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Resumo

Este trabalho aborda o problema de agendamento em máquina única com tempos de confi-

guração dependentes de sequência e atrasos de precedência, cujo objetivo é a minimização

do makespan. Uma abordagem baseada no Algoritmo Genético de Chave Aleatória Ten-

dencioso (Biased Random Key Genetic Algorithm – BRKGA) integrado a decodificadores

especificamente desenvolvidos para o problema é investigada. São considerados dois deco-

dificadores: um método simples de inserção ao final da sequência e um decodificador mais

elaborado baseado em uma adaptação da heuŕıstica construtiva NEH, controlada por um

parâmetro que define o número de posições avaliadas durante a inserção. Experimentos

computacionais realizados em instâncias de diferentes portes demonstram que a aborda-

gem proposta é competitiva com o algoritmo estado da arte da literatura, apresentando

desempenho superior em instâncias médias e grandes. Os resultados evidenciam o papel

central do decodificador na eficiência do BRKGA e indicam que a combinação entre busca

populacional e heuŕısticas construtivas adaptadas constitui uma estratégia eficaz para o

problema considerado.

Palavras-chave: SMSP, SDST, DP, BRKGA, NEH, Agendamento, Otimização, Heuŕısticas,

Metaheuŕısticas, Algoritmos Genéticos, Algoritmos Construtivos.



Abstract

This work addresses the single-machine scheduling problem with sequence-dependent se-

tup times and precedence delays, aiming to minimize the makespan. An approach based

on the Biased Random Key Genetic Algorithm (BRKGA), integrated with decoders spe-

cifically developed for the problem, is investigated. Two decoders are considered: a simple

method that inserts jobs at the end of the sequence, and a more elaborate decoder based

on an adaptation of the constructive NEH heuristic, controlled by a parameter that defines

the number of positions evaluated during insertion. Computational experiments conduc-

ted on instances of different sizes demonstrate that the proposed approach is competitive

with the state-of-the-art algorithm in the literature, showing superior performance on

medium- and large-sized instances. The results highlight the central role of the decoder

in the efficiency of the BRKGA and indicate that the combination of population-based se-

arch and adapted constructive heuristics constitutes an effective strategy for the problem

considered.

Keywords: SMSP, SDST, DP, BRKGA, NEH, Scheduling, Optimization, Heuristics,

Metaheuristics, Genetic Algorithms, Constructive Algorithms.
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3.2 Algoritmos Genéticos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
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1 Introdução

Problemas de agendamento desempenham um papel central em diversos contextos in-

dustriais e loǵısticos, estando diretamente associados à utilização eficiente de recursos, à

redução de custos operacionais e ao cumprimento de prazos. Em ambientes produtivos

reais, decisões relacionadas à ordem de processamento de tarefas influenciam significati-

vamente o desempenho global do sistema, tornando o estudo de modelos de agendamento

um tema recorrente na literatura de Pesquisa Operacional e Otimização Combinatória.

Neste contexto, o problema de agendamento em máquina única (Single Machine

Scheduling Problem – SMSP) constitui uma classe fundamental, frequentemente utilizada

como base para o estudo de variantes mais complexas. Apesar de sua aparente simplici-

dade, a introdução de caracteŕısticas adicionais, como tempos de configuração dependentes

da sequência (Sequence Dependent Setup Times – SDST) e restrições de atrasos de pre-

cedência (Delayed Precedence – DP), aumenta a complexidade do problema. A restrição

de SDST ocorre quando o tempo necessário para preparar a máquina antes do proces-

samento de uma tarefa depende diretamente da tarefa processada imediatamente antes.

A consideração expĺıcita dessa caracteŕıstica em decisões de planejamento da produção

é fundamental em diversos ambientes industriais, pois pode levar à reduções significati-

vas nos custos de preparação, eliminação de desperd́ıcios e aumento da produtividade.

Exemplos t́ıpicos incluem indústrias têxtil, gráfica, qúımica, farmacêutica e metalúrgica,

nas quais trocas de ferramentas, ajustes de parâmetros operacionais ou procedimentos de

limpeza variam conforme a sequência de tarefas executadas (CHOOBINEH; MOHEBBI;

KHOO, 2006; ALLAHVERDI, 2015).

As restrições de atraso de precedência impõem que determinadas tarefas só pos-

sam iniciar após um intervalo mı́nimo de tempo decorrido desde a conclusão de suas

predecessoras. Esse atraso ocorre em situações nas quais um item precisa aguardar um

peŕıodo antes de ser processado novamente, como no resfriamento de peças, na secagem de

tintas ou adesivos, ou em processos que exigem etapas separadas por restrições técnicas.

A presença simultânea de tempos de configuração dependentes da sequência e
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restrições de atraso de precedência elimina diversas propriedades estruturais do pro-

blema clássico de máquina única, tornando a minimização do tempo total de execução

na máquina (makespan) fortemente dependente da ordem de processamento das tarefas e

das interações entre elas. Um dos primeiros trabalhos a abordar explicitamente essa com-

binação de restrições a partir de um problema prático é apresentado por (KUO; CHEN;

YEH, 2020), que motiva o estudo do problema com base em um caso real observado em

uma empresa de montagem de amplificadores em Taiwan. Nesse ambiente, o processo pro-

dutivo é dividido em várias etapas executadas em uma única máquina, exigindo tempos

de configuração distintos conforme o tipo de produto ou componente a ser montado. Além

disso, determinados componentes necessitam de um peŕıodo de espera após a aplicação

de adesivos especiais para garantir propriedades de impermeabilização, caracterizando

atrasos de precedência entre etapas.

Outro trabalho de referência fundamental nesse contexto é o estudo de (LIN;

YING, 2022), que investiga de forma sistemática o problema de agendamento em máquina

única com SDST e DP. Os autores apresentam a formulação formal do problema, anali-

sam suas propriedades estruturais, discutem sua complexidade computacional e propõem

uma abordagem de referência (Lean Iterated Greedy – LIG), baseada no algoritmo Itera-

ted Greedy, para a minimização do makespan. Além disso, o trabalho disponibiliza um

conjunto de instâncias de teste, estabelecendo uma base comparativa para novas aborda-

gens. O presente trabalho adota diretamente a modelagem do problema, as instâncias e

os resultados de referência propostos por (LIN; YING, 2022), utilizando-os como principal

fundamento para o desenvolvimento e a avaliação da abordagem do presente trabalho.

Embora a literatura relacionada explore diferentes estratégias heuŕısticas e de

busca local para esse problema, observa-se a ausência de abordagens baseadas em algo-

ritmos populacionais, em particular algoritmos genéticos. Nesse cenário, o Algoritmo

Genético de Chave Aleatória Tendencioso (Biased Random-Key Genetic Algorithm –

BRKGA) surge como uma alternativa promissora, uma vez que permite desacoplar o pro-

cesso evolutivo da construção da solução por meio do uso de decodificadores espećıficos do

problema. A representação por chaves aleatórias simplifica a manutenção da viabilidade

das soluções ao longo das gerações e facilita a incorporação de conhecimento heuŕıstico
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no processo de decodificação.

Motivado por essas caracteŕısticas, este trabalho propõe a aplicação de um BRKGA

ao problema de agendamento em máquina única com tempos de configuração dependen-

tes da sequência e restrições de precedência com atraso. Para isso, são desenvolvidos dois

decodificadores distintos. O primeiro consiste em um decodificador simples, que ordena as

tarefas (jobs) de acordo com suas chaves aleatórias e os insere sequencialmente ao final da

solução parcial, servindo como abordagem de referência. O segundo decodificador é base-

ado em uma adaptação da heuŕıstica construtiva NEH, na qual cada job selecionado pode

ser inserido em diferentes posições da solução parcial, respeitando as restrições do pro-

blema. Essa inserção é controlada por um parâmetro K, que define o número máximo de

posições a serem avaliadas, permitindo analisar o impacto desse parâmetro na qualidade

das soluções obtidas e no custo computacional do método.

Dessa forma, o objetivo é investigar o uso de algoritmos genéticos de chave

aleatória como uma alternativa viável para o problema estudado, avaliando o desem-

penho de diferentes estratégias de decodificação e comparando os resultados obtidos com

aqueles reportados na literatura. Os experimentos computacionais realizados permitem

analisar o comportamento da abordagem proposta frente a diferentes configurações do

parâmetro K e posicionar os resultados em relação às soluções de referência existentes.

Este trabalho está organizado da seguinte forma. No Caṕıtulo 2 é apresentada

a definição formal do problema de agendamento em máquina única com tempos de con-

figuração dependentes da sequência e atrasos de precedência, incluindo a descrição das

restrições e da função objetivo, bem como uma revisão dos trabalhos relacionados. O

Caṕıtulo 3 apresenta a fundamentação teórica que sustenta o desenvolvimento do traba-

lho. O Caṕıtulo 4 descreve a metodologia proposta, detalhando o Algoritmo Genético

de Chave Aleatória Tendencioso (BRKGA), os mecanismos evolutivos empregados e os

decodificadores desenvolvidos, com ênfase na adaptação da heuŕıstica construtiva NEH.

No Caṕıtulo 5 são apresentados os experimentos computacionais, o ambiente de testes, a

calibração dos parâmetros e a análise comparativa dos resultados obtidos em relação ao

algoritmo de estado da arte da literatura. Por fim, o Caṕıtulo 6 apresenta as conclusões

do trabalho e discute possibilidades de extensões e trabalhos futuros.



14

2 Problema de Agendamento de Tarefas em

Máquina Única com Tempos de

Configuração Dependentes de Sequência e

Atrasos de Precedência

Problemas de agendamento são amplamente estudados na área de pesquisa operacional

devido à sua relevância prática em ambientes produtivos, loǵısticos e computacionais (PI-

NEDO, 2016; BRUCKER, 1999) . Um problema de agendamento consiste em determinar

a ordem e os instantes de execução de um conjunto de tarefas, denominadas jobs, em um

ou mais recursos limitados, como máquinas, de modo a otimizar um ou mais critérios de

desempenho.

A importância desses problemas decorre do fato de que decisões de sequencia-

mento impactam diretamente indicadores como tempo total de processamento, ńıvel de

utilização dos recursos, cumprimento de prazos e custos operacionais. Como consequência,

problemas de agendamento surgem em diversos contextos, incluindo sistemas de manufa-

tura, processamento de dados, transporte e serviços.

Uma contribuição central para a sistematização da literatura é a notação pro-

posta por (GRAHAM et al., 1979), conhecida como notação α|β|γ, na qual α descreve o

ambiente de máquinas, β representa as restrições e caracteŕısticas do problema, e γ indica

o critério de otimização. Essa notação permite classificar de forma concisa uma grande

variedade de problemas e facilita a comparação entre diferentes variantes.

Do ponto de vista da complexidade computacional, muitos problemas de agen-

damento são NP-dif́ıceis, especialmente quando incorporam restrições adicionais ou ob-

jetivos mais elaborados. Mesmo variantes aparentemente simples podem tornar-se in-

tratáveis quando adicionam-se restrições como tempos de preparação, precedências ou

múltiplos critérios de otimização, motivando o desenvolvimento de métodos heuŕısticos e

metaheuŕısticos.
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2.1 Problemas de agendamento em máquina única

O ambiente de máquina única ocupa um papel central na literatura de agendamento,

sendo frequentemente utilizado como ponto de partida para o estudo de variantes mais

complexas. Nesse ambiente, todos os jobs devem ser processados por uma única máquina,

não sendo permitida sobreposição no processamento (PINEDO, 2016).

Apesar de sua simplicidade aparente, o problema de máquina única apresenta

uma grande diversidade de variantes. Em sua forma mais básica, a minimização do

makespan em uma configuração sem restrições pode ser resolvida trivialmente, uma vez

que qualquer sequência produz o mesmo valor de makespan. No entanto, a introdução de

objetivos alternativos, como a minimização do tempo médio de conclusão, ou de restrições

adicionais, altera significativamente a estrutura do problema.

A relevância do ambiente de máquina única também se deve ao fato de que

ele aparece como subproblema em contextos mais gerais, como flow shops, job shops

e sistemas com múltiplas máquinas paralelas. Assim, avanços obtidos nesse ambiente

frequentemente podem ser estendidos ou adaptados a configurações mais complexas.

2.2 Tempos de configuração dependentes da sequência

Tempos de configuração dependentes da sequência surgem quando o tempo necessário para

preparar a máquina para processar um job depende do job processado imediatamente an-

tes. Essa caracteŕıstica é comum em ambientes industriais nos quais há troca de ferramen-

tas, ajustes finos ou limpeza de equipamento entre operações, como nas indústrias têxtil,

qúımica, farmacêutica e metalúrgica (ALLAHVERDI, 2015; CHOOBINEH; MOHEBBI;

KHOO, 2006).

A presença de tempos de configuração dependentes da sequência elimina propri-

edades estruturais importantes do problema clássico de máquina única. Em particular, o

custo associado a um job passa a depender de seu predecessor imediato, tornando o pro-

blema fortemente dependente da ordem de processamento. Essa caracteŕıstica aproxima

o problema de agendamento de problemas clássicos de roteamento, como o Problema do

Caixeiro Viajante assimétrico.
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Diversos estudos demonstram que a introdução de tempos de configuração de-

pendentes da sequência torna o problema NP-dif́ıcil, mesmo para critérios de otimização

simples. Revisões abrangentes sobre esse tema podem ser encontradas em trabalhos como

o de (ALLAHVERDI, 2015), que destacam tanto a relevância prática quanto os desafios

computacionais associados a essa classe de problemas.

2.3 Atrasos de precedência

Restrições de atraso de precedência, também conhecidas como precedence delays ou time-

lags, impõem que o ińıcio do processamento de um job ocorra apenas após um intervalo

mı́nimo de tempo em relação à conclusão de outro job. Formalmente, para um par (i, j)

sujeito a atraso de precedência, deve-se respeitar a condição bj ≥ ci + dij.

