.51 1822 1821.4 5.83 1821 -0.05
N75_P(10-20)_S(10-15)_A(20-40) _W37_Wo18_P10 1802.8 7.51 1802 1801.4 5.19 1800 -0.11
N75_P(10-20)_S(10-15)_A (40-60)_W37_Wo18_P1 1821.2 7.51 1821 1819.6 5.57 1819  -0.11
N75_P(10-20)_S(10-15)_A(40-60) _W37_Wo18_ P2 1809.6 7.51 1809 1807.6 5.17 1807 -0.11
N75_P(10-20)_S(10-15)_A (40-60) _W37_Wo18_P3 1824.8 7.5 1823 1823.2 5.57 1823 0.0

N75_P(10-20)_S(10-15)_A(40-60) _W37_Wo18_ P4 1827.0 7.5 1826 1825.0 5.46 1825 -0.05
N75_P(10-20)_S(10-15)_A (40-60) _W37_Wo18_P5 1811.0 7.51 1809 1810.0 5.18 1808 -0.06
N75_P(10-20)_S(10-15)_A(40-60) _W37_Wo18_P6 1827.4 7.51 1826 1824.8 5.74 1824 -0.11
N75_P(10-20)_S(10-15)_A(40-60) _W37_Wo18_P7 1829.6 7.51 1829 1828.0 5.82 1828 -0.05
N75_P(10-20)_S(10-15)_A (40-60) _W37_Wo18_P8 1837.2 7.51 1836 1835.6 5.5 1835 -0.05
N75_P(10-20)_S(10-15)_A (40-60) _W37_Wo18_P9 1823.6 7.51 1822 1821.0 5.5 1821 -0.05
N75_P(10-20)_S(10-15)_A (40-60)_W37_Wol8_ P10  1803.4 7.51 1802 1801.2 5.69 1800  -0.11
N75_P(20-30)_S(5-10)_A (20-40)_-W37_Wo18_P1 2200.8 7.51 2200 2199.2 6.25 2199 -0.05
N75_P(20-30)_S(5-10)_A(20-40) _W37_Wo18_P2 2189.4 7.5 2189 2187.0 5.77 2187 -0.09
N75_P(20-30)_S(5-10)_A(20-40) _W37_Wo18_P3 2205.4 7.51 2205 2203.0 5.51 2203 -0.09
N75_P(20-30)_S(5-10)_A(20-40) _W37_Wo18_P4 2206.8 7.51 2206 2205.8 5.69 2205 -0.05
N75_P(20-30)_S(5-10)_A(20-40) - W37_Wo18_P5 2190.4 7.51 2190 2188.6 5.35 2188 -0.09
N75_P(20-30)_S(5-10)_A(20-40) - W37_Wo18_P6 2206.6 7.51 2206 2204.8 5.96 2204 -0.09
N75_P(20-30)_S(5-10)_A(20-40) _W37_Wo18_P7 2209.2 7.51 2208 2208.0 5.54 2208 0.0

