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A Deus, por tudo que fez

para que eu chegasse até aqui.



Resumo

O Problema da Clusterizacao Capacitada é amplamente estudado na literatura, tendo
diversas aplicagoes relevantes, como a entrega de encomendas e roteamento de veiculos.
Diversas técnicas de otimizacao sao usadas para tratar o problema, entre elas destaca-
se o Simulated Annealing (SA), uma meta-heuristica que auxilia na busca do espago de
solugao, fazendo com que, por meio de perturbacao e simulagao de temperatura, aceite
solucoes piores que a corrente, auxiliando a sair de 6timos locais. Para aprimorar as
solugoes obtidas através do SA, a estratégia é combinada com o Randomized Variable
Neighborhood Descent (RVND), que realiza buscas locais sisteméaticas em diferentes vizi-
nhancas, contribuindo para o refinamento das solugoes obtidas. Além disso, incorpora-se
o Reactive Greedy Randomized Adaptive Search Procedure (RGRASP) junto com VND,
com o objetivo de gerar solucoes iniciais mais promissoras e diversas. Essa integracao entre
diversas meta-heuristicas visa acelerar a convergéncia para gerar solucoes mais eficientes

e atrativas para problemas combinatérios complexos de otimizag¢ao, como o PCC.

Palavras-chave: Inteligéncia Computacional, Otimizacao, Problema da Clusterizagao
Capacitada, Buscal Local, Metaheuristicas, Simulated Annealing, Reactive Greedy Ran-
domized Adaptive Search Procedure, Randomized Variable Neighborhood Descent, SA-
RGRASP-RVND.



Abstract

The Capacitated Clustering Problem (CCP) has been widely studied in the literature and
presents several relevant applications, such as parcel delivery and vehicle routing. Vari-
ous optimization techniques have been employed to address this problem, among which
Simulated Annealing (SA) stands out. SA is a metaheuristic that assists in exploring
the solution space by allowing, through perturbations and temperature simulation, the
acceptance of solutions worse than the current one. This mechanism helps generate di-
verse candidate solutions and escape local optima, enabling the search to move toward
new regions of the solution space. To further improve the solutions obtained by SA,
this strategy is combined with the Randomized Variable Neighborhood Descent (RVND),
which performs systematic local searches across different neighborhoods, contributing to
the refinement of the obtained solutions. Additionally, the Reactive Greedy Randomized
Adaptive Search Procedure (RGRASP) is incorporated together with VND to generate
more promising and diverse initial solutions, favoring local search in multiple regions of the
search space rather than relying solely on greedy strategies. This integration of multiple
metaheuristics aims to accelerate convergence and produce more efficient and competitive

solutions for complex combinatorial optimization problems such as the CCP.

Keywords: Computational Intelligence, Optimization, Capacitated Clustering Problem,
Local Search, Metaheuristics, Simulated Annealing, Reactive Greedy Randomized Adap-
tive Search Procedure, Randomized Variable Neighborhood Descent, SA-RGRASP-RVND.
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1 Introducao

A versao classica do problema de clusterizagao é amplamente estudada na literatura de
Otimizacao Combinatoéria, sendo fundamental em diversas éreas como analise de dados,
logistica, bioinformética e redes complexas. Em sua forma classica, o problema consiste
em agrupar elementos similares em um mesmo grupo denominado cluster, e elementos nao
similares em clusters distintos (LUXBURG; WILLIAMSON; GUYON, 2012), oferecendo
uma maneira de extrair padroes relevantes em grandes conjuntos de dados.

Em muitos cenarios, a versao classica da clusterizacao nao ¢é suficiente para mode-
lar adequadamente as restricoes de problemas reais, exigindo a incorporac¢ao de restri¢oes
adicionais, como de capacidade. Entre essas variantes, destaca-se o Problema da Cluste-
rizagdo Capacitada (PCC), introduzido por (MULVEY; BECK, 1984).

O Problema de Clusterizagao Capacitado (PCC) é um problema de Otimizagao
Combinatoria (NEGREIROS et al., 2022) que consiste em particionar um conjunto de
elementos em clusters disjuntos. Cada elemento possui um peso associado e, para cada
par de elementos, define-se um valor de beneficio que é contabilizado caso ambos sejam
alocados no mesmo cluster. O objetivo do PCC é formar os clusters de modo que a
soma dos pesos dos elementos em cada um deles respeite limites minimo e maximo de
capacidade, enquanto se maximiza a fun¢ao objetivo, definida como a soma dos beneficios
associados aos pares de elementos agrupados em um mesmo cluster (LAI et al., 2021).