Esse tipo de restrição é particularmente relevante em aplicações nas quais operações

intermediárias exigem peŕıodos de espera, como processos de resfriamento, secagem, cura

de materiais ou estabilização qúımica. Diferentemente das precedências clássicas, que

apenas impõem uma ordem relativa entre tarefas, os atrasos de precedência introduzem

uma dimensão temporal expĺıcita no problema.

A literatura mostra que a inclusão de atrasos de precedência aumenta substan-

cialmente a complexidade do problema, restringindo o conjunto de soluções viáveis e

dificultando tanto a modelagem quanto o desenvolvimento de algoritmos eficientes. Tra-

balhos clássicos analisam subclasses polinomiais, enquanto estudos mais recentes propõem

heuŕısticas e metaheuŕısticas para lidar com instâncias de maior porte.

2.4 Problema de Agendamento de Tarefas emMáquina

Única com Tempos de Configuração Dependen-

tes de Sequência e Atrasos de Precedência

O problema abordado neste trabalho consiste no agendamento de um conjunto finito de

tarefas, ou jobs, em uma única máquina, com o objetivo de minimizar o tempo total

de conclusão das tarefas, denominado makespan. Assume-se que todos os jobs estão
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dispońıveis para processamento no instante inicial e que a máquina pode processar, a

qualquer momento, no máximo um job. Não é permitida a interrupção do processamento

de um job uma vez iniciado, caracterizando um ambiente sem preempção.

Cada job possui um tempo de processamento conhecido e determińıstico. Além

disso, entre o processamento de dois jobs consecutivos, pode ser necessário um tempo de

configuração (setup), cujo valor depende diretamente da ordem em que os jobs são exe-

cutados. Esses tempos de configuração dependentes da sequência refletem a necessidade

de ajustes, trocas de ferramentas ou preparações espećıficas da máquina, sendo aplicados

sempre que um job sucede outro na sequência de processamento.

O problema também incorpora restrições de precedência com atraso, nas quais

determinados pares de jobs estão relacionados por uma dependência temporal. Nessas

situações, o ińıcio do processamento de um job sucessor só é permitido após a conclusão

de seu predecessor e o cumprimento de um intervalo mı́nimo de tempo adicional. Esse

atraso representa uma espera obrigatória entre a finalização de um job e o ińıcio de outro,

decorrente de requisitos técnicos ou operacionais, e deve ser respeitado independentemente

da posição relativa dos jobs na sequência de processamento.

A interação entre tempos de configuração dependentes da sequência e restrições de

precedência com atraso torna a determinação do instante de ińıcio de cada job dependente

de múltiplos fatores. Para cada job, o ińıcio do processamento é condicionado tanto pela

conclusão do job processado imediatamente antes, considerando o respectivo tempo de

configuração, quanto pelas restrições de precedência que possam existir, considerando os

atrasos associados..

Uma solução viável para o problema é definida por uma permutação dos jobs que

respeite todas as restrições de precedência e permita o cálculo consistente dos tempos

de ińıcio e conclusão de cada tarefa. O makespan da solução corresponde ao instante

de conclusão do último job na sequência, sendo este o critério adotado para avaliar a

qualidade da solução. O objetivo do problema consiste, portanto, em determinar uma

sequência viável que minimize o makespan, considerando simultaneamente os tempos de

processamento, os tempos de configuração dependentes da sequência e as restrições de

precedência com atraso.
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A próxima seção apresenta a descrição formal do problema, incluindo a notação

adotada, a função objetivo e as restrições que caracterizam matematicamente o modelo

considerado neste trabalho.

2.4.1 Descrição formal do problema

Esta seção apresenta a formulação matemática do problema de agendamento em máquina

única com tempos de configuração dependentes da sequência e restrições de atraso de

precedência, conforme proposta por (LIN; YING, 2022). O problema é modelado por

meio de programação linear inteira mista.

Na notação clássica de (GRAHAM et al., 1979) para problemas de agendamento,

o problema é representado por

1 | sij, prec(dij) | Cmax,

onde 1 indica o ambiente de máquina única, sij representa os tempos de configuração

dependentes da sequência e prec(dij) denota a presença de restrições de atraso de pre-

cedência. O critério de otimização adotado é a minimização do makespan (Cmax).

A seguir, são apresentados os ı́ndices, parâmetros, variáveis de decisão e a for-

mulação matemática do problema.

Índices

• i, j: ı́ndices dos jobs, com i ∈ {0, 1, 2, . . . , n} e j ∈ {0, 1, 2, . . . , n}, onde o ı́ndice 0

representa um job fict́ıcio (ou tarefa sentinela);

• A: conjunto de pares ordenados (i, j), que representa o conjunto das restrições de

atraso de precedência, ou seja, se (i, j) ∈ A, então o job j só pode iniciar após a

conclusão do job i, respeitando um atraso mı́nimo dij.

Parâmetros

• n: número total de jobs ;

• pj: tempo de processamento do job j;
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• sij: tempo de configuração necessário para o processamento do job j imediatamente

após o job i;

• dij: tempo de atraso mı́nimo necessário para que o job j possa ser iniciado após a

conclusão do job i;

• M : constante positiva suficientemente grande.

Variáveis de decisão

• xij: variável binária que assume valor 1 se o job j é processado imediatamente após

o job i, e 0 caso contrário;

• bj: instante de ińıcio do processamento do job j;

• ci, cj: instantes de conclusão do processamento dos jobs i e j;

• Cmax: tempo total de execução na máquina (makespan).

Função objetivo

minCmax (2.1)

Restrições

Cmax ≥ cj; j = 1, 2, . . . , n, (2.2)

n∑
j=0

xij = 1; i = 0, 1, . . . , n (i ̸= j), (2.3)

n∑
i=0

xij = 1; j = 0, 1, 2, . . . , n (i ̸= j), (2.4)

bj ≥ ci + sij −M(1− xij); i = 1, 2, . . . , n; j = 1, 2, . . . , n (i ̸= j), (2.5)

bj ≥ ci + dij; ∀(i, j) ∈ A, (2.6)

cj = bj + pj; j = 1, 2, . . . , n, (2.7)

xij ∈ {0, 1}; i = 0, 1, . . . , n; j = 1, 2, . . . , n (i ̸= j). (2.8)
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A função objetivo 2.1 busca minimizar o makespan do cronograma, definido como

o maior tempo de conclusão entre todos os jobs. A restrição 2.2 define o makespan como

um limitante superior para os tempos de conclusão de todos os jobs. As restrições 2.3 e 2.4

garantem que cada job possua exatamente um sucessor e um predecessor na sequência de

processamento, assegurando a construção de uma permutação válida dos jobs na máquina

única. A restrição 2.5 estabelece a relação entre o instante de ińıcio de um job e o tempo

de conclusão de seu predecessor imediato na sequência, incorporando explicitamente os

tempos de configuração dependentes da sequência. A restrição 2.6 modela os atrasos de

precedência, impondo que, para cada par (i, j) pertencente ao conjunto A, o ińıcio do

processamento do job j ocorra somente após a conclusão do job i, acrescida de um atraso

mı́nimo dij. A restrição 2.7 define o tempo de conclusão de cada job como a soma de seu

tempo de ińıcio e de seu tempo de processamento. Por fim, a restrição 2.8 estabelece o

domı́nio das variáveis de decisão xij, restringindo-as a valores binários.

2.5 Trabalhos relacionados

A literatura sobre problemas de agendamento em máquina única envolvendo tempos de

configuração dependentes da sequência e restrições de precedência com atraso é relati-

vamente restrita quando comparada a variantes clássicas do problema de agendamento.

Ainda assim, diferentes linhas de pesquisa contribúıram de forma complementar para a

compreensão da complexidade e das propriedades estruturais associadas a cada uma des-

sas restrições, preparando o terreno para estudos que tratam sua combinação de forma

integrada.

No que se refere às restrições de precedência com atraso, diversos trabalhos in-

vestigaram o impacto dessas dependências temporais no problema de máquina única.

(WIKUM; LLEWELLYN; NEMHAUSER, 1994) analisaram variantes do problema, iden-

tificando subclasses resolv́ıveis em tempo polinomial e demonstrando a dificuldade compu-

tacional do caso geral. Posteriormente, (BALAS; LENSTRA; VAZACOPOULOS, 1995)

propuseram um algoritmo de branch-and-bound que explora limites inferiores derivados

da estrutura do grafo de precedência, evidenciando o aumento significativo da complexi-

dade quando atrasos são incorporados às restrições de precedência. Em uma linha mais
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restrita, (FINTA; LIU, 1996) estudaram o caso em que os atrasos de precedência possuem

comprimento unitário, apresentando um algoritmo ótimo com complexidade O(n2), o que

reforça a importância da magnitude dos atrasos na dificuldade do problema.

De forma paralela, outro corpo de literatura concentrou-se na análise de tempos

de configuração dependentes da sequência no contexto de máquina única. Esses trabalhos

demonstram que a introdução de setups dependentes da ordem de processamento elimina

propriedades estruturais importantes do problema clássico, tornando a avaliação do ma-

kespan fortemente dependente da sequência das tarefas. Estudos como (CHOOBINEH;

MOHEBBI; KHOO, 2006) e (JULA; KONES, 2013) investigaram diferentes variações do

problema, combinando tempos de setup dependentes da sequência com outros critérios de

desempenho ou restrições adicionais, e destacaram a necessidade de abordagens heuŕısticas

ou metaheuŕısticas para instâncias de maior porte.

Apesar desses avanços, a literatura que trata simultaneamente tempos de confi-

guração dependentes da sequência e restrições de precedência com atraso é significativa-

mente mais limitada. (KUO; CHEN; YEH, 2020) destacam explicitamente essa lacuna

e propõem uma metaheuŕıstica baseada em Variable Neighbourhood Search (VNS) para

a minimização do makespan. A abordagem explora diferentes estruturas de vizinhança e

incorpora mecanismos espećıficos para garantir a viabilidade das soluções frente às res-

trições de precedência atrasadas, representando um dos primeiros esforços sistemáticos

para lidar com a combinação dessas duas caracteŕısticas.

Um marco fundamental nessa linha de pesquisa é o trabalho (LIN; YING, 2022),

que constitui a principal referência adotada neste estudo. Os autores apresentam uma for-

mulação abrangente do problema de agendamento em máquina única considerando simul-

taneamente tempos de configuração dependentes da sequência e restrições de precedência

com atraso, discutindo suas propriedades estruturais e demonstrando sua complexidade

computacional. Além disso, o trabalho propõe uma abordagem baseada no algoritmo

Iterated Greedy, denominada Lean Iterated Greedy (LIG), e disponibiliza um conjunto

de instâncias de teste. No presente trabalho, tanto a modelagem do problema quanto

o conjunto de instâncias e os resultados de referência adotados seguem diretamente a

formulação e os dados apresentados por (LIN; YING, 2022).
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Mais recentemente, algoritmos genéticos de chave aleatória têm sido explorados

como uma alternativa flex́ıvel para problemas de sequenciamento (LONDE et al., 2025),

uma vez que permitem desacoplar o processo evolutivo da construção da solução e torna

fácil manter a viabilidade entre as gerações usando uma codificação robusta.

Nesse cenário, o presente trabalho se diferencia da literatura existente ao integrar

um BRKGA a um decodificador baseado em uma adaptação do algoritmo NEH, proje-

tado especificamente para lidar com tempos de configuração dependentes da sequência e

restrições de precedência com atraso. Diferentemente das abordagens baseadas exclusi-

vamente em busca local, como as estratégias VNS propostas anteriormente, a abordagem

adotada explora o potencial dos algoritmos genéticos de chave aleatória aliados a uma

heuŕıstica construtiva eficiente, posicionando-se como uma alternativa complementar às

estratégias existentes e diretamente alinhada à formulação estabelecida por (LIN; YING,

2022).
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3 Fundamentação Teórica

Este caṕıtulo apresenta os principais conceitos teóricos que fundamentam o desenvolvi-

mento deste trabalho. São introduzidos os conceitos centrais de metaheuŕısticas e algo-

ritmos genéticos, culminando na apresentação do Algoritmo Genético de Chave Aleatória

Tendencioso (BRKGA). Por fim, são discutidos algoritmos construtivos e, em particular,

a heuŕıstica NEH, que serve de base para o decodificador proposto neste trabalho.

3.1 Metaheuŕısticas

Metaheuŕısticas constituem um conjunto de estratégias gerais de busca projetadas para

resolver problemas de otimização complexos de forma aproximada. Diferentemente de

métodos exatos, essas abordagens não garantem a obtenção da solução ótima, mas são

capazes de produzir soluções de alta qualidade em tempos computacionais reduzidos

(TALBI, 2009).

Um aspecto central das metaheuŕısticas é o equiĺıbrio entre exploração do espaço

de busca e intensificação em regiões promissoras. Estratégias como busca local, simulated

annealing, tabu search, variable neighbourhood search e algoritmos populacionais exploram

esse equiĺıbrio de diferentes maneiras.

Em problemas de agendamento, metaheuŕısticas são amplamente utilizadas de-

vido à elevada complexidade combinatória envolvida. A flexibilidade dessas abordagens

permite incorporar conhecimento espećıfico do problema por meio de operadores especi-

alizados, heuŕısticas construtivas e mecanismos de reparo de soluções inviáveis.

3.2 Algoritmos Genéticos

Algoritmos Genéticos são metaheuŕısticas populacionais inspiradas na Teoria da Evolução

Natural das espécies. Nessa abordagem, uma população de soluções candidatas evolui ao

longo de gerações por meio de operadores de seleção, cruzamento e mutação (HOLLAND,
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1992).