N75_P(20-30)_S(5-10)_A(20-40) W37_Wo18_P8 2216.4 7.51 2216 2215.2 5.92 2215 -0.05
N75_P(20-30)_S(5-10)_A (20-40)_W37_Wo18_P9 2203.0 7.51 2202 2201.4 5.53 2201 -0.05
N75_P(20-30)_S(5-10)_A (20-40)_W37_Wo18_P10 2182.8 7.51 2182 2180.8 6.18 2180  -0.09
N75_P(20-30)_S(5-10)_A (40-60)_W37_Wo18_P1 2201.4 7.5 2200 2199.6 5.63 2199  -0.05
N75_P(20-30)_S(5-10)_A (40-60)_W37_Wo18_P2 2189.8 7.51 2189 2187.0 5.51 2187  -0.09
N75_P(20-30)_S(5-10)_A (40-60)_W37_Wo18_P3 2204.6 7.51 2204 2203.0 6.12 2203 -0.05
N75_P(20-30)_S(5-10)_A(40-60) _W37_Wo18_P4 2207.0 7.51 2206 2205.0 5.46 2205 -0.05
N75_P(20-30)_S(5-10)_A(40-60) W37_Wo18_P5 2190.6 7.5 2190 2188.6 5.34 2188 -0.09
N75_P(20-30)_S(5-10)_A(40-60) W37_Wo18_P6 2206.8 7.5 2206 2204.4 5.34 2204 -0.09
N75_P(20-30)_S(5-10)_A(40-60) _W37_Wo18_P7 2209.4 7.51 2209 2208.0 5.57 2208 -0.05
N75_P(20-30)_S(5-10)_A(40-60) W37_Wo18_P8 2217.2 7.5 2216 2216.0 5.31 2215 -0.05
N75_P(20-30)_S(5-10)_A(40-60) W37_Wo18_P9 2202.8 7.5 2202 2201.8 6.04 2201 -0.05
N75_P(20-30)_S(5-10)_A(40-60) - W37_Wo018_P10 2183.2 7.51 2182 2181.0 5.88 2180 -0.09
N75_P(20-30)_S(10-15)_A(20-40) W37 Wol8 P1  2571.2 7.51 2571 2569.4 5.7 2569  -0.08
N75_P(20-30)_S(10-15)_A(20-40) _W37_Wo18_P2 2559.2 7.51 2559 2557.6 5.39 2557 -0.08
N75_P(20-30)_S(10-15)_A (20-40)_-W37_Wo18_P3 2575.0 7.51 2574 2573.0 5.67 2573 -0.04
N75_P(20-30)_S(10-15)_A(20-40)_-W37_Wo18_P4 2576.6 7.51 2576 2575.4 5.76 2575 -0.04
N75_P(20-30)_S(10-15)_A (20-40)_W37_Wo18_P5 2561.8 7.51 2561 2558.8 5.05 2558 -0.12
N75_P(20-30)_S(10-15)_A(20-40)_W37_Wo18_P6 2576.6 7.5 2576 2574.6 5.89 2574 -0.08
N75_P(20-30)_S(10-15)_A(20-40)-W37_Wo18_P7 2578.6 7.51 2578 2578.0 5.58 2578 0.0

N75_P(20-30)_S(10-15)_A(20-40)_W37_Wo18_P8 2586.4 7.51 2585 2585.4 5.63 2585 0.0

N75_P(20-30)_S(10-15)_A(20-40) _W37_Wo18_P9 2572.6 7.5 2572 2571.4 5.3 2571 -0.04
N75_P(20-30)_S(10-15)_A(20-40)_W37_Wol8 P10  2552.2 7.5 2551 2551.0 5.51 2550  -0.04
N75_P(20-30)_S(10-15)_A (40-60)_W37_Wo18_P1 2571.2 7.51 2570 2569.2 5.6 2569  -0.04
N75_P(20-30)_S(10-15)_A (40-60)_W37_Wol8_P2 2558.4 7.5 2558 2557.2 5.82 2557  -0.04
N75_P(20-30)_S(10-15)_A (40-60)_W37_Wo18_P3 2574.8 7.5 2574 2573.2 5.45 2573 -0.04
N75_P(20-30)_S(10-15)_A (40-60)_W37_Wo18_P4 2576.8 7.5 2576 2575.4 5.47 2575 -0.04
N75_P(20-30)_S(10-15)_A(40-60) _W37_Wo18_P5 2561.0 7.51 2560 2558.6 5.18 2558 -0.08
N75_P(20-30)_S(10-15)_A(40-60) _W37_Wo18_P6 2577.0 7.5 2576 2574.4 5.58 2574 -0.08
N75_P(20-30)_S(10-15)_A(40-60) _W37_Wo18_P7 2579.2 7.51 2579 2578.0 6.01 2578 -0.04
N75_P(20-30)_S(10-15)_A (40-60) _W37_Wo18_P8 2586.8 7.51 2586 2585.6 5.79 2585 -0.04
N75_P(20-30)_S(10-15)_A(40-60) _W37_Wo18_P9 2573.8 7.51 2573 2571.4 5.74 2571 -0.08
N75_P(20-30)_S(10-15)_A(40-60)_-W37_Wo18_P10 2553.2 7.5 2552 2551.2 5.3 2550 -0.08
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Tabela 7.7: Resultados para instancias com 100 jobs

LIG BRKGA

Instancia Crax médio T médio (s) Chax melhor  Chax médio T médio (s) Chax melhor DPR
N100_P(10-20)_S(5-10)_A(20-40) _-W50_Wo25_P1 1932.6 10.0 1931 1930.4 5.64 1929 -0.1