Esse problema surge naturalmente em contextos nos quais héa restrigoes operaci-
onais ou fisicas sobre os clusters formados, ao mesmo tempo em que se deseja maximizar
algum critério de afinidade ou ganho interno aos cluster. De forma geral, o PCC possui
diversas aplicagoes relevantes que surgem em varios contextos diferentes (MURITIBA et
al., 2022), sendo adequado a problemas em que se deseja particionar um conjunto de ele-
mentos em clusters de modo que os elementos de cada cluster apresentem alta afinidade
interna, respeitando simultaneamente limites minimos e méximos de capacidade. Esses
limites representam restrigoes fisicas, operacionais ou econdémicas, enquanto os beneficios

associados aos pares de elementos expressam similaridade, proximidade ou reducao de
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custos, conforme discutido em (LAI et al., 2021).

Uma aplicagao classica do PCC ocorre no planejamento de instalagoes e na de-
finigdo de zonas operacionais em sistemas logisticos (DENG; BARD, 2011; MARTINEZ-
GAVARA et al., 2017). Nesses cendrios, os nos representam regides ou unidades de
atendimento, os pesos dos noés correspondem a demanda, os limites de capacidade asse-
guram a viabilidade operacional de cada cluster e os beneficios refletem ganhos logisticos
ao agrupar determinadas regioes. Essa modelagem é amplamente utilizada em redes de
processamento e distribuicao, como servigos postais e empresas de transporte, onde o
PCC auxilia o desenho de areas de atendimento e a integracao de redes, possibilitando
ganhos operacionais e redugao de recursos, como frota e tempo de deslocamento (BARD;
JARRAH, 2013; MURITIBA et al., 2022).

O PCC também é aplicado em redes de telecomunicagoes, como no problema de
minimizacao de handover em redes celulares (MORAN-MIRABAL et al., 2013; MARTINEZ-
GAVARA et al., 2015). O handover ocorre quando um dispositivo mével, como um
smartphone, precisa trocar a estacao radio-base a qual esta conectado durante uma comu-
nicagao ativa, devido a mobilidade do usuario ou a variagao da qualidade do sinal. Trocas
frequentes podem aumentar a sinalizagcao da rede e degradar a qualidade do servigo. Nessa
modelagem, os nds representam as estagoes radio-base, responséaveis por fornecer acesso a
rede, enquanto os clusters correspondem aos controladores de rede (RNCs) que gerenciam
conjuntos dessas estacoes. Os beneficios refletem a reducao de handovers ao agrupar es-
tagoes sob 0 mesmo controlador; os pesos representam a carga de trafego das estacoes, e
os limites de capacidade correspondem as restri¢coes técnicas dos RNCs.

Segundo (ZHOU et al., 2019), o PCC pertence a classe de problemas NP-Dificeis,
caracterizado por sua natureza combinatoéria e pela inexisténcia de algoritmos de tempo
polinomial conhecidos para a obtengao da solugao 6tima (RUAN; DA, 2010). Dessa forma,
torna-se necessario buscar uma heuristica eficiente e o uso de estratégias de Otimizacao e
Inteligéncia Computacional, com o objetivo de obter solugoes aproximadas de boa quali-
dade em tempo computacional viavel (NEGREIROS et al., 2022; LAI et al., 2021).

Por fim, o PCC tem sido amplamente investigado na literatura por meio de di-

ferentes abordagens baseadas em algoritmos de otimizacao, e esses modelos tém como
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objetivo resolver problemas complexos, para os quais métodos exatos se tornam com-
putacionalmente inviaveis. Nesse contexto, o presente trabalho visa contribuir para o
avanco do estado da arte por meio da obtencao de solugoes aproximadas para o PCC.
Para isso, propoe-se o desenvolvimento de um algoritmo hibrido que combina distintas
meta-heuristicas, buscando solugoes sub-6timas de forma eficiente e robusta, conforme
discutido em (HUSSAIN et al., 2019).