Cada solução é representada por um cromossomo, cuja estrutura depende do

problema considerado. A qualidade das soluções é avaliada por meio de uma função de

aptidão, que orienta o processo evolutivo. Normalmente, essas soluções são divididas em

dois subconjuntos de acordo com a sua qualidade, formando os subconjuntos de soluções

de elite e de não elite. Soluções com melhor desempenho possuem maior probabilidade

de contribuir para a geração seguinte.

Embora algoritmos genéticos clássicos tenham sido aplicados com sucesso a diver-

sos problemas, sua aplicação direta a problemas de sequenciamento pode ser dificultada

pela necessidade de garantir a viabilidade das soluções. Isso motivou o desenvolvimento

de representações indiretas, nas quais o cromossomo não codifica diretamente a solução,

mas fornece informações para um procedimento de decodificação.

3.3 Algoritmo Genético de Chave Aleatória

O Algoritmo Genético de Chave Aleatória introduz uma representação indireta baseada

em vetores de números reais no intervalo [0, 1), denominados chaves aleatórias. Cada

cromossomo consiste em um conjunto de chaves aleatórias, que são interpretadas por um

decodificador espećıfico do problema para construir uma solução viável (BEAN, 1994).

Essa abordagem separa o mecanismo evolutivo do problema sendo abordado,

permitindo que o algoritmo genético opere em um espaço cont́ınuo enquanto o decodifi-

cador incorpora conhecimento estrutural do problema. O Algoritmo Genético de Chave

Aleatória Tendencioso estende essa ideia ao introduzir um processo de cruzamento envie-

sado, no qual um dos genitores é sempre selecionado do conjunto de elite e a probabilidade

de herdar genes desse genitor é maior que a de herdar do genitor não elite.

3.4 Algoritmos construtivos

Algoritmos construtivos constroem soluções de forma incremental, adicionando elementos

passo a passo segundo regras heuŕısticas (TALBI, 2009). Em problemas de agendamento,

esses métodos são amplamente utilizados devido à sua simplicidade e eficiência computa-
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cional.

Uma caracteŕıstica importante dos algoritmos construtivos é que decisões toma-

das em etapas iniciais influenciam fortemente a qualidade da solução final. Por esse

motivo, diversas heuŕısticas combinam procedimentos construtivos com mecanismos de

refinamento local ou os utilizam como componentes internos de metaheuŕısticas.

3.5 Algoritmo NEH

O algoritmo NEH, proposto originalmente para o problema de flow shop, é uma das

heuŕısticas construtivas mais conhecidas e eficazes na literatura de agendamento (NAWAZ;

JR; HAM, 1983). O método constrói a sequência de forma incremental, inserindo os jobs

em posições que minimizam o makespan parcial.

A eficiência do NEH decorre de sua estratégia de inserção sistemática, que avalia

diferentes posições na sequência parcial e seleciona aquela que produz o melhor resultado.

Essa caracteŕıstica torna o algoritmo particularmente atrativo para adaptações e extensões

(RUIZ; MAROTO, 2005).
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4 Abordagem Proposta

A abordagem proposta neste trabalho baseia-se na utilização do Algoritmo Genético de

Chave Aleatória Tendencioso, proposto por (GONÇALVES; RESENDE, 2011), como me-

taheuŕıstica de busca global, aliada ao desenvolvimento de decodificadores especializa-

dos capazes de transformar cromossomos compostos por chaves aleatórias cont́ınuas em

sequências viáveis de jobs. A principal contribuição deste trabalho está no módulo de

decodificação, responsável por incorporar as restrições estruturais do problema.

4.1 Processo evolutivo do BRKGA

No contexto do BRKGA, o processo evolutivo atua exclusivamente sobre vetores de cha-

ves aleatórias, números reais no intervalo [0, 1), enquanto a interpretação desses vetores

como soluções fact́ıveis do problema de agendamento é delegada ao decodificador. Essa

separação permite que os operadores genéticos permaneçam independentes das carac-

teŕısticas espećıficas do problema, ao mesmo tempo em que o conhecimento estrutural

é explorado de forma eficiente durante a construção das soluções. De maneira geral,

o algoritmo opera a partir da evolução de uma população inicial contendo exatamente

p cromossomos gerados aleatoriamente, sendo cada cromossomo composto por n chaves

aleatórias cont́ınuas.

4.1.1 Critério de parada

O processo evolutivo é conduzido ao longo de um número finito de gerações, até que

um critério de parada previamente definido seja satisfeito. A condição de parada adotada

neste trabalho baseia-se em um número máximo de gerações, critério amplamente utilizado

em aplicações do BRKGA.
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4.1.2 Avaliação da qualidade da população

Em cada iteração do algoritmo, o decodificador é chamado para avaliar a qualidade de

cada vetor de chaves aleatórias na população. Após esta etapa de avaliação, os indiv́ıduos

são ordenados de acordo com seus valores de aptidão, e a população é então particionada

em dois subconjuntos distintos. O primeiro subconjunto corresponde ao conjunto de elite,

formado por pe indiv́ıduos com os melhores valores de aptidão da geração corrente. O

segundo subconjunto é composto pelos p−pe indiv́ıduos restantes, denominados não elite.

4.1.3 Seleção e cruzamento

Tanto o algoritmo genético de chave aleatória de Bean quanto o BRKGA utilizam cruza-

mento uniforme parametrizado (SPEARS; JONG, 1995) para a geração dos descendentes.

A principal diferença reside no fato de que, no BRKGA, um dos genitores é sempre selecio-

nado a partir do conjunto de elite da população, enquanto o outro é escolhido no conjunto

de não elite. Além disso, o cruzamento é enviesado de forma que a probabilidade de o

descendente herdar a chave aleatória do genitor pertencente à elite é dada por ρe > 0.5.

Mais especificamente, para definir cada posição j do cromossomo descendente i,

gera-se um número aleatório uniforme rij ∈ [0, 1). Caso rij ≤ ρe, o descendente herda

a chave aleatória correspondente do genitor pertencente à elite; caso contrário, a chave

é herdada do genitor não pertencente à elite. Esse viés sistemático impõe uma pressão

seletiva controlada que favorece a propagação de caracteŕısticas associadas às melhores

soluções da população, acelerando o processo de convergência, ao mesmo tempo em que

preserva diversidade genética suficiente para reduzir o risco de convergência prematura.

4.1.4 Mutação

Em vez de utilizar estratégias clássicas de mutação, o BRKGA emprega o conceito de

imigração. Isto é, a cada geração, pm membros da população são gerados aleatoriamente.

Esse processo evita a convergência prematura da população, de forma semelhante a um

operador de mutação, e conduz a uma formulação simples da convergência.
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4.1.5 Formação da nova população

A cada iteração do BRKGA, uma nova população é constrúıda. Cada nova geração é

formada por:

• pe indiv́ıduos pertencentes ao conjunto de elite da geração anterior;

• pm indiv́ıduos imigrantes gerados aleatoriamente;

• p− pe − pm indiv́ıduos gerados através de cruzamento.

Esse ciclo de avaliação, particionamento da população e geração de novos in-

div́ıduos é repetido sucessivamente ao longo das gerações, até que o critério de parada

seja satisfeito. Ao final do processo evolutivo, a melhor solução encontrada ao longo de

todas as gerações é retornada como resultado do algoritmo. A Figura 4.1 ilustra todo este

processo.

4.2 Decodificadores

Para a avaliação dos indiv́ıduos, foram desenvolvidos dois decodificadores distintos para

transformar os cromossomos em sequências de jobs. Nas subseções seguintes, Π representa

a sequência e, Π[j] representa o j-ésimo job da sequência.

4.2.1 Decodificador simples

O decodificador simples é uma adaptação do decodificador apresentado por (BEAN, 1994)

para o SMSP com SDST e DP. A cada iteração, seleciona-se o job eleǵıvel com menor valor

de chave aleatória. Jobs eleǵıveis são aqueles que não possuem restrições de precedência

ou cujos jobs precedentes já foram inseridos na solução parcial. A cada inserção de um

job na solução, a lista de jobs eleǵıveis é atualiza. Embora computacionalmente eficiente,

essa estratégia oferece pouca flexibilidade para rearranjos locais da sequência, o que pode

limitar a qualidade das soluções obtidas.
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Gera  vetores de
chaves aleatórias

Não

Sim Condição de
parada

satisfeita?

Classifica indivíduos
como elite ou não

elite

Início

Decodifica cada vetor
de chaves aleatórias

Fim

Copia indivíduos elite
para a próxima

geração

Cria indivíduos
mutantes para a
próxima geração

Faz cruzamento dos
indivíduos elite e não

elite e adiciona na
próxima geração

Figura 4.1: Estrutura básica do BRKGA. Fonte: Imagem adaptada de (GONÇALVES;
RESENDE, 2011).

4.2.2 Decodificador NEH

O decodificador NEH é baseado em uma adaptação da heuŕıstica construtiva NEH. Assim

como no decodificador simples, a cada iteração o job eleǵıvel é selecionado para inserção na

sequência parcial. Uma vez selecionado o job, sua inserção é testada em múltiplas posições

da sequência parcial, buscando aquela que minimize o makespan da solução parcial sem

violar as restrições de precedência. Para controlar o custo computacional do decodificador,

especialmente considerando que ele é executado para cada indiv́ıduo da população em

todas as gerações, a avaliação é restrita às últimas k posições posśıveis da sequência.

Essa janela limitada representa um compromisso entre qualidade da solução e tempo de

execução: testar todas as posições posśıveis exige mais tempo de execução, enquanto

restringir a inserção a uma única posição reduziria significativamente a capacidade de

melhoria local. O parâmetro k permite ajustar esse equiĺıbrio de forma controlada.
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O Algoritmo 1 apresenta o pseudocódigo do decodificador baseado em NEH para

a construção das sequências a partir dos cromossomos gerados pelo BRKGA.

Algoritmo 1: Decodificador baseado no algoritmo NEH

Entrada: Cromossomo r, conjunto de jobs J , janela k
1 Π← ∅
2 Jc ← {j ∈ J : j não possui predecessores}
3 while Jc ̸= ∅ do
4 j ← mini∈Jc ri
5 Πbest ← Π ∪ {j}
6 lb← max(0, |Π| − k)
7 pos← |Π| − 1
8 while pos ≥ lb do
9 if j viola precedências ao ser inserido na posição pos then

10 break
11 end if
12 Πnew ← insere(j,Π, pos)
13 if Cmax(Πnew) < Cmax(Πbest) then
14 Πbest ← Πnew

15 end if
16 pos← pos− 1

17 end while
18 Π← Πbest;
19 atualizar Jc removendo j e liberando novos jobs eleǵıveis;

20 end while
21 return Π;

Inicialmente, a sequência parcial Π é inicializada como vazia, e o conjunto Jc

é definido contendo apenas os jobs que não possuem predecessores, isto é, aqueles que

podem ser escalonados no instante inicial (linhas 1–2). O algoritmo então executa um laço

principal enquanto houver jobs eleǵıveis em Jc (linha 3). Em cada iteração, seleciona-se o

job j cujo valor no cromossomo r é mı́nimo entre os jobs eleǵıveis (linha 4). Em seguida,

uma solução candidata inicial Πbest é criada pela inserção do job j no final da sequência

parcial Π (linha 5). Para limitar o esforço computacional do processo de inserção, define-

se uma janela de busca de tamanho k, calculando o limite inferior lb para as posições

testadas (linha 6). A variável pos é inicializada com a última posição válida da sequência

(linha 7). O laço interno (linha 8) testa diferentes posições de inserção do job j dentro da

janela definida. Caso a inserção de j em uma determinada posição viole alguma restrição

de precedência, o laço é interrompido, uma vez que posições anteriores também seriam

inviáveis (linhas 9–10). Para cada posição viável, uma nova sequência Πnew é constrúıda
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por meio da inserção de j na posição pos (linha 11). Omakespan da nova sequência é então

avaliado, e, se for inferior ao da melhor solução encontrada até o momento, a solução Πbest

é atualizada (linhas 12–14). A posição de inserção é decrementada e o processo continua

até que o limite inferior da janela seja atingido (linha 15).

Após a avaliação de todas as posições viáveis, a sequência parcial Π é atualizada

com a melhor solução encontrada para a inserção do job j (linha 16). O conjunto Jc é

então atualizado, removendo o job recém-inserido e incluindo novos jobs que se tornaram

eleǵıveis em função do atendimento de suas restrições de precedência (linha 17).

O processo se repete até que todos os jobs tenham sido inseridos na sequência.

Por fim, o algoritmo retorna a sequência completa Π, correspondente à decodificação do

cromossomo r (linha 19).

É importante destacar que o decodificador simples pode ser interpretado como

um caso particular do decodificador baseado em NEH, correspondente à configuração

k = 0. Nessa situação, a inserção do job ocorre exclusivamente ao final da sequência

parcial, eliminando a avaliação de posições alternativas. Essa relação estrutural entre os

dois decodificadores permite uma comparação direta entre estratégias de complexidade

distinta e fundamenta a análise experimental apresentada no caṕıtulo seguinte.

4.3 Cálculo do makespan

Ambos os decodificadores necessitam calcular o makespan (Cmax) para avaliar a aptidão

da solução. O makespan é definido como o tempo de conclusão do último job da sequência.

O tempo de conclusão de um job corresponde ao seu instante de ińıcio de processamento

na máquina acrescido do tempo necessário para a execução de sua operação.

O tempo de ińıcio do primeiro job da sequência é igual a zero. Para os demais

jobs, o instante de ińıcio do processamento do j-ésimo job é determinado pelo maior valor

entre: (i) o tempo de conclusão do job imediatamente precedente na sequência, acrescido

do tempo de setup correspondente; e (ii) o tempo de conclusão de cada job predecessor

sujeito a atraso de precedência, isto é, todo job i tal que (i,Π[j]) ∈ A, acrescido do

respectivo tempo de atraso.