N100_P(10-20)_S(5-10)_A(20-40) ‘W50 Wo25_P2 1931.0 10.01 1930 1928.6 5.68 1928 0.1

N100_P(10-20)_S(5-10)_A (20-40)_W50_Wo25_P3 1954.2 10.01 1953 1952.8 5.78 1952 -0.05
N100_P(10-20)_S(5-10)_A(20-40) _W50_-Wo25_P4 1940.2 10.01 1939 1938.0 5.85 1938 -0.05
N100_P(10-20)_S(5-10)_A(20-40) _-W50_Wo25_P5 1919.0 10.01 1918 1917.2 5.82 1916 -0.1

N100-P(10-20)_S(5-10)_A (20-40) _-W50_-Wo25_P6 1946.2 10.01 1945 1942.6 5.83 1942 -0.15
N100_P(10-20)_S(5-10)_A(20-40)_-W50_Wo25_P7 1935.0 10.0 1934 1933.0 6.37 1933 -0.05
N100_P(10-20)_S(5-10)_A(20-40) _W50_-Wo25_P8 1936.6 10.01 1935 1933.8 5.74 1933 -0.1

N100_P(10-20)_S(5-10)_A(20-40) _-W50_Wo25_P9 1954.4 10.01 1953 1952.0 6.23 1951 -0.1

N100-P(10-20)_S(5-10)_A(20-40) _-W50_-Wo025_P10 1907.6 10.01 1906 1905.4 5.97 1905 -0.05
N100_P(10-20)_S(5-10)_A (40-60)_-W50_Wo25_P1 1932.0 10.01 1931 1929.8 5.52 1929 0.1

N100_P(10-20)_S(5-10)_A (40-60) _W50_Wo25_P2 1930.6 10.01 1930 1928.2 5.46 1928 -0.1

N100_P(10-20)_S(5-10)_A(40-60) _-W50_Wo25_P3 1954.6 10.01 1954 1953.2 5.63 1952 -0.1

N100-P(10-20)_S(5-10)_A (40-60) _-W50_-Wo25_P4 1941.2 10.01 1940 1937.8 6.05 1937 -0.15
N100_P(10-20)_S(5-10)_A(40-60)_-W50_Wo25_P5 1919.8 10.01 1919 1916.8 5.78 1916 -0.16
N100_P(10-20)_S(5-10)_A (40-60) _W50_Wo25_P6 1946.6 10.01 1945 1943.2 5.99 1942 -0.15
N100_P(10-20)_S(5-10)_A(40-60) _-W50_Wo25_P7 1936.2 10.01 1935 1933.4 6.2 1933 -0.1

N100-P(10-20)_S(5-10)_A (40-60) _-W50_-Wo25_P8 1936.0 10.01 1934 1934.2 5.66 1933 -0.05
N100_P(10-20)_S(5-10)_A(40-60)_-W50_Wo25_P9 1955.2 10.0 1954 1952.0 6.13 1951 -0.15
N100_P(10-20)_S(5-10)_A (40-60) _W50_Wo25_P10 1908.0 10.01 1907 1905.8 5.87 1905 -0.1

N100_P(10-20)_S(10-15)_A(20-40) _-W50_Wo25_P1 2426.4 10.01 2425 2424.6 5.45 2424 -0.04
N100_P(10-20)_S(10-15)_A(20-40)_W50_-Wo25_P2 2425.2 10.01 2424 2423.6 5.57 2423 -0.04
N100_P(10-20)_S(10-15)_A(20-40) _W50_Wo25_P3 2449.6 10.01 2448 2447.4 6.14 2447 -0.04
N100_P(10-20)_S(10-15)_A (20-40) _W50_Wo25_P4 2434.8 10.01 2433 2433.0 6.45 2432 -0.04
N100_P(10-20)_S(10-15)_A(20-40) _-W50_Wo25_P5 2414.0 10.01 2413 2411.6 6.02 2411 -0.08
N100-P(10-20)_S(10-15)_A(20-40)_-W50_-Wo25_P6 2440.8 10.01 2440 2437.8 5.42 2437 -0.12
N100_P(10-20)_S(10-15)_A(20-40) _W50_Wo25_P7 2430.4 10.01 2428 2428.2 5.6 2428 0.0