Nos proximos capitulos, o trabalho esta organizado da seguinte forma. No Capi-
tulo 2, o problema abordado é descrito. O Capitulo 3 apresenta a revisao da literatura,
enfatizando os principais conceitos e as contribui¢oes dos trabalhos relacionados ao pro-
blema. O Capitulo 4 é dedicado & apresentacao da fundamentacao teérica e dos conceitos
fundamentais que norteiam este trabalho. No Capitulo 5, sao detalhadas as abordagens
propostas neste trabalho. No Capitulo 6 sao apresentados os experimentos computaci-
onais realizados e a anélise dos resultados obtidos. Por fim, o Capitulo 7 apresenta as
conclusoes, destacando os principais aprendizados alcan¢ados e indica possiveis trabalhos

futuros.
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2 O Problema de Clusterizacao Capacitada

O Problema de Clusteriza¢ao Capacitada (PCC) pode ser formalmente definido a partir
de um grafo nao direcionado G = (V, E), em que V = {1,...,n} representa o conjunto de
elementos (ou vértices) a serem agrupados e E o conjunto de arestas que conectam pares
de veértices. Cada vértice ¢ € V possui um peso w;, enquanto a cada aresta (i,7) € F
esté associado um beneficio b;;, que representa o ganho obtido caso os vértices i e j sejam
alocados no mesmo cluster.

Como podemos ver na figura 2.1, que ilustra visualmente o objetivo fundamental
do problema abordado. A esquerda apresenta o conjunto de dados de entrada, represen-
tando os vértices dispersos no espaco. Na direita exemplifica a particao ideal almejada
no Problema de Clusterizagao Capacitado (PCC): a divisao desses vértices em subcon-
juntos disjuntos, que sao diferenciados pelas cores, de modo que a homogeneidade interna
de cada grupo seja maximizada — ou seja, os membros de um mesmo cluster estejam
geograficamente proximos. Assim podemos ver de maneira visual que o beneficio de um
vértice estar associado ao outro dentro de um cluster é o beneficio que eles geram de esta-
rem proximos. Em outros problemas essa proximidade pode ser relativa a outros fatores,

como quantidade de entregas por exemplo.

6 T T 6

Figura 2.1: Exemplo de vértices de um grafo clusterizado em 3 clusters distintos.

O objetivo do PCC é particionar o conjunto de vértices V em p clusters disjuntos.

O peso de cada cluster ¢ dado pela soma dos pesos dos vértices que o compoem, devendo
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respeitar limites minimo e maximo de capacidade previamente definidos. A funcao obje-
tivo consiste em maximizar a soma dos beneficios das arestas cujos vértices pertencem ao
mesmo cluster, modelando situagoes praticas em que é necessario formar clusters equi-
librados sob restrigoes de capacidade, ao mesmo tempo em que se busca maximizar a
afinidade ou o ganho interno entre seus elementos do mesmo cluster.

Pode-se descrever o PCC matematicamente como um problema de Programacao

Nao-Linear Inteira, considerando os seguintes parametros e variaveis:
e IV é o conjunto de vértices;
e [/ ¢é o conjunto de arestas;
e (' & o conjunto de clusters;
e n ¢ o numero de vértices;
e p é o numero fixo de clusters;
e w; é o peso associado ao vértice 1 € V;
e b;; ¢ 0 beneficio da aresta e = (1, j);
e ¢ ¢ um cluster do conjunto C
e [ é o limite inferior para o somatoério de pesos dos vértices de um cluster;
e U é o limite superior para o somatorio de pesos dos vértices de um cluster;

e ;. ¢ uma variavel binaria que assume valor 1 caso o vértice ©+ € V' seja alocado ao

cluster ¢ € C', e 0 caso contrario.

p n—1 n

Maximizar z = Z Z Z bijTicje (1a)

c=1 i=1 j=i+1

p
sujeito a d we=1 VieV (1b)
c=1
L< Zwi:pic <U Vee {1,2,...,p} (1c)
=1

T €{0,1} VieV, Vee{l,2,...,p} (1d)
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As restrigdes (1b) garantem que cada vértice i seja atribuido a exatamente um
cluster. As Restrigoes de peso (1c) asseguram que os requisitos de capacidade minima
(L) e a capacidade méaxima (U) para cada cluster sejam satisfeitas. As Restri¢oes (1d)
definem o dominio das variaveis. Por fim, a fungao objetivo (la) consiste em maximizar
o somatorio do beneficio interno de cada cluster, dado pelo somatoério dos beneficios
associados as arestas incidentes a vértices do mesmo cluster.