A avaliação de cada inserção candidata exige o cálculo do makespan da sequência
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resultante. Recalcular integralmente os tempos de conclusão de todas as tarefas a cada

tentativa de inserção tornaria o processo computacionalmente inviável, sobretudo consi-

derando o elevado número de avaliações realizadas ao longo do processo evolutivo. Por

essa razão, o cálculo do makespan é realizado de forma incremental, atualizando apenas

as porções da sequência afetadas pela inserção do novo job em uma determinada posição.

Esse procedimento considera simultaneamente os tempos de processamento, os

tempos de configuração dependentes da sequência e os atrasos de precedência, garantindo

a correta avaliação da solução sem a realização de cálculos desnecessários. O Algoritmo 2

descreve formalmente o procedimento adotado para o cálculo do makespan.

Algoritmo 2: Cálculo incremental do makespan

Entrada: Sequência Π, tempos p, setups s, atrasos d, ı́ndice x
Sáıda: Cmax(Π)

1 if x = 1 then
2 C[1]← p(Π[1])
3 x← x+ 1

4 end if
5 for j ← x to |Π| do
6 b← C[j − 1] + s(Π[j − 1],Π[j])
7 for cada predecessor u de Π[j] do
8 b← max(b, C[pos(u)] + d(u,Π[j]))
9 end for

10 C[j]← b+ p(Π[j])

11 end for
12 return C[|Π|]

Inicialmente, verifica-se se o ı́ndice inicial x é igual a 1 (linha 3). Nesse caso,

o tempo de conclusão do primeiro job da sequência é calculado diretamente como o seu

tempo de processamento, isto é, C[1] = p(Π[1]) (linha 4). Em seguida, o ı́ndice x é

incrementado, indicando que os cálculos subsequentes devem partir do segundo job da

sequência (linha 5).

O algoritmo então percorre a sequência Π a partir da posição x até o último job

(linha 7). Para cada job Π[j], é inicialmente calculado um tempo de ińıcio b, correspon-

dente ao instante de conclusão do job anterior somado ao tempo de setup entre os jobs

consecutivos Π[j − 1] e Π[j] (linha 8).

Em seguida, para cada predecessor u do job Π[j], o valor de b é atualizado de

forma a respeitar as restrições de precedência e os atrasos associados (linha 10). Mais es-
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pecificamente, garante-se que o ińıcio do processamento de Π[j] ocorra após a conclusão de

cada predecessor u, acrescida do respectivo atraso d(u,Π[j]), tomando-se o valor máximo

entre essas restrições (linha 11).

Após a determinação do instante mais cedo viável para o ińıcio do processamento

do job Π[j], o seu tempo de conclusão é calculado adicionando-se o tempo de processa-

mento p(Π[j]), resultando em C[j] (linha 13).

Esse procedimento é repetido até que todos os jobs da sequência tenham sido

avaliados. Por fim, o algoritmo retorna o makespan da sequência Π, definido como o

tempo de conclusão do último job, C[|Π|] (linha 15).

Cabe ressaltar que tanto o BRKGA quanto os decodificadores desenvolvidos apre-

sentam uma caracteŕıstica intrinsecamente paralelizável. Como a avaliação de cada cro-

mossomo é independente, a decodificação de indiv́ıduos distintos pode ser distribúıda

entre múltiplos núcleos de processamento sem necessidade de sincronização ou troca de

informações. Essa propriedade permitiria acelerar significativamente o processo evolutivo

em ambientes multiprocessados, especialmente para instâncias de grande porte. Contudo,

a paralelização não foi explorada neste trabalho, uma vez que o foco está na proposição

e análise da heuŕıstica de decodificação, e não na otimização da infraestrutura compu-

tacional. Todas as execuções foram realizadas em um único núcleo, de modo a isolar o

impacto da técnica proposta sobre a qualidade das soluções.

Em śıntese, a abordagem apresentada combina a capacidade exploratória do

BRKGA com um decodificador eficiente e adaptado às caracteŕısticas espećıficas do pro-

blema de agendamento estudado. A utilização de uma estratégia de inserção incremental

inspirada no NEH, aliada a um cálculo otimizado do makespan e a mecanismos expĺıcitos

de respeito aos atrasos de precedência, resulta em um método robusto, flex́ıvel e adequado

para a resolução do problema considerado.
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5 Experimentos e resultados

Experimentos foram conduzidos com o objetivo de avaliar o desempenho do Algoritmo

Genético de Chave Aleatória Tendencioso proposto para resolver o problema de agenda-

mento em máquina única com tempos de configuração dependentes de sequência e atrasos

de precedência em relação ao algoritmo LIG, estado da arte da literatura (LIN; YING,

2022).

5.1 Instâncias

Todas as instâncias utilizadas nos testes foram obtidas a partir do conjunto disponibi-

lizado por (LIN; YING, 2022). Esse conjunto de testes possui cenários com números

de tarefas (n) de 10, 15, 20, 25, 50, 75 e 100; tempos de processamento (pj) uniforme-

mente distribúıdos nos intervalos [10, 20] e [20, 30]; tempos de configuração (sij) unifor-

memente distribúıdos nos intervalos [5, 10] e [10, 15]; tempos de atraso dij uniformemente

distribúıdos nos intervalos [20, 40] e [40, 60]. Para cada combinação destes parâmetros,

existem 10 instâncias, totalizando 560 instâncias.

5.2 Ambiente de testes

Todos os testes para o BRKGA foram executados em uma máquina rodando o sistema

operacional Ubuntu 24.04 com processador Intel Core i5-1135G7 @ 2.40GHz e 16 GB

de memória. O algoritmo foi desenvolvimento na linguagem C++ e adotou-se como

base o framework de (TOSO; RESENDE, 2015), que fornece uma implementação mo-

dular, extenśıvel e orientada a objetos do BRKGA na linguagem de programação C++.

Esse framework organiza o algoritmo em três componentes fundamentais: (i) populações

independentes evoluindo em paralelo; (ii) operadores básicos do BRKGA (cruzamento

tendencioso, geração de mutantes e seleção de elite); e (iii) um decodificador externo res-

ponsável por mapear cromossomos para soluções viáveis do problema. Essa separação
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entre mecanismo evolutivo e lógica de decodificação facilita a integração de heuŕısticas

espećıficas, como a abordagem proposta neste trabalho. Todo o processo evolutivo, inclu-

indo inicialização, seleção, cruzamento e mutação, utiliza as funções disponibilizadas pelo

framework, enquanto o cálculo do makespan e a construção das sequências são realizados

através de algoritmos desenvolvidos neste trabalho.

Embora o framework permita paralelização em dois ńıveis, população e em ńıvel

de decodificação, com threads independentes executando avaliações simultâneas, esses

recursos não foram empregados neste trabalho. Todas as execuções foram realizadas de

forma sequencial, de modo a manter o foco no comportamento da heuŕıstica proposta e

evitar que efeitos de paralelismo interfiram na comparação com a literatura, que utiliza

um algoritmo sequencial.

5.3 Configuração dos parâmetros

Para a configuração dos parâmetros do BRKGA foram utilizados os valores recomendados

em (GONÇALVES; RESENDE, 2016) para o BRKGA. Em (PRASETYO et al., 2015),

os autores realizam um levantamento das aplicações do BRKGA na literatura, mostrando

que esses parâmetros recomendados são válidos e utilizados nos estudos existentes. Além

disso, foram realizados testes com instâncias que combinavam diferentes caracteŕısticas

para validar a eficiência destes valores. Por fim, a Tabela 5.1 mostra os valores utilizados

para o BRKGA, onde p é o tamanho da população, pe o tamanho do conjunto elite, pm o

número de indiv́ıduos mutantes que serão inseridos em cada geração e ρe é a probabilidade

do novo indiv́ıduo herdar as caracteŕısticas do genitor de melhor qualidade.

Parâmetro Valor
p 100
pe 0.2× p
pm 0.1× p
ρe 0.7

Tabela 5.1: Parâmetros para o BRKGA
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5.4 Resultados

Com as instâncias, o ambiente de testes e os parâmetros do BRKGA definidos, esta

seção apresenta os resultados obtidos nos experimentos computacionais. Primeiramente,

analisa-se o resultado considerando os decodificadores desenvolvidos, avaliando o impacto

do parâmetro k, considerando tanto a qualidade das soluções quanto o tempo de execução.

Em seguida, o desempenho do decodificador baseado na heuŕıstica NEH, que apresentou

os melhores resultados, é comparado com o algoritmo estado da arte da literatura, LIG

(LIN; YING, 2022).

5.4.1 Comparação entre decodificadores

Um dos aspectos centrais avaliados nos decodificadores propostos é o tamanho da janela,

dado pelo parâmetro k, que define quantas das posições finais da sequência parcial devem

ser analisadas para determinar a melhor posição de inserção de um job. No decodificador

mais simples, correspondente ao caso k = 0, o job é sempre inserido ao final da sequência

parcial, enquanto valores k > 0 caracterizam o decodificador baseado na adaptação da

heuŕıstica NEH, no qual múltiplas posições são avaliadas. Valores reduzidos de k implicam

menor custo computacional, mas podem limitar a capacidade de refinamento da sequência;

por outro lado, valores maiores ampliam o espaço de busca analisado, ao custo de maior

tempo de processamento.

Com o objetivo de comparar o desempenho dos dois decodificadores e analisar o

compromisso entre qualidade da solução e tempo de execução, foram realizados experi-

mentos variando-se o valor de k em diferentes escalas relativas ao tamanho das instâncias,

adotando-se um critério de parada de 500 gerações. Os resultados obtidos para a instância

N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P10, apresentados nas Figuras 5.1 e 5.3,

evidenciam uma relação clara entre a redução do makespan das soluções e o aumento do

tempo computacional à medida que k cresce. Esse padrão de comportamento também

foi observado nas demais instâncias avaliadas, variando apenas a magnitude dos ganhos

e dos tempos de execução.

Em relação à qualidade das soluções, observa-se na Figura 5.1 que, independen-

temente do valor de k, o makespan apresenta uma tendência de melhora ao longo das
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gerações. No entanto, ao comparar o comportamento associado aos diferentes valores de

k, verifica-se que, para k = 0, a qualidade da solução obtida após 500 gerações é inferior

àquela alcançada pelos demais valores de k já nas gerações iniciais. A Figura 5.2 mos-

tra que, a qualidade encontrada pelo algoritmo, utilizando k = 0, mesmo após executar

por 10 segundos, não consegue encontrar valores de makespan menores do que aqueles

encontrados quando o algoritmo foi executado utilizando k = 50 e k = 100 em menos

de 1 segundo.

Figura 5.1: Desempenho do decodificador para diferentes valores de k.
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Figura 5.2: Tempo×makespan

Figura 5.3: Gerações× Tempo

A Figura 5.3 evidencia que o tempo de execução cresce com o número de gerações

para todos os valores de k. Esse comportamento confirma o compromisso entre quali-

dade da solução e tempo de execução: valores maiores de k ampliam a capacidade de
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refinamento da sequência, mas impõem um custo computacional maior no processo de

decodificação.

5.4.2 Comparação com os resultados da literatura

Após testes preliminares, observou-se que o algoritmo proposto apresenta tempos de

execução compat́ıveis mesmo quando se utiliza o maior valor posśıvel para a janela de

inserção, isto é, k = n. Verificou-se também que, para instâncias de pequeno porte, o

algoritmo requer um número maior de gerações para atingir soluções competitivas. Em

contraste, em instâncias médias e grandes o algoritmo apresentou uma convergência mais

eficiente.

Com base nessas observações, o algoritmo foi executado sobre o conjunto com-

pleto de instâncias utilizando, para cada caso, o maior valor admisśıvel de k. O número

máximo de gerações foi definido em função do tamanho da instância, de modo a equilibrar

qualidade da solução e tempo computacional: 500 gerações para instâncias com até 50

jobs, 200 gerações para instâncias com 75 jobs e 100 gerações para instâncias com 100

jobs. Essa estratégia se justifica pelo fato de que, em instâncias maiores, cada geração

envolve um custo computacional significativamente mais elevado, enquanto ganhos mar-

ginais adicionais tendem a diminuir após um número relativamente pequeno de iterações.

Como citado anteriormente, os testes para o BRKGA foram executados em uma

máquina rodando o sistema operacional Ubuntu 24.04 com processador Intel Core i5-

1135G7 @ 2.40GHz e 16 GB de memória, enquanto os testes de (LIN; YING, 2022) foram

executados em uma máquina com um processador Intel Xeon E5-1620v2 @ 3.70 GHz,

com 64 GB de memória, rodando o sistema operacional Windows 10. De acordo com o

website www.cpubenchmark.net, o processador i5-1135G7 possui uma pontuação de 9400,

enquanto o Xeon E5-1620v2 possui uma pontuação 6506, resultando em uma razão de

desempenho de aproximadamente 1,4. Essa razão é utilizada para multiplicar os tempos

de execução do algoritmo proposto para tornar a comparação entre as abordagens mais

justa.