N100_P(10-20)_S(10-15)_A (20-40) _W50_Wo25_P8 2431.4 10.01 2430 2428.2 5.77 2428 -0.08
N100_P(10-20)_S(10-15)_A(20-40) _-W50_Wo25_P9 2448.6 10.01 2448 2447.2 6.22 2446 -0.08
N100_P(10-20)_S(10-15)_A(20-40)_-W50_Wo025_P10 2403.0 10.01 2402 2400.2 5.92 2400 -0.08
N100_P(10-20)_S(10-15)_A(40-60) _W50_Wo25_P1 2427.8 10.0 2427 2424.8 5.86 2424 -0.12
N100_P(10-20)_S(10-15)_A (40-60) _'W50_Wo25_P2 2426.2 10.01 2425 2423.0 6.06 2423 -0.08
N100_P(10-20)_S(10-15)_A(40-60)_-W50_Wo25_P3 2450.8 10.0 2450 2447.6 6.13 2447 -0.12
N100-P(10-20)_S(10-15)_A (40-60)_-W50_Wo25_P4 2435.6 10.01 2435 2433.4 5.6 2433 -0.08
N100_P(10-20)_S(10-15)_A(40-60) _W50_Wo25_P5 2414.8 10.01 2414 2411.6 6.17 2411 -0.12
N100_P(10-20)_S(10-15)_A (40-60) _-W50_Wo25_P6 2441.0 10.01 2440 2438.0 5.71 2437 -0.12
N100_P(10-20)_S(10-15)_A(40-60) _-W50_Wo25_P7 2430.2 10.01 2430 2428.2 6.34 2428 -0.08
N100_P(10-20)_S(10-15)_A (40-60)_-W50_Wo25_P8 2430.6 10.01 2429 2428.6 5.35 2428 -0.04
N100_P(10-20)_S(10-15)_A (40-60)_-W50_Wo25_P9 2449.0 10.0 2448 2446.6 5.62 2446 -0.08
N100_P(10-20)_S(10-15)_A (40-60) _-W50_Wo025_P10 2402.4 10.01 2401 2400.2 6.12 2400 -0.04
N100_P(20-30)_S(5-10)_A (20-40)_W50_Wo25_P1 2031.6 10.01 2030 2929.8 5.61 2929  -0.03
N100_-P(20-30)_S(5-10)_A (20-40) _-W50_-Wo25_P2 2929.8 10.01 2929 2928.4 5.71 2928 -0.03
N100_P(20-30)_S(5-10)_A(20-40) _-W50_Wo25_P3 2954.8 10.0 2953 2952.8 6.07 2952 -0.03
N100_P(20-30)_S(5-10)_A (20-40) _W50_Wo25_P4 2939.8 10.01 2938 2937.0 6.73 2937 -0.03
N100_P(20-30)_S(5-10)_A (20-40)_W50_Wo25_P5 2919.0 10.01 2018 2916.8 5.75 2916 -0.07
N100-P(20-30)_S(5-10)_A (20-40) _-W50_-Wo25_P6 2945.8 10.01 2945 2942.4 5.61 2942 -0.1

N100_P(20-30)_S(5-10)_A(20-40) _-W50_Wo25_P7 2935.4 10.01 2933 2933.2 5.88 2933 0.0

N100_P(20-30)_S(5-10)_A (20-40) _W50_Wo25_P8 2936.0 10.01 2935 2934.0 5.68 2933 -0.07
N100_P(20-30)_S(5-10)_A (20-40)_W50_Wo25_P9 2053.6 10.01 2053 2951.6 6.12 2951  -0.07
N100_P(20-30)_S(5-10)_A(20-40)_-W50_Wo025_P10 2907.0 10.01 2907 2905.0 6.03 2905 -0.07
N100_P(20-30)_S(5-10)_A (40-60) _-W50_Wo25_P1 2932.2 10.01 2931 2930.8 5.56 2929 -0.07
N100_P(20-30)_S(5-10)_A (40-60) _W50_Wo25_P2 2931.6 10.01 2931 2928.4 5.7 2928 -0.1

N100_P(20-30)_S(5-10)_A (40-60)_W50_Wo25_P3 2055.6 10.0 2055 2952.4 5.74 2952 0.1

N100_P(20-30)_S(5-10)_A (40-60) _-W50_Wo25_P4 2939.4 10.01 2938 2938.0 5.95 2937 -0.03
N100_P(20-30)_S(5-10)_A(40-60) _-W50_Wo25_P5 2919.6 10.01 2919 2916.4 6.25 2916 -0.1