A Figura 2.2 ilustra um exemplo de instancia para o PCC, em que dado um
grafo G = (V, E) ponderado nos vértices e nas arestas com |V| = 14 e w; = 1 para
todos os vértices v; € V', com quantidade de clusters p = 4 e limites inferior e superior
[L,U] = [3,4] para todos os clusters. Assim, o objetivo ¢ particionar o conjunto V de
vértices em 4 clusters ¢, onde k € {1,...,4}, de forma que a soma dos beneficios das

arestas internas aos clusters (destacadas em vermelho) seja maximizada.

Figura 2.2: Exemplo de instancia do PCC com 14 nés e 4 clusters.

Neste capitulo foi apresentado o Problema da Clusterizagao Capacitada (PCC),
um desafio classico da Otimizagao Combinatoria. Destaca-se que o PCC é um problema
NP-Dificil, o que implica que nao ha algoritmo conhecido capaz de encontrar uma solugao
6tima em tempo polinomial. Portanto, é necesséario recorrer a estratégias de Otimizacao

e Inteligéncia Computacional para obter boas solugoes para o problema.
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3 Trabalhos Relacionados

Neste capitulo é apresentado o estado da arte relacionado ao Problema da Clusterizacao
Capacitada (PCC), sao discutidos os principais conceitos, modelos e abordagens propostos
na literatura e destacam-se as contribuicoes das pesquisas que influenciam diretamente o
desenvolvimento deste estudo.

O PCC foi introduzido formalmente na literatura por (MULVEY; BECK, 1984),
estabelecendo as bases fundamentais para a modelagem deste problema combinatoério.
Apos ser definido, ele tem sido objeto de estudo continuo, evoluindo com o surgimento
de novas técnicas de otimizac¢ao ao longo dos anos. Desta forma, os pardgrafos seguintes
dedicam-se a detalhar os avancos alcancados na literatura recente, apresentando e dis-
cutindo cronologicamente os artigos mais relevantes dos tltimos anos e suas respectivas
abordagens para a solu¢ao do problema.

No trabalho (MARTINEZ-GAVARA et al., 2015) foram realizados testes com
vérias estratégias de busca, incluindo as que se movem para fora da regiao viavel e uso
de estruturas de vizinhanca dentro da estrutura GRASP. Foi explorado um TS com uma
vizinhanga de troca 2-1 que se mostrou eficaz, realizando novos testes em instancias que
até entao nao existiam na literatura.

No trabalho de (LAI; HAO, 2016) é apresentado o método IVNS que combina
um método Variable Neighborhood Descent (VND) estendido (EVND) para intensificagao
das solugoes e um procedimento de perturbacao que remodela a solugao corrente de forma
aleatoria para explorar efetivamente o espago de busca e ter diversificacao das solugoes.
O algoritmo proposto melhorou os resultados de 28 das 83 instancias do tipo de minimi-
zagao handover e encontrou o melhor resultado conhecido para outras 55 instancias de
maximizacao , melhorando os resultados alcancados anteriormente.

No trabalho de (MARTINEZ-GAVARA et al., 2017) foi investigado a meta-
heuristica (Greedy Randomized Adaptive Search Procedure) GRASP e a (Iterated Gre-
edy) IG, propondo uma nova vizinhanga de troca 2-1 no GRASP, um algoritmo baseado

no IG e um algoritmo hibrido IG-GRASP. Utiliza-se uma construcao de solugoes indepen-
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dentes do GRASP sem memoria das solugoes anteriores e usa o IG para obter solugoes
baseadas em outras solugoes na memoria a fim de construir solugoes a partir da recons-
trucao parcial das anteriores do IG. Em seus resultados foi visto que a hibridizacao do
IG-GRASP foi capaz de encontrar bons resultados comparando aos métodos anteriores
a 2017. Portanto, este trabalho demonstrou que a construcao baseada em memoria é
um mecanismo eficaz dentro das técnicas de busca heuristica e que algoritmos hibridos
combinando métodos gulosos com randoémicos tém um grande potencial.