Assim como nos experimentos de (LIN; YING, 2022), o algoritmo foi executado

5 vezes para cada instância. Dessas cinco execuções foram tabelados o melhor makespan
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encontrado pelo BRKGA, a média do makespan nas cinco execuções e o tempo médio de

execução. Os resultados completos, comparando BRKGA com LIG para cada instância

individual, podem ser encontrados nas tabelas no apêndice. A Tabela 5.2 sumariza os

resultados por combinação dos parâmetros. Para cada combinação é apresentada a média

do o tempo médio de execução do BRKGA em segundos (T BRKGA), a média do tempo

médio de execução do LIG em segundos (T LIG), em quantas instâncias BRKGA conse-

guiu encontrar valores melhores do que o LIG (M), em quantas ele achou valores iguais

(I), quantos ele não conseguiu achar valores melhores ou iguais (P) e o desvio percentual

relativo (DPR) entre as melhores soluções encontradas pelas abordagens, dado por:

DPR =
CBRKGA

max − CLIG
max

CLIG
max

(5.1)

Tabela 5.2: Resultados por combinação de parâmetros

n pi sij dij DPR T BRKGA T LIG M I P

10 [10,20] [5,10] [20,40] 0.00 0.06 1.00 0 10 0

10 [10,20] [5,10] [40,60] 0.00 0.06 1.01 0 10 0

10 [10,20] [10,15] [20,40] 0.00 0.06 1.01 0 10 0

10 [10,20] [10,15] [40,60] 0.00 0.06 1.01 0 10 0

10 [20,30] [5,10] [20,40] 0.00 0.06 1.01 0 10 0

10 [20,30] [5,10] [40,60] 0.00 0.06 1.01 0 10 0

10 [20,30] [10,15] [20,40] 0.00 0.06 1.01 0 10 0

10 [20,30] [10,15] [40,60] 0.00 0.06 1.01 0 10 0

15 [10,20] [5,10] [20,40] 0.00 0.19 1.51 0 10 0

15 [10,20] [5,10] [40,60] 0.00 0.18 1.51 0 10 0

15 [10,20] [10,15] [20,40] 0.00 0.20 1.51 0 10 0

15 [10,20] [10,15] [40,60] 0.00 0.19 1.51 0 10 0

15 [20,30] [5,10] [20,40] 0.00 0.20 1.51 0 10 0

15 [20,30] [5,10] [40,60] 0.00 0.19 1.51 0 10 0

15 [20,30] [10,15] [20,40] 0.00 0.19 1.51 0 10 0



5.4 Resultados 41

n pi sij dij DPR T BRKGA T LIG M I P

15 [20,30] [10,15] [40,60] 0.00 0.20 1.51 0 10 0

20 [10,20] [5,10] [20,40] 0.08 0.37 2.01 0 7 3

20 [10,20] [5,10] [40,60] 0.10 0.36 2.01 0 6 4

20 [10,20] [10,15] [20,40] 0.08 0.37 2.01 0 6 4

20 [10,20] [10,15] [40,60] 0.02 0.35 2.01 0 9 1

20 [20,30] [5,10] [20,40] 0.03 0.37 2.01 0 8 2

20 [20,30] [5,10] [40,60] 0.07 0.36 2.01 0 7 3

20 [20,30] [10,15] [20,40] 0.06 0.36 2.01 0 7 3

20 [20,30] [10,15] [40,60] 0.07 0.35 2.01 0 6 4

25 [10,20] [5,10] [20,40] 0.10 0.68 2.51 0 5 5

25 [10,20] [5,10] [40,60] 0.12 0.66 2.51 1 3 6

25 [10,20] [10,15] [20,40] 0.05 0.67 2.51 0 7 3

25 [10,20] [10,15] [40,60] 0.08 0.65 2.51 1 3 6

25 [20,30] [5,10] [20,40] 0.03 0.67 2.51 0 8 2

25 [20,30] [5,10] [40,60] 0.04 0.70 2.51 1 5 4

25 [20,30] [10,15] [20,40] 0.04 0.67 2.51 1 5 4

25 [20,30] [10,15] [40,60] 0.05 0.69 2.51 0 6 4

50 [10,20] [5,10] [20,40] -0.09 4.47 5.01 8 1 1

50 [10,20] [5,10] [40,60] -0.02 4.51 5.01 3 5 2

50 [10,20] [10,15] [20,40] -0.05 4.56 5.01 7 2 1

50 [10,20] [10,15] [40,60] -0.09 4.71 5.01 8 1 1

50 [20,30] [5,10] [20,40] -0.02 4.62 5.01 4 5 1

50 [20,30] [5,10] [40,60] -0.03 4.41 5.01 5 4 1

50 [20,30] [10,15] [20,40] -0.04 4.51 5.01 7 2 1

50 [20,30] [10,15] [40,60] -0.04 4.70 5.01 6 3 1

75 [10,20] [5,10] [20,40] -0.08 5.65 7.51 9 1 0

75 [10,20] [5,10] [40,60] -0.12 5.61 7.51 9 1 0

75 [10,20] [10,15] [20,40] -0.07 5.62 7.51 9 1 0

75 [10,20] [10,15] [40,60] -0.07 5.52 7.51 9 1 0
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n pi sij dij DPR T BRKGA T LIG M I P

75 [20,30] [5,10] [20,40] -0.06 5.77 7.51 9 1 0

75 [20,30] [5,10] [40,60] -0.06 5.62 7.50 10 0 0

75 [20,30] [10,15] [20,40] -0.05 5.55 7.51 8 2 0

75 [20,30] [10,15] [40,60] -0.05 5.59 7.50 10 0 0

100 [10,20] [5,10] [20,40] -0.09 5.89 10.01 10 0 0

100 [10,20] [5,10] [40,60] -0.12 5.83 10.01 10 0 0

100 [10,20] [10,15] [20,40] -0.06 5.86 10.01 9 1 0

100 [10,20] [10,15] [40,60] -0.09 5.90 10.01 10 0 0

100 [20,30] [5,10] [20,40] -0.05 5.92 10.01 9 1 0

100 [20,30] [5,10] [40,60] -0.07 5.86 10.01 10 0 0

100 [20,30] [10,15] [20,40] -0.04 5.89 10.01 9 1 0

100 [20,30] [10,15] [40,60] -0.06 5.92 10.01 10 0 0

Os resultados indicam que o decodificador baseado no NEH, integrado ao BRKGA,

apresenta desempenho limitado em instâncias de pequeno porte, nas quais encontra maior

dificuldade em superar as soluções da literatura. Em contrapartida, para instâncias de

médio e grande porte, observa-se uma melhora significativa no desempenho da aborda-

gem proposta. Em particular, nas instâncias com 75 e 100 jobs, o BRKGA não perde em

nenhuma das instâncias avaliadas, obtendo resultados superiores na maioria dos casos,

além de apresentar tempos de execução menores.

Assim, ficou demonstrado que a combinação do BRKGA com uma heuŕıstica de

construção adaptada às caracteŕısticas do problema constitui uma abordagem robusta e

eficiente. Esse resultado reforça o papel central do decodificador no desempenho final do

BRKGA e confirma a adequação da integração entre a estrutura do algoritmo evolutivo

e o mecanismo de inserção incremental proposto.
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6 Conclusão

Este trabalho abordou o problema de agendamento de tarefas em máquina única com

tempos de configuração dependentes da sequência e atrasos de precedência, cujo obje-

tivo é a minimização do makespan. Trata-se de um problema de elevada complexidade

combinatória, especialmente quando essas duas restrições são consideradas simultanea-

mente, o que inviabiliza o uso de métodos exatos para instâncias de porte médio e grande.

Motivado por essas caracteŕısticas e tendo como principal referência o trabalho de (LIN;

YING, 2022), foi proposta uma abordagem metaheuŕıstica baseada no Algoritmo Genético

de Chave Aleatória Tendencioso (BRKGA), combinada a decodificadores especificamente

projetados para o problema em estudo.

A principal contribuição deste trabalho consiste no desenvolvimento e na análise

de um decodificador baseado em uma adaptação da heuŕıstica construtiva NEH, capaz de

transformar cromossomos de chaves aleatórias em sequências viáveis, respeitando simulta-

neamente os tempos de configuração dependentes da sequência e os atrasos de precedência.

Diferentemente de abordagens que operam diretamente sobre representações expĺıcitas de

sequências, a estratégia adotada permite desacoplar o processo evolutivo da construção da

solução, explorando a capacidade do BRKGA de realizar busca global enquanto incorpora

conhecimento estrutural do problema no processo de decodificação.

Além do decodificador baseado em NEH, foi também implementado um decodi-

ficador mais simples, que insere os jobs diretamente ao final da sequência parcial, per-

mitindo analisar o impacto do refinamento local proporcionado pela análise de múltiplas

posições. Mostrou-se que esse decodificador simples constitui um caso particular do de-

codificador NEH quando o parâmetro de janela k é igual a zero, o que possibilitou uma

análise sistemática da influência desse parâmetro no desempenho do algoritmo.

Os experimentos computacionais foram conduzidos utilizando o conjunto de instâncias

disponibilizado por (LIN; YING, 2022), permitindo uma comparação direta com os resul-

tados da literatura. Os resultados indicaram que, para instâncias pequenas, o BRKGA não

apresenta vantagens significativas em relação ao algoritmo estado da arte, o que pode ser
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explicado pelo espaço de busca reduzido e pela eficiência de heuŕısticas determińısticas

especializadas nesse cenário. No entanto, à medida que o número de jobs aumenta, o

BRKGA passa a apresentar desempenho superior, superando consistentemente o método

de referência em instâncias médias e grandes. Esse comportamento evidencia que abor-

dagens populacionais tornam-se mais adequadas conforme a complexidade combinatória

do problema cresce, especialmente quando combinadas com decodificadores capazes de

realizar refinamentos locais eficientes.

A análise do parâmetro k demonstrou que existe um compromisso claro entre

custo computacional e qualidade da solução. Valores muito pequenos limitam a capaci-

dade de melhoria da sequência, enquanto valores muito grandes aumentam o tempo de

execução sem ganhos proporcionais de qualidade. Os resultados indicaram que valores

intermediários de k oferecem a melhor relação entre tempo e desempenho, reforçando a

importância do ajuste adequado do decodificador no contexto do BRKGA.

Como trabalhos futuros, diversas extensões metodológicas podem ser investiga-

das a partir da abordagem proposta. Uma possibilidade natural é a exploração de es-

tratégias baseadas em múltiplas populações independentes, que podem evoluir de forma

parcialmente desacoplada e trocar informações periodicamente, aumentando a diversidade

genética e reduzindo o risco de convergência prematura. De forma complementar, meca-

nismos de restart controlado podem ser incorporados ao processo evolutivo, permitindo

reinicializar parcialmente a população quando não há melhora significativa ao longo de

várias gerações.

Outra direção promissora consiste na integração do BRKGA com procedimentos

de busca local, resultando em uma abordagem h́ıbrida. Nesse contexto, o decodifica-

dor poderia ser estendido para aplicar movimentos locais adicionais sobre as sequências

constrúıdas, explorando vizinhanças mais amplas após a etapa de decodificação e poten-

cialmente refinando ainda mais as soluções obtidas pelo algoritmo evolutivo.

Além disso, a estratégia de decodificação baseada na heuŕıstica NEH adaptada

pode ser estendida para outras variantes do problema de agendamento. Em particular, a

generalização do modelo para ambientes com múltiplas máquinas representa uma linha de

pesquisa relevante, uma vez que muitas aplicações práticas envolvem configurações mais
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complexas do que a máquina única. A adaptação do decodificador e do cálculo incremen-

tal do makespan para esses ambientes permitiria avaliar a robustez e a flexibilidade da

abordagem proposta em cenários ainda mais desafiadores.
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7 Apêndice

7.1 Apêndice A: Resultados por instâncias

Neste apêndice são encontrados os resultados dos testes executados para o BRKGA e

a comparação destes resultados com os resultados da literatura para cada instância no

conjunto de testes. O tempo médio do BRKGA foi multiplicado pela constante de per-

fomance, assim como explicado na Subseção 5.4.2 para tornar esta comparação mais

justa. As tabelas que seguem mostram, para cada instâncias, o makespan médio, o tempo

de execução médio em segundos e o melhor makespan encontrado para o LIG e para o

BRKGA e esses dois resultados são comparados utilizando a desvio percentual relativo