N100_P(20-30)_S(5-10)_A(40-60) _-W50_Wo25_P6 2945.8 10.01 2944 2942.8 5.97 2942 -0.07
N100_P(20-30)_S(5-10)_A (40-60)_W50_Wo25_P7 2035.4 10.01 2035 2933.4 5.93 2933 -0.07
N100_P(20-30)_S(5-10)_A (40-60) _-W50_Wo025_P8 2934.8 10.01 2934 2933.8 5.85 2933 -0.03
N100_P(20-30)_S(5-10)_A(40-60) _-W50_Wo25_P9 2954.8 10.0 2953 2951.6 5.79 2951 -0.07
N100_P(20-30)_S(5-10)_A (40-60) _-W50_Wo025_P10 2906.8 10.01 2906 2905.4 5.83 2905 -0.03
N100_P(20-30)_S(10-15)_A (20-40)_W50_Wo25_P1 3426.0 10.01 3425 3424.4 5.57 3424  -0.03
N100_P(20-30)_S(10-15)_A(20-40) _-W50_Wo025_P2 3426.0 10.01 3424 3423.0 5.57 3423 -0.03
N100_P(20-30)_S(10-15)_A(20-40)_-W50_Wo25_P3 3449.6 10.01 3449 3447.4 5.64 3447 -0.06
N100_P(20-30)_S(10-15)_A(20-40) _-W50_Wo25_P4 3436.0 10.01 3435 3432.8 6.42 3432 -0.09
N100_P(20-30)_S(10-15)_A (20-40)_W50_Wo25_P5 3414.4 10.01 3413 3411.6 6.12 3411  -0.06
N100_P(20-30)_S(10-15)_A(20-40)_W50_Wo25_P6 3439.8 10.01 3439 3437.4 5.73 3437 -0.06
N100_P(20-30)_S(10-15)_A(20-40)_-W50_Wo25_P7 3429.6 10.01 3428 3428.4 5.91 3428 0.0

N100_P(20-30)_S(10-15)_A(20-40) _-W50_Wo25_P8 3431.6 10.0 3430 3429.2 5.61 3428 -0.06
N100_P(20-30)_S(10-15)_A (20-40)_W50_Wo25_P9 3448.8 10.01 3447 3446.6 6.5 3446 -0.03
N100_P(20-30)_S(10-15)_A(20-40)_W50_Wo25_P10 3401.8 10.01 3401 3400.6 5.78 3400 -0.03
N100_P(20-30)_S(10-15)_A (40-60)_-W50_Wo25_P1 3427.8 10.01 3427 3424.6 5.4 3424 -0.09
N100_P(20-30)_S(10-15)_A(40-60) _-W50_Wo25_P2 3426.0 10.01 3425 3423.2 5.78 3423 -0.06
N100_P(20-30)_S(10-15)_A (40-60)_W50_Wo25_P3 3449.6 10.01 3448 3447.6 6.32 3447  -0.03
N100_P(20-30)_S(10-15)_A (40-60)_W50_Wo25_P4 3435.0 10.01 3434 3432.8 5.92 3432 -0.06
N100_P(20-30)_S(10-15)_A (40-60)_-W50_Wo25_P5 3414.4 10.0 3413 3411.6 6.18 3411 -0.06
N100_P(20-30)_S(10-15)_A(40-60)_-W50_Wo25_P6 3440.6 10.01 3438 3437.8 5.61 3437 -0.03
N100_P(20-30)_S(10-15)_A (40-60)_W50_Wo25_P7 3429.8 10.01 3429 3428.4 6.5 3428  -0.03
N100_P(20-30)_S(10-15)_A (40-60)_W50_Wo25_P8 3431.6 10.01 3431 3428.2 5.92 3428 -0.09
N100_P(20-30)_S(10-15)_A (40-60)_-W50_Wo25_P9 3449.6 10.0 3449 3446.8 5.71 3446 -0.09

N100_P(20-30)_S(10-15)_A(40-60) _-W50_Wo25_P10 3402.6 10.01 3402 3400.4 5.89 3400 -0.06
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