Em (BRIMBERG et al., 2019), s@o propostas duas abordagens baseadas na meta-
heuristica (Variable Neighborhood Search) VNS. O primeiro segue uma abordagem VNS
padrao chamado de VNS Geral (GVNS - General VNS) e a segunda um VNS enviesado
(SVNS - Skewed VNS) que permite movimentos para solugdes piores. Tanto o SVNS
quando o GVNS superaram o estado da arte até aquele momento, sendo o SVNS melhor no
geral. Isso sugere que o uso de critérios de aceitacao antes de permitir outros movimentos
para novas solugoes do SVNS ¢é preferivel a abordagem aleatoéria que é usada no GVNS
para mover para novas regioes do espago de solugao.

No trabalho (ZHOU et al., 2019) sdo apresentados dois algoritmos efetivos para
solucionar o PCC, um (Tabu Search) TS chamado de FITS que alterna entre explora-
¢ao em regioes de espagos de busca vidveis e invidveis e um Algoritmo Memético (MA)
que combina o FITS com um crossover baseado em cluster dedicado. Os experimentos
computacionais foram executados para 183 instancias e indicaram que FITS e MA geram
boas solucoes.

Em (MAXIMO; NASCIMENTO, 2021) os autores apresentam um algoritmo hi-
brido baseado em (Iterated Local Search) ILS, que combina a busca local com perturba-
¢oes e estratégias de intensificagao e diversificacao para melhorar os resultados obtidos.
Os experimentos mostram que o algoritmo proposto é eficaz na obtencao de boas solugoes.

Em (LAI et al., 2021) foi proposto um algoritmo de pesquisa de vizinhanga vari-
avel usando decomposicao de vizinhanga (NDVNS). Essa estratégia acelera o processo de
busca e usa uma forma de perturbacao probabilistica para controlar a troca entre inten-
sificacao de busca e diversificagao, assim isola solu¢oes candidatas promissoras a serem

consideradas em cada iteragao de busca, acelera a busca na vizinhanca e permite buscas
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mais focadas. Os resultados foram executados para 110 instancias comumente usadas na
literatura, encontrando a melhor média em todas as instancias e melhor resultado em 70%
em relagao a trabalhos anteriores.

Outro trabalho a tratar o PCC foi a abordagem de (LIU; GUO; ZENG, 2022b)
que propoe um Algoritmo Evolucionario de Membrana. Esse algoritmo foi proposto em
(OROZCO-ROSAS; MONTIEL; SEPULLVEDA, 2019) e usa operagoes evolutivas de mem-
brana, como divisao, fusao, selegao, citolise e outros. Os resultados deste trabalho mos-
tram que o numero de instancias em que o MEACCP pode encontrar a solucao otima é
até 9 vezes maior do que nos algoritmos da literatura e a estabilidade ¢ melhor do que
todos os algoritmos comparados no passado.

Em (LIU; GUO; ZENG, 2022a) foi proposto um algoritmo hibrido chamado HA-
PCC, que possui um método de construgao de solugao viavel mais guloso utilizando restri-
¢oes mais restritas que as originais da instancia, com destruicao e reconstrucao da solucao
para aumentar a diversidade da populagao e melhorar a velocidade de convergéncia. Das
90 instancias utilizadas nos testes, em 58 dessas 0 HA-PCC possui a melhor solu¢ao média
da literatura, sendo a proposta que possui a melhor estabilidade.

Em (FALKNER; SCHMIDT-THIEME, 2023) foi proposto um método chamado
Neural Capacited Clustering que é a primeira abordagem baseada em Deep Learning.
Os autores utilizam K-Means para refinar a solucao e uma rede neural para aprender e
prever as probabilidades de escolher um vértice para um cluster a partir de um conjunto
de dados de solugoes subotimas passadas de outras instancias do problema. Apesar de
superar varias solugoes heuristicas da literatura, este trabalho utiliza instancias de outro
problema, dificultando a comparacao com os trabalhos que utilizam as instancias proprias
PCC.

O trabalho mais recente da literatura (ALTUWAIM, 2023) propoe uma meta-
heuristica baseada no algoritmo Artificial Bee Colony (ABC). A abordagem utiliza uma
estratégia construtiva inicial seguida da geracao de solugoes vizinhas e da aplicacao de
busca local com probabilidade controlada, visando melhorar a qualidade das solugoes ao
longo das iteragoes. Os resultados obtidos alcangam os melhores resultados da literatura,

embora sua eficiéncia dependa de uma escolha adequada de parametros para cada tipo
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de instancia e tenha sido utilizado apenas um conjunto de 10 instancias com 82 vértices,
dificultando comparacao com as demais instancias usadas na literatura.