(DPR).
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Tabela 7.1: Resultados para instâncias com 10 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P1 193.0 1.01 193 193.0 0.06 193 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P2 188.0 1.0 188 188.0 0.05 188 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P3 190.0 1.0 190 190.0 0.07 190 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P4 196.0 1.0 196 196.0 0.07 196 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P5 201.0 1.0 201 201.0 0.06 201 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P6 223.0 1.0 223 223.0 0.06 223 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P7 198.0 1.0 198 198.0 0.06 198 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P8 195.0 1.0 195 195.0 0.07 195 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P9 190.0 1.0 190 190.0 0.06 190 0.0
N10 P(10-20) S(5-10) A(20-40) W5 Wo2 P10 209.0 1.01 209 209.0 0.06 209 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P1 193.0 1.01 193 193.0 0.06 193 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P2 192.0 1.01 192 192.0 0.06 192 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P3 190.0 1.01 190 190.0 0.06 190 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P4 197.0 1.01 197 197.0 0.06 197 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P5 254.0 1.01 254 254.0 0.05 254 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P6 267.0 1.01 267 267.0 0.06 267 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P7 202.0 1.01 202 202.0 0.07 202 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P8 195.0 1.01 195 195.0 0.06 195 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P9 192.0 1.01 192 192.0 0.06 192 0.0
N10 P(10-20) S(5-10) A(40-60) W5 Wo2 P10 211.0 1.01 211 211.0 0.06 211 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P1 236.0 1.01 236 236.0 0.06 236 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P2 231.0 1.01 231 231.0 0.05 231 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P3 235.0 1.01 235 235.0 0.07 235 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P4 241.0 1.01 241 241.0 0.06 241 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P5 246.0 1.01 246 246.0 0.06 246 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P6 264.0 1.01 264 264.0 0.06 264 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P7 243.0 1.01 243 243.0 0.06 243 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P8 240.0 1.0 240 240.0 0.06 240 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P9 235.0 1.01 235 235.0 0.06 235 0.0
N10 P(10-20) S(10-15) A(20-40) W5 Wo2 P10 252.0 1.01 252 252.0 0.06 252 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P1 238.0 1.0 238 238.0 0.06 238 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P2 235.0 1.01 235 235.0 0.06 235 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P3 235.0 1.01 235 235.0 0.07 235 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P4 241.0 1.01 241 241.0 0.06 241 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P5 264.0 1.01 264 264.0 0.06 264 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P6 281.0 1.01 281 281.0 0.06 281 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P7 243.0 1.01 243 243.0 0.06 243 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P8 240.0 1.01 240 240.0 0.07 240 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P9 235.0 1.01 235 235.0 0.06 235 0.0
N10 P(10-20) S(10-15) A(40-60) W5 Wo2 P10 255.0 1.01 255 255.0 0.06 255 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P1 291.0 1.01 291 291.0 0.06 291 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P2 286.0 1.01 286 286.0 0.05 286 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P3 290.0 1.01 290 290.0 0.08 290 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P4 296.0 1.01 296 296.0 0.06 296 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P5 301.0 1.01 301 301.0 0.06 301 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P6 319.0 1.01 319 319.0 0.06 319 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P7 298.0 1.01 298 298.0 0.07 298 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P8 295.0 1.01 295 295.0 0.07 295 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P9 290.0 1.0 290 290.0 0.06 290 0.0
N10 P(20-30) S(5-10) A(20-40) W5 Wo2 P10 307.0 1.01 307 307.0 0.07 307 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P1 293.0 1.01 293 293.0 0.07 293 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P2 290.0 1.01 290 290.0 0.06 290 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P3 290.0 1.01 290 290.0 0.07 290 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P4 296.0 1.0 296 296.0 0.06 296 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P5 317.0 1.01 317 317.0 0.06 317 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P6 336.0 1.01 336 336.0 0.06 336 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P7 298.0 1.01 298 298.0 0.06 298 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P8 295.0 1.01 295 295.0 0.06 295 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P9 290.0 1.01 290 290.0 0.05 290 0.0
N10 P(20-30) S(5-10) A(40-60) W5 Wo2 P10 310.0 1.01 310 310.0 0.06 310 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P1 336.0 1.01 336 336.0 0.07 336 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P2 331.0 1.01 331 331.0 0.05 331 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P3 335.0 1.01 335 335.0 0.07 335 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P4 341.0 1.01 341 341.0 0.07 341 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P5 343.0 1.01 343 343.0 0.07 343 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P6 364.0 1.01 364 364.0 0.06 364 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P7 343.0 1.01 343 343.0 0.07 343 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P8 340.0 1.01 340 340.0 0.06 340 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P9 335.0 1.0 335 335.0 0.06 335 0.0
N10 P(20-30) S(10-15) A(20-40) W5 Wo2 P10 352.0 1.01 352 352.0 0.06 352 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P1 338.0 1.01 338 338.0 0.07 338 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P2 333.0 1.0 333 333.0 0.06 333 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P3 335.0 1.0 335 335.0 0.07 335 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P4 341.0 1.0 341 341.0 0.07 341 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P5 346.0 1.01 346 346.0 0.06 346 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P6 368.0 1.01 368 368.0 0.06 368 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P7 343.0 1.01 343 343.0 0.06 343 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P8 340.0 1.01 340 340.0 0.07 340 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P9 335.0 1.01 335 335.0 0.06 335 0.0
N10 P(20-30) S(10-15) A(40-60) W5 Wo2 P10 354.0 1.01 354 354.0 0.06 354 0.0
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Tabela 7.2: Resultados para instâncias com 15 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P1 285.0 1.51 285 285.0 0.25 285 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P2 278.0 1.5 278 278.0 0.18 278 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P3 284.0 1.51 284 284.0 0.19 284 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P4 296.0 1.51 296 296.0 0.21 296 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P5 282.0 1.51 282 282.0 0.14 282 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P6 311.0 1.51 311 311.0 0.19 311 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P7 298.0 1.51 298 298.0 0.17 298 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P8 294.0 1.51 294 294.0 0.18 294 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P9 290.0 1.51 290 290.0 0.19 290 0.0
N15 P(10-20) S(5-10) A(20-40) W7 Wo3 P10 306.0 1.51 306 306.0 0.22 306 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P1 285.0 1.51 285 285.0 0.2 285 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P2 278.0 1.51 278 278.2 0.16 278 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P3 285.0 1.51 285 285.0 0.19 285 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P4 297.0 1.51 297 297.0 0.21 297 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P5 284.0 1.51 284 284.0 0.17 284 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P6 313.0 1.51 313 313.0 0.17 313 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P7 298.0 1.51 298 298.0 0.16 298 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P8 295.0 1.51 295 295.0 0.16 295 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P9 290.0 1.5 290 290.0 0.21 290 0.0
N15 P(10-20) S(5-10) A(40-60) W7 Wo3 P10 306.0 1.51 306 306.0 0.19 306 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P1 355.0 1.51 355 355.0 0.2 355 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P2 348.0 1.51 348 348.0 0.22 348 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P3 353.0 1.51 353 353.0 0.22 353 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P4 366.0 1.51 366 366.0 0.22 366 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P5 351.0 1.51 351 351.0 0.17 351 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P6 380.0 1.51 380 380.0 0.21 380 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P7 368.0 1.51 368 368.0 0.21 368 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P8 363.0 1.51 363 363.0 0.19 363 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P9 360.0 1.51 360 360.0 0.17 360 0.0
N15 P(10-20) S(10-15) A(20-40) W7 Wo3 P10 376.0 1.51 376 376.0 0.2 376 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P1 355.0 1.51 355 355.0 0.21 355 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P2 348.0 1.51 348 348.0 0.16 348 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P3 354.0 1.51 354 354.0 0.19 354 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P4 366.0 1.51 366 366.0 0.22 366 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P5 352.0 1.51 352 352.0 0.16 352 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P6 382.0 1.51 382 382.0 0.19 382 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P7 368.0 1.51 368 368.0 0.19 368 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P8 364.0 1.51 364 364.8 0.17 364 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P9 360.0 1.51 360 360.0 0.22 360 0.0
N15 P(10-20) S(10-15) A(40-60) W7 Wo3 P10 376.0 1.51 376 376.0 0.18 376 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P1 435.0 1.51 435 435.0 0.24 435 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P2 428.0 1.51 428 428.0 0.2 428 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P3 433.0 1.51 433 433.0 0.22 433 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P4 446.0 1.51 446 446.0 0.2 446 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P5 431.0 1.51 431 431.0 0.17 431 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P6 460.0 1.5 460 460.0 0.18 460 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P7 448.0 1.51 448 448.0 0.18 448 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P8 443.0 1.51 443 443.0 0.18 443 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P9 440.0 1.51 440 440.0 0.23 440 0.0
N15 P(20-30) S(5-10) A(20-40) W7 Wo3 P10 456.0 1.51 456 456.0 0.19 456 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P1 435.0 1.51 435 435.0 0.18 435 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P2 428.0 1.51 428 428.0 0.21 428 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P3 434.0 1.51 434 434.0 0.16 434 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P4 446.0 1.51 446 446.0 0.22 446 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P5 432.0 1.51 432 432.0 0.16 432 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P6 462.0 1.51 462 462.0 0.2 462 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P7 448.0 1.51 448 448.0 0.19 448 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P8 444.0 1.51 444 444.0 0.16 444 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P9 440.0 1.51 440 440.0 0.17 440 0.0
N15 P(20-30) S(5-10) A(40-60) W7 Wo3 P10 456.0 1.51 456 456.0 0.22 456 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P1 505.0 1.51 505 505.0 0.23 505 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P2 497.0 1.51 497 497.0 0.14 497 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P3 503.0 1.51 503 503.0 0.22 503 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P4 516.0 1.51 516 516.0 0.19 516 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P5 501.0 1.51 501 501.0 0.19 501 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P6 530.0 1.51 530 530.0 0.17 530 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P7 518.0 1.51 518 518.0 0.18 518 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P8 513.0 1.5 513 513.0 0.17 513 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P9 510.0 1.51 510 510.0 0.22 510 0.0
N15 P(20-30) S(10-15) A(20-40) W7 Wo3 P10 526.0 1.51 526 526.0 0.14 526 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P1 505.0 1.51 505 505.0 0.2 505 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P2 498.0 1.51 498 498.0 0.23 498 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P3 504.0 1.51 504 504.0 0.2 504 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P4 516.0 1.5 516 516.0 0.2 516 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P5 502.0 1.5 502 502.0 0.17 502 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P6 531.0 1.51 531 531.0 0.18 531 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P7 518.0 1.51 518 518.0 0.2 518 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P8 514.0 1.51 514 514.0 0.18 514 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P9 510.0 1.51 510 510.0 0.21 510 0.0
N15 P(20-30) S(10-15) A(40-60) W7 Wo3 P10 526.0 1.51 526 526.0 0.21 526 0.0
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Tabela 7.3: Resultados para instâncias com 20 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P1 386.0 2.01 386 386.0 0.4 386 0.0
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P2 369.0 2.01 369 370.0 0.42 370 0.27
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P3 385.0 2.01 385 385.6 0.39 385 0.0
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P4 395.8 2.01 395 396.0 0.31 396 0.25
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P5 375.0 2.01 375 376.0 0.4 376 0.27
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P6 415.0 2.01 415 415.6 0.35 415 0.0
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P7 396.0 2.01 396 396.4 0.35 396 0.0
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P8 388.2 2.01 388 389.2 0.36 388 0.0
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P9 406.0 2.01 406 406.0 0.32 406 0.0
N20 P(10-20) S(5-10) A(20-40) W10 Wo5 P10 393.0 2.01 393 393.0 0.41 393 0.0
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P1 386.0 2.01 386 386.6 0.37 386 0.0
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P2 369.4 2.01 369 370.0 0.41 370 0.27
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P3 385.0 2.0 385 386.0 0.39 386 0.26
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P4 396.0 2.01 396 396.4 0.38 396 0.0
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P5 375.6 2.01 375 376.0 0.35 376 0.27
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P6 415.0 2.01 415 416.0 0.31 416 0.24
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P7 396.0 2.01 396 396.6 0.41 396 0.0
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P8 390.0 2.01 390 390.2 0.32 390 0.0
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P9 414.0 2.01 414 414.8 0.3 414 0.0
N20 P(10-20) S(5-10) A(40-60) W10 Wo5 P10 393.0 2.01 393 393.0 0.4 393 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P1 481.0 2.01 481 481.0 0.38 481 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P2 464.0 2.01 464 465.0 0.41 465 0.22
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P3 479.0 2.01 479 479.0 0.37 479 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P4 490.6 2.01 490 491.0 0.37 491 0.2
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P5 469.0 2.01 469 469.0 0.38 469 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P6 510.0 2.01 510 510.8 0.32 510 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P7 491.0 2.01 491 491.4 0.39 491 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P8 483.0 2.01 483 484.0 0.34 484 0.21
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P9 501.0 2.01 501 501.0 0.29 501 0.0
N20 P(10-20) S(10-15) A(20-40) W10 Wo5 P10 488.0 2.01 488 489.0 0.43 489 0.2
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P1 481.0 2.01 481 481.0 0.31 481 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P2 464.0 2.01 464 464.4 0.35 464 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P3 480.0 2.01 480 480.8 0.31 480 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P4 490.2 2.01 490 490.8 0.41 490 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P5 470.0 2.01 470 471.0 0.33 471 0.21
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P6 510.0 2.01 510 510.0 0.34 510 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P7 491.0 2.01 491 491.4 0.41 491 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P8 483.2 2.01 483 484.2 0.39 483 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P9 505.0 2.01 505 505.0 0.32 505 0.0
N20 P(10-20) S(10-15) A(40-60) W10 Wo5 P10 488.0 2.01 488 488.6 0.35 488 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P1 586.0 2.01 586 586.0 0.39 586 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P2 569.0 2.01 569 569.4 0.41 569 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P3 584.0 2.01 584 584.0 0.36 584 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P4 595.6 2.01 595 596.0 0.41 596 0.17
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P5 574.0 2.01 574 574.8 0.33 574 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P6 615.0 2.01 615 615.2 0.31 615 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P7 596.0 2.01 596 596.0 0.42 596 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P8 588.2 2.01 588 589.0 0.34 589 0.17
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P9 606.0 2.01 606 606.0 0.32 606 0.0
N20 P(20-30) S(5-10) A(20-40) W10 Wo5 P10 593.0 2.01 593 593.4 0.37 593 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P1 586.0 2.01 586 586.0 0.32 586 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P2 569.0 2.01 569 570.6 0.33 570 0.18
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P3 585.0 2.01 585 585.2 0.34 585 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P4 595.2 2.01 595 596.0 0.43 596 0.17
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P5 575.0 2.0 575 575.0 0.41 575 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P6 615.0 2.01 615 615.0 0.32 615 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P7 596.0 2.01 596 596.0 0.44 596 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P8 588.6 2.0 588 590.0 0.35 590 0.34
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P9 610.0 2.01 610 610.0 0.3 610 0.0
N20 P(20-30) S(5-10) A(40-60) W10 Wo5 P10 593.0 2.01 593 593.0 0.35 593 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P1 681.0 2.0 681 681.0 0.32 681 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P2 664.0 2.01 664 664.6 0.42 664 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P3 679.0 2.01 679 679.0 0.39 679 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P4 690.6 2.01 690 691.0 0.4 691 0.14
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P5 669.0 2.01 669 669.2 0.39 669 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P6 710.0 2.01 710 711.0 0.3 711 0.14
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P7 691.0 2.01 691 691.0 0.35 691 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P8 683.2 2.01 683 685.0 0.36 685 0.29
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P9 701.0 2.01 701 701.0 0.33 701 0.0
N20 P(20-30) S(10-15) A(20-40) W10 Wo5 P10 688.0 2.01 688 688.4 0.35 688 0.0
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P1 681.0 2.01 681 681.0 0.3 681 0.0
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P2 664.0 2.01 664 665.2 0.36 665 0.15
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P3 680.0 2.01 680 680.0 0.37 680 0.0
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P4 690.8 2.01 690 691.2 0.38 691 0.14
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P5 669.6 2.01 669 670.0 0.42 670 0.15
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P6 710.0 2.01 710 710.2 0.33 710 0.0
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P7 691.0 2.01 691 691.0 0.39 691 0.0
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P8 683.2 2.01 683 685.0 0.3 685 0.29
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P9 701.0 2.01 701 701.0 0.3 701 0.0
N20 P(20-30) S(10-15) A(40-60) W10 Wo5 P10 688.0 2.01 688 688.2 0.35 688 0.0
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Tabela 7.4: Resultados para instâncias com 25 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P1 482.4 2.5 482 483.6 0.67 483 0.21
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P2 465.0 2.5 465 465.8 0.74 465 0.0
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P3 478.0 2.5 478 479.0 0.66 479 0.21
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P4 489.0 2.51 489 489.4 0.73 489 0.0
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P5 468.2 2.51 468 468.8 0.71 468 0.0
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P6 504.0 2.51 504 504.0 0.69 504 0.0
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P7 490.8 2.51 490 491.0 0.64 491 0.2
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P8 492.0 2.51 491 491.6 0.58 491 0.0
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P9 480.8 2.51 480 481.8 0.55 481 0.21
N25 P(10-20) S(5-10) A(20-40) W12 Wo6 P10 488.8 2.51 488 489.0 0.78 489 0.2
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P1 483.0 2.51 483 483.2 0.73 482 -0.21
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P2 464.4 2.51 464 465.4 0.71 465 0.22
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P3 478.2 2.51 478 479.0 0.57 479 0.21
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P4 489.8 2.51 489 490.0 0.62 490 0.2
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P5 468.6 2.51 468 469.6 0.67 468 0.0
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P6 503.8 2.5 503 504.4 0.67 504 0.2
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P7 491.0 2.5 491 491.0 0.69 491 0.0
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P8 491.4 2.51 491 492.6 0.71 492 0.2
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P9 481.4 2.5 480 482.6 0.53 482 0.42
N25 P(10-20) S(5-10) A(40-60) W12 Wo6 P10 489.2 2.5 489 489.6 0.68 489 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P1 602.8 2.51 602 603.0 0.73 603 0.17
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P2 584.8 2.51 584 584.2 0.64 584 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P3 598.2 2.51 598 599.0 0.6 599 0.17
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P4 609.0 2.51 609 609.0 0.71 609 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P5 588.2 2.51 588 588.4 0.67 588 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P6 623.6 2.51 623 624.2 0.81 624 0.16
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P7 610.6 2.5 610 610.8 0.67 610 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P8 611.6 2.5 611 611.8 0.6 611 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P9 601.0 2.5 601 601.6 0.62 601 0.0
N25 P(10-20) S(10-15) A(20-40) W12 Wo6 P10 609.0 2.51 609 609.2 0.68 609 0.0
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P1 602.4 2.51 602 603.0 0.71 603 0.17
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P2 585.0 2.51 585 586.4 0.66 586 0.17
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P3 598.2 2.51 598 598.6 0.63 598 0.0
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P4 609.0 2.51 609 609.0 0.55 609 0.0
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P5 588.4 2.51 588 589.6 0.67 589 0.17
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P6 624.0 2.51 624 624.2 0.66 623 -0.16
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P7 611.0 2.5 611 611.0 0.65 611 0.0
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P8 612.2 2.5 611 612.4 0.6 612 0.16
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P9 600.6 2.51 600 601.2 0.59 601 0.17
N25 P(10-20) S(10-15) A(40-60) W12 Wo6 P10 608.8 2.51 608 609.0 0.76 609 0.16
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P1 732.6 2.51 732 733.0 0.75 733 0.14
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P2 715.0 2.5 715 715.0 0.69 715 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P3 728.4 2.51 728 728.8 0.64 728 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P4 739.0 2.51 739 739.0 0.7 739 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P5 718.2 2.5 718 718.8 0.7 718 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P6 753.8 2.5 753 754.0 0.6 754 0.13
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P7 741.0 2.51 741 741.0 0.65 741 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P8 742.2 2.5 742 742.4 0.63 742 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P9 730.6 2.51 730 730.8 0.68 730 0.0
N25 P(20-30) S(5-10) A(20-40) W12 Wo6 P10 739.0 2.51 739 739.0 0.66 739 0.0
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P1 732.4 2.51 732 732.8 0.78 732 0.0
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P2 714.8 2.51 714 715.6 0.8 714 0.0
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P3 728.2 2.51 728 729.4 0.77 729 0.14
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P4 739.0 2.51 739 739.8 0.73 739 0.0
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P5 718.2 2.51 718 719.0 0.68 719 0.14
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P6 753.6 2.51 753 754.2 0.73 754 0.13
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P7 741.0 2.5 741 741.0 0.64 741 0.0
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P8 742.0 2.51 741 741.8 0.59 741 0.0
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P9 730.6 2.51 730 731.8 0.56 731 0.14
N25 P(20-30) S(5-10) A(40-60) W12 Wo6 P10 739.0 2.51 739 738.8 0.7 738 -0.14
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P1 852.2 2.51 852 853.0 0.74 853 0.12
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P2 835.0 2.51 835 835.6 0.62 835 0.0
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P3 848.0 2.51 848 849.0 0.63 849 0.12
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P4 859.0 2.51 859 859.0 0.71 859 0.0
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P5 838.2 2.51 838 838.4 0.64 838 0.0
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P6 873.6 2.5 873 873.6 0.68 873 0.0
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P7 860.6 2.5 860 861.2 0.77 861 0.12
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P8 862.0 2.51 861 862.8 0.65 862 0.12
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P9 850.6 2.5 850 851.2 0.62 850 0.0
N25 P(20-30) S(10-15) A(20-40) W12 Wo6 P10 859.0 2.51 859 858.6 0.64 858 -0.12
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P1 852.2 2.51 852 852.4 0.68 852 0.0
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P2 834.8 2.5 834 835.6 0.64 835 0.12
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P3 848.0 2.51 848 848.4 0.7 848 0.0
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P4 859.0 2.51 859 859.4 0.81 859 0.0
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P5 838.2 2.51 838 838.6 0.67 838 0.0
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P6 873.4 2.5 873 874.0 0.7 874 0.11
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P7 860.8 2.5 860 861.0 0.66 861 0.12
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P8 862.4 2.51 862 863.0 0.68 863 0.12
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P9 850.8 2.51 850 851.2 0.65 850 0.0
N25 P(20-30) S(10-15) A(40-60) W12 Wo6 P10 859.0 2.51 859 859.0 0.75 859 0.0
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Tabela 7.5: Resultados para instâncias com 50 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P1 984.0 5.01 984 984.8 4.16 983 -0.1
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P2 950.6 5.01 950 949.4 4.59 949 -0.11
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P3 974.2 5.01 973 973.8 4.38 973 0.0
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P4 964.2 5.01 964 963.0 4.73 962 -0.21
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P5 956.4 5.01 956 954.8 4.55 954 -0.21
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P6 957.6 5.01 957 956.8 4.33 956 -0.1
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P7 971.2 5.01 971 969.6 4.45 969 -0.21
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P8 988.6 5.01 988 987.2 4.39 987 -0.1
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P9 954.6 5.01 954 953.4 4.62 953 -0.1
N50 P(10-20) S(5-10) A(20-40) W25 Wo12 P10 961.0 5.0 959 961.4 4.49 961 0.21
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P1 985.4 5.01 984 986.0 4.47 984 0.0
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P2 950.8 5.01 950 951.4 4.31 950 0.0
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P3 974.8 5.01 973 975.2 4.64 974 0.1
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P4 963.8 5.01 963 963.2 4.68 962 -0.1
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P5 956.0 5.01 955 955.4 4.16 954 -0.1
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P6 957.8 5.01 956 957.6 4.55 956 0.0
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P7 970.6 5.01 970 971.0 4.57 970 0.0
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P8 989.0 5.0 988 988.4 4.95 988 0.0
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P9 955.2 5.01 955 953.4 4.28 952 -0.31
N50 P(10-20) S(5-10) A(40-60) W25 Wo12 P10 964.4 5.01 962 966.2 4.51 964 0.21
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P1 1228.8 5.01 1228 1228.6 4.27 1227 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P2 1195.4 5.01 1195 1194.8 4.21 1194 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P3 1219.0 5.01 1218 1218.4 4.39 1218 0.0
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P4 1208.8 5.0 1208 1208.2 4.65 1208 0.0
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P5 1200.4 5.0 1200 1200.2 4.76 1199 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P6 1202.8 5.0 1202 1202.0 4.28 1201 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P7 1216.0 5.01 1215 1215.0 5.06 1214 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P8 1233.8 5.0 1233 1232.6 4.68 1232 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P9 1198.6 5.01 1198 1197.0 4.59 1197 -0.08
N50 P(10-20) S(10-15) A(20-40) W25 Wo12 P10 1205.6 5.01 1204 1205.8 4.71 1205 0.08
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P1 1229.4 5.01 1229 1228.6 4.58 1226 -0.24
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P2 1196.0 5.01 1195 1195.4 4.3 1194 -0.08
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P3 1219.2 5.01 1218 1218.8 4.84 1218 0.0
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P4 1208.8 5.01 1208 1208.8 4.47 1207 -0.08
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P5 1201.4 5.01 1201 1199.6 4.67 1199 -0.17
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P6 1203.4 5.01 1203 1202.0 4.93 1201 -0.17
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P7 1216.8 5.01 1216 1215.2 4.57 1214 -0.16
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P8 1233.6 5.01 1233 1233.2 4.78 1232 -0.08
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P9 1199.2 5.01 1198 1198.6 5.0 1197 -0.08
N50 P(10-20) S(10-15) A(40-60) W25 Wo12 P10 1207.6 5.01 1206 1209.0 4.94 1208 0.17
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P1 1483.4 5.01 1482 1482.8 4.17 1482 0.0
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P2 1450.4 5.0 1450 1449.6 4.75 1449 -0.07
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P3 1473.6 5.01 1473 1473.6 4.79 1473 0.0
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P4 1463.8 5.01 1463 1463.2 4.67 1463 0.0
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P5 1455.4 5.01 1454 1455.6 4.09 1455 0.07
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P6 1458.0 5.0 1457 1456.4 4.22 1456 -0.07
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P7 1470.8 5.01 1470 1470.0 4.78 1469 -0.07
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P8 1488.4 5.01 1487 1488.4 5.0 1487 0.0
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P9 1453.6 5.01 1453 1452.8 4.54 1452 -0.07
N50 P(20-30) S(5-10) A(20-40) W25 Wo12 P10 1460.6 5.0 1459 1460.0 5.15 1459 0.0
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P1 1484.6 5.01 1484 1484.2 4.1 1484 0.0
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P2 1450.6 5.01 1449 1450.2 4.33 1450 0.07
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P3 1474.0 5.01 1474 1473.6 4.45 1473 -0.07
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P4 1463.8 5.01 1463 1463.2 4.25 1463 0.0
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P5 1456.6 5.0 1456 1456.2 4.53 1455 -0.07
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P6 1458.2 5.01 1458 1457.4 4.7 1457 -0.07
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P7 1470.6 5.01 1470 1471.8 4.37 1470 0.0
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P8 1489.0 5.01 1488 1487.6 4.34 1487 -0.07
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P9 1454.2 5.0 1453 1453.0 4.33 1452 -0.07
N50 P(20-30) S(5-10) A(40-60) W25 Wo12 P10 1462.0 5.0 1461 1463.2 4.74 1461 0.0
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P1 1729.4 5.01 1728 1726.8 4.21 1726 -0.12
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P2 1695.4 5.01 1695 1695.0 4.32 1694 -0.06
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P3 1719.0 5.01 1718 1718.0 5.0 1718 0.0
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P4 1708.6 5.01 1708 1708.2 4.64 1708 0.0
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P5 1700.8 5.01 1700 1699.8 4.9 1699 -0.06
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P6 1702.4 5.0 1702 1702.6 4.2 1701 -0.06
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P7 1715.2 5.01 1714 1715.4 4.35 1715 0.06
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P8 1733.8 5.01 1733 1733.0 4.76 1732 -0.06
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P9 1698.8 5.01 1698 1697.4 4.29 1697 -0.06
N50 P(20-30) S(10-15) A(20-40) W25 Wo12 P10 1706.2 5.01 1706 1706.6 4.4 1705 -0.06
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P1 1729.0 5.01 1729 1727.6 4.39 1726 -0.17
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P2 1695.6 5.01 1695 1694.6 4.4 1694 -0.06
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P3 1719.0 5.01 1718 1719.0 5.02 1718 0.0
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P4 1709.0 5.01 1708 1708.6 4.6 1708 0.0
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P5 1701.2 5.01 1700 1700.2 4.3 1700 0.0
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P6 1702.4 5.01 1702 1701.0 5.26 1701 -0.06
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P7 1715.6 5.0 1715 1714.4 4.88 1714 -0.06
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P8 1733.4 5.01 1733 1732.6 4.84 1732 -0.06
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P9 1698.8 5.01 1698 1697.4 4.36 1697 -0.06
N50 P(20-30) S(10-15) A(40-60) W25 Wo12 P10 1706.6 5.01 1705 1706.2 4.98 1706 0.06
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Tabela 7.6: Resultados para instâncias com 75 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P1 1451.0 7.51 1450 1449.0 5.78 1449 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P2 1438.4 7.51 1438 1437.6 5.95 1437 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P3 1455.0 7.51 1454 1453.4 5.71 1453 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P4 1457.0 7.51 1456 1455.2 6.11 1455 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P5 1440.6 7.51 1439 1439.8 5.13 1439 0.0
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P6 1457.0 7.51 1456 1454.6 5.76 1454 -0.14
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P7 1459.6 7.51 1459 1458.2 5.59 1458 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P8 1466.8 7.5 1466 1465.2 5.29 1465 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P9 1453.6 7.51 1452 1451.8 5.65 1451 -0.07
N75 P(10-20) S(5-10) A(20-40) W37 Wo18 P10 1432.8 7.5 1432 1431.2 5.53 1430 -0.14
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P1 1451.4 7.51 1451 1449.2 5.87 1449 -0.14
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P2 1439.2 7.51 1439 1437.6 5.44 1437 -0.14
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P3 1455.0 7.51 1453 1453.0 5.59 1453 0.0
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P4 1457.0 7.51 1456 1455.6 5.68 1455 -0.07
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P5 1441.0 7.5 1440 1439.2 5.46 1438 -0.14
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P6 1458.0 7.51 1457 1455.2 5.52 1454 -0.21
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P7 1459.6 7.51 1459 1458.4 5.36 1458 -0.07
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P8 1467.6 7.51 1467 1465.4 5.7 1465 -0.14
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P9 1453.6 7.51 1453 1452.4 5.68 1452 -0.07
N75 P(10-20) S(5-10) A(40-60) W37 Wo18 P10 1433.4 7.51 1433 1431.4 5.83 1430 -0.21
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P1 1820.4 7.51 1820 1819.2 6.3 1819 -0.05
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P2 1809.4 7.51 1809 1807.2 5.31 1807 -0.11
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P3 1825.4 7.51 1825 1823.2 5.83 1823 -0.11
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P4 1826.6 7.51 1826 1825.2 5.5 1825 -0.05
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P5 1810.2 7.5 1809 1808.0 5.41 1808 -0.06
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P6 1826.8 7.5 1826 1824.6 6.15 1824 -0.11
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P7 1829.2 7.51 1828 1828.0 5.23 1828 0.0
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P8 1836.6 7.5 1836 1835.2 5.48 1835 -0.05
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P9 1823.0 7.51 1822 1821.4 5.83 1821 -0.05
N75 P(10-20) S(10-15) A(20-40) W37 Wo18 P10 1802.8 7.51 1802 1801.4 5.19 1800 -0.11
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P1 1821.2 7.51 1821 1819.6 5.57 1819 -0.11
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P2 1809.6 7.51 1809 1807.6 5.17 1807 -0.11
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P3 1824.8 7.5 1823 1823.2 5.57 1823 0.0
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P4 1827.0 7.5 1826 1825.0 5.46 1825 -0.05
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P5 1811.0 7.51 1809 1810.0 5.18 1808 -0.06
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P6 1827.4 7.51 1826 1824.8 5.74 1824 -0.11
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P7 1829.6 7.51 1829 1828.0 5.82 1828 -0.05
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P8 1837.2 7.51 1836 1835.6 5.5 1835 -0.05
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P9 1823.6 7.51 1822 1821.0 5.5 1821 -0.05
N75 P(10-20) S(10-15) A(40-60) W37 Wo18 P10 1803.4 7.51 1802 1801.2 5.69 1800 -0.11
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P1 2200.8 7.51 2200 2199.2 6.25 2199 -0.05
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P2 2189.4 7.5 2189 2187.0 5.77 2187 -0.09
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P3 2205.4 7.51 2205 2203.0 5.51 2203 -0.09
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P4 2206.8 7.51 2206 2205.8 5.69 2205 -0.05
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P5 2190.4 7.51 2190 2188.6 5.35 2188 -0.09
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P6 2206.6 7.51 2206 2204.8 5.96 2204 -0.09
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P7 2209.2 7.51 2208 2208.0 5.54 2208 0.0
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P8 2216.4 7.51 2216 2215.2 5.92 2215 -0.05
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P9 2203.0 7.51 2202 2201.4 5.53 2201 -0.05
N75 P(20-30) S(5-10) A(20-40) W37 Wo18 P10 2182.8 7.51 2182 2180.8 6.18 2180 -0.09
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P1 2201.4 7.5 2200 2199.6 5.63 2199 -0.05
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P2 2189.8 7.51 2189 2187.0 5.51 2187 -0.09
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P3 2204.6 7.51 2204 2203.0 6.12 2203 -0.05
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P4 2207.0 7.51 2206 2205.0 5.46 2205 -0.05
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P5 2190.6 7.5 2190 2188.6 5.34 2188 -0.09
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P6 2206.8 7.5 2206 2204.4 5.34 2204 -0.09
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P7 2209.4 7.51 2209 2208.0 5.57 2208 -0.05
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P8 2217.2 7.5 2216 2216.0 5.31 2215 -0.05
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P9 2202.8 7.5 2202 2201.8 6.04 2201 -0.05
N75 P(20-30) S(5-10) A(40-60) W37 Wo18 P10 2183.2 7.51 2182 2181.0 5.88 2180 -0.09
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P1 2571.2 7.51 2571 2569.4 5.7 2569 -0.08
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P2 2559.2 7.51 2559 2557.6 5.39 2557 -0.08
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P3 2575.0 7.51 2574 2573.0 5.67 2573 -0.04
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P4 2576.6 7.51 2576 2575.4 5.76 2575 -0.04
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P5 2561.8 7.51 2561 2558.8 5.05 2558 -0.12
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P6 2576.6 7.5 2576 2574.6 5.89 2574 -0.08
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P7 2578.6 7.51 2578 2578.0 5.58 2578 0.0
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P8 2586.4 7.51 2585 2585.4 5.63 2585 0.0
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P9 2572.6 7.5 2572 2571.4 5.3 2571 -0.04
N75 P(20-30) S(10-15) A(20-40) W37 Wo18 P10 2552.2 7.5 2551 2551.0 5.51 2550 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P1 2571.2 7.51 2570 2569.2 5.6 2569 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P2 2558.4 7.5 2558 2557.2 5.82 2557 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P3 2574.8 7.5 2574 2573.2 5.45 2573 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P4 2576.8 7.5 2576 2575.4 5.47 2575 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P5 2561.0 7.51 2560 2558.6 5.18 2558 -0.08
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P6 2577.0 7.5 2576 2574.4 5.58 2574 -0.08
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P7 2579.2 7.51 2579 2578.0 6.01 2578 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P8 2586.8 7.51 2586 2585.6 5.79 2585 -0.04
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P9 2573.8 7.51 2573 2571.4 5.74 2571 -0.08
N75 P(20-30) S(10-15) A(40-60) W37 Wo18 P10 2553.2 7.5 2552 2551.2 5.3 2550 -0.08
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Tabela 7.7: Resultados para instâncias com 100 jobs
LIG BRKGA