Por fim, foi visto que diversos trabalhos da literatura abordam o PCC por meio
de diferentes estratégias. Em conjunto, esses trabalhos reforcam a relevancia do uso de
heuristicas e meta-heuristicas como ferramentas eficazes para tratar o PCC, especialmente
em cenarios onde métodos exatos se tornam computacionalmente inviaveis.

A partir da revisao da literatura, observa-se que as principais abordagens pro-
postas para o PCC se concentram no uso de estratégias baseadas em busca local, com
destaque para métodos como VNS, GRASP, Busca Tabu e estratégias hibridas que com-
binam mecanismos de intensificacao e diversificagdo. Trabalhos mais recentes também
exploram abordagens hibridas mais sofisticadas, incorporando aprendizado de méaquina
ou estruturas bioinspiradas, evidenciando a maturidade do campo e o esfor¢co continuo
em obter solugoes de melhor qualidade e maior estabilidade computacional.

Apesar desses avancos, nota-se que a maior parte dos trabalhos concentra-se em
estratégias nas quais a diversificagao ocorre predominantemente por meio de perturbagoes
ou de mecanismos classicos de mudanca de vizinhanca. Em contrapartida, ha uma lacuna
na exploragao sistemética de meta-heuristicas baseadas em critérios probabilisticos de
aceitacao de solugoes de ndo melhora, como o Simulated Annealing (SA).

De forma geral, os resultados reportados indicam que abordagens hibridas ten-
dem a apresentar desempenho superior quando comparadas a heuristicas isoladas. Dessa
forma, identifica-se uma oportunidade de pesquisa na proposicao de uma abordagem hi-
brida que explore explicitamente a capacidade do SA em escapar de 6timos locais por meio
da aceitagao controlada de solugoes piores, aliada & geracao de solugoes iniciais de alta
qualidade utilizando GRASP, bem como ao refinamento sistematico via VND por meio
de estratégias de busca local baseadas em miiltiplas vizinhangas. Essa lacuna motiva o
desenvolvimento do método proposto neste trabalho, que combina SA, GRASP reativo e

VND Randdémico para alcancar solugoes competitivas para o PCC.
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4 Fundamentacao Teoérica

Este capitulo é destinado a introduzir a fundamentacao tedrica, necessaria para o entendi-
mento do trabalho, apresentando defini¢oes, modelos, algoritmos e indicando os conceitos

fundamentais para o desenvolvimento deste trabalho.

4.1 Inteligéncia Computacional

A Inteligéncia Computacional (IC) compreende um conjunto de técnicas e algoritmos
inspirados em processos naturais e cognitivos, como algoritmos genéticos e métodos evo-
lutivos, com o objetivo de resolver problemas complexos. Nesse contexto, a IC possibilita
a obtencao de solugoes aproximadas de boa qualidade em tempo reduzido, o que justifica
o crescente interesse da comunidade cientifica no desenvolvimento de métodos eficientes
para tratar problemas dessa natureza (SOUZA, 2008). Para atender a esse desafio, foram
desenvolvidas diversas heuristicas e técnicas voltadas & exploracgao eficiente do espaco de
busca. Entre elas, destacam-se as meta-heuristicas, que consistem em estruturas gerais
de busca capazes de orientar a construcao e o aprimoramento de solucoes por meio de
diferentes estratégias. Algumas dessas heuristicas e meta-heuristicas sao utilizadas neste

trabalho e serao descritas nas se¢oes subsequentes.

4.2 Heuristicas Construtivas

As heuristicas construtivas tém como objetivo gerar solugoes iniciais para problemas de
otimizagao combinatoéria. Essas heuristicas podem empregar diferentes estratégias, como
abordagens gulosas, randomizadas ou hibridas, além de mecanismos baseados em sele¢ao
probabilistica e critérios de insercao. A combinagao dessas estratégias é frequentemente
utilizada com o intuito de produzir solucoes iniciais diversificadas. O principal obje-
tivo dos métodos construtivos é obter solugoes vidveis de forma rapida, com baixo custo

computacional, servindo como ponto de partida para etapas posteriores do processo de
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otimizagao (BURKE et al., 2013).