Instância Cmax médio T médio (s) Cmax melhor Cmax médio T médio (s) Cmax melhor DPR

N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P1 1932.6 10.0 1931 1930.4 5.64 1929 -0.1
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P2 1931.0 10.01 1930 1928.6 5.68 1928 -0.1
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P3 1954.2 10.01 1953 1952.8 5.78 1952 -0.05
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P4 1940.2 10.01 1939 1938.0 5.85 1938 -0.05
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P5 1919.0 10.01 1918 1917.2 5.82 1916 -0.1
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P6 1946.2 10.01 1945 1942.6 5.83 1942 -0.15
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P7 1935.0 10.0 1934 1933.0 6.37 1933 -0.05
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P8 1936.6 10.01 1935 1933.8 5.74 1933 -0.1
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P9 1954.4 10.01 1953 1952.0 6.23 1951 -0.1
N100 P(10-20) S(5-10) A(20-40) W50 Wo25 P10 1907.6 10.01 1906 1905.4 5.97 1905 -0.05
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P1 1932.0 10.01 1931 1929.8 5.52 1929 -0.1
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P2 1930.6 10.01 1930 1928.2 5.46 1928 -0.1
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P3 1954.6 10.01 1954 1953.2 5.63 1952 -0.1
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P4 1941.2 10.01 1940 1937.8 6.05 1937 -0.15
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P5 1919.8 10.01 1919 1916.8 5.78 1916 -0.16
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P6 1946.6 10.01 1945 1943.2 5.99 1942 -0.15
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P7 1936.2 10.01 1935 1933.4 6.2 1933 -0.1
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P8 1936.0 10.01 1934 1934.2 5.66 1933 -0.05
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P9 1955.2 10.0 1954 1952.0 6.13 1951 -0.15
N100 P(10-20) S(5-10) A(40-60) W50 Wo25 P10 1908.0 10.01 1907 1905.8 5.87 1905 -0.1
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P1 2426.4 10.01 2425 2424.6 5.45 2424 -0.04
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P2 2425.2 10.01 2424 2423.6 5.57 2423 -0.04
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P3 2449.6 10.01 2448 2447.4 6.14 2447 -0.04
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P4 2434.8 10.01 2433 2433.0 6.45 2432 -0.04
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P5 2414.0 10.01 2413 2411.6 6.02 2411 -0.08
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P6 2440.8 10.01 2440 2437.8 5.42 2437 -0.12
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P7 2430.4 10.01 2428 2428.2 5.6 2428 0.0
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P8 2431.4 10.01 2430 2428.2 5.77 2428 -0.08
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P9 2448.6 10.01 2448 2447.2 6.22 2446 -0.08
N100 P(10-20) S(10-15) A(20-40) W50 Wo25 P10 2403.0 10.01 2402 2400.2 5.92 2400 -0.08
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P1 2427.8 10.0 2427 2424.8 5.86 2424 -0.12
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P2 2426.2 10.01 2425 2423.0 6.06 2423 -0.08
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P3 2450.8 10.0 2450 2447.6 6.13 2447 -0.12
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P4 2435.6 10.01 2435 2433.4 5.6 2433 -0.08
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P5 2414.8 10.01 2414 2411.6 6.17 2411 -0.12
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P6 2441.0 10.01 2440 2438.0 5.71 2437 -0.12
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P7 2430.2 10.01 2430 2428.2 6.34 2428 -0.08
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P8 2430.6 10.01 2429 2428.6 5.35 2428 -0.04
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P9 2449.0 10.0 2448 2446.6 5.62 2446 -0.08
N100 P(10-20) S(10-15) A(40-60) W50 Wo25 P10 2402.4 10.01 2401 2400.2 6.12 2400 -0.04
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P1 2931.6 10.01 2930 2929.8 5.61 2929 -0.03
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P2 2929.8 10.01 2929 2928.4 5.71 2928 -0.03
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P3 2954.8 10.0 2953 2952.8 6.07 2952 -0.03
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P4 2939.8 10.01 2938 2937.0 6.73 2937 -0.03
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P5 2919.0 10.01 2918 2916.8 5.75 2916 -0.07
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P6 2945.8 10.01 2945 2942.4 5.61 2942 -0.1
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P7 2935.4 10.01 2933 2933.2 5.88 2933 0.0
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P8 2936.0 10.01 2935 2934.0 5.68 2933 -0.07
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P9 2953.6 10.01 2953 2951.6 6.12 2951 -0.07
N100 P(20-30) S(5-10) A(20-40) W50 Wo25 P10 2907.0 10.01 2907 2905.0 6.03 2905 -0.07
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P1 2932.2 10.01 2931 2930.8 5.56 2929 -0.07
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P2 2931.6 10.01 2931 2928.4 5.7 2928 -0.1
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P3 2955.6 10.0 2955 2952.4 5.74 2952 -0.1
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P4 2939.4 10.01 2938 2938.0 5.95 2937 -0.03
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P5 2919.6 10.01 2919 2916.4 6.25 2916 -0.1
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P6 2945.8 10.01 2944 2942.8 5.97 2942 -0.07
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P7 2935.4 10.01 2935 2933.4 5.93 2933 -0.07
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P8 2934.8 10.01 2934 2933.8 5.85 2933 -0.03
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P9 2954.8 10.0 2953 2951.6 5.79 2951 -0.07
N100 P(20-30) S(5-10) A(40-60) W50 Wo25 P10 2906.8 10.01 2906 2905.4 5.83 2905 -0.03
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P1 3426.0 10.01 3425 3424.4 5.57 3424 -0.03
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P2 3426.0 10.01 3424 3423.0 5.57 3423 -0.03
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P3 3449.6 10.01 3449 3447.4 5.64 3447 -0.06
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P4 3436.0 10.01 3435 3432.8 6.42 3432 -0.09
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P5 3414.4 10.01 3413 3411.6 6.12 3411 -0.06
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P6 3439.8 10.01 3439 3437.4 5.73 3437 -0.06
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P7 3429.6 10.01 3428 3428.4 5.91 3428 0.0
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P8 3431.6 10.0 3430 3429.2 5.61 3428 -0.06
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P9 3448.8 10.01 3447 3446.6 6.5 3446 -0.03
N100 P(20-30) S(10-15) A(20-40) W50 Wo25 P10 3401.8 10.01 3401 3400.6 5.78 3400 -0.03
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P1 3427.8 10.01 3427 3424.6 5.4 3424 -0.09
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P2 3426.0 10.01 3425 3423.2 5.78 3423 -0.06
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P3 3449.6 10.01 3448 3447.6 6.32 3447 -0.03
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P4 3435.0 10.01 3434 3432.8 5.92 3432 -0.06
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P5 3414.4 10.0 3413 3411.6 6.18 3411 -0.06
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P6 3440.6 10.01 3438 3437.8 5.61 3437 -0.03
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P7 3429.8 10.01 3429 3428.4 6.5 3428 -0.03
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P8 3431.6 10.01 3431 3428.2 5.92 3428 -0.09
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P9 3449.6 10.0 3449 3446.8 5.71 3446 -0.09
N100 P(20-30) S(10-15) A(40-60) W50 Wo25 P10 3402.6 10.01 3402 3400.4 5.89 3400 -0.06
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s12351-017-0349-y⟩.

LIN, S.-W.; YING, K.-C. Single machine scheduling problems with sequence-dependent
setup times and precedence delays. Scientific Reports, v. 12, n. 1, p. 9430, Jun 2022. ISSN
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