4.3 Meétodos de Busca Local

Um dos tipos de heuristicas mais utilizados para a obtencao de solugoes de boa qualidade
em problemas de otimizagao combinatéria sao os métodos de Busca Local. Essas aborda-
gens sao particularmente relevantes em problemas da classe NP-Dificil, nos quais se busca
otimizar uma funcao objetivo em um espago de solugoes que respeite um conjunto de
restricoes. No entanto, devido & complexidade do espaco de busca, os algoritmos podem
convergir para solugoes correspondentes a 6timos locais, sem conseguir identificar solugoes
de melhor qualidade situadas em outras regioes do espago de solugoes.

O conceito fundamental que rege o funcionamento desses algoritmos é a definicao
de uma estrutura de vizinhanga. Formalmente, para uma solucao candidata s perten-
cente ao espago de busca S, define-se a vizinhanga N(s) como o subconjunto de solugoes
s’ € S que podem ser alcangadas diretamente a partir de s através de uma operagao de
movimento ou transformacao simples entre vértices e estruturas criadas para problema.
Esses movimentos consistem em pequenas modificagoes na estrutura da solugao corrente,
como a troca de elementos entre clusters ou a realocagao de vértices. Dessa forma, a
busca local navega pelo espago de solugoes movendo-se iterativamente de uma solucao
atual para uma de suas vizinhas, avaliando a qualidade destas para determinar se houve
melhoria e se sera aceita como nova solugao.

A Figura 4.1 ilustra a presenca de 6timos locais em um problema de maximizagao.
Observa-se que algoritmos de busca local tendem a ficar presos nesses pontos de maximo
local e planicies sem reconhecer que pode haver solu¢oes melhores. Assim as buscas locais
alteram a solucao com objetivo de alcancar novos resultados e quando chegam em um
ponto como esses 6timos locais nao conseguem sair deles, pois melhorias imediatas podem
nao estar disponiveis na vizinhanga.

Nesse contexto, os métodos de Busca Local atuam promovendo modifica¢oes con-
troladas na solugao corrente, com o objetivo de explorar novas regioes do espago de busca
ainda nao visitadas. Essas modificagcoes podem permitir a identificacao de solucoes asso-

ciadas a 6timos locais de melhor qualidade ou, em casos ideais, a aproximacao do 6timo
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global, que corresponde a solucao 6tima do problema.
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Figura 4.1: Otimos locais e global em um espaco de solucao explorado por uma heuristica
de busca local em um problema de maximizagcao.

De forma geral, a Busca Local realiza um refinamento da solugao inicial por meio
da exploragao de solugoes vizinhas (VOSS et al., 2012). Essas solugoes podem ser geradas
a partir de operacoes simples, como, por exemplo, no caso do PCC, operacoes de trocas
de vértices entre clusters distintos, bem como inserc¢oes ou remocgoes de vértices em um
cluster.

O processo de Busca Local é conduzido de forma iterativa, avaliando a cada etapa
as solugoes vizinhas geradas a partir da solucao corrente. Esse procedimento é repetido
até que nenhum vizinho proporcione melhoria, interrompendo a execuc¢ao no primeiro

6timo local encontrado.

4.4 Meta-heuristicas

Na literatura de Otimizacao e Inteligéncia Computacional, as meta-heuristicas sao ampla-
mente empregadas na resolucao de problemas da classe NP-Dificil, para os quais nao se
conhece algoritmo de tempo polinomial capaz de garantir a solucao 6tima. Essas técnicas
atuam orientando o processo de busca no espaco de solugoes, equilibrando mecanismos de
intensificagao e diversificacao, reduzindo a probabilidade de estagnacao em 6timos locais

(HUSSAIN et al., 2019).
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Diferentemente de heuristicas puramente construtivas ou gulosas, as meta-heuristicas,
via diferentes estratégias, buscam escapar de 6timos locais e explorar solugdes potenci-
almente superiores em outras regioes do espaco de busca. Exemplos classicos de meta-
heuristicas incluem Simulated Annealing (SA), Greedy Randomized Adaptive Search Pro-
cedures (GRASP) e Variable Neighborhood Search (VNS).

Neste trabalho, algumas dessas meta-heuristicas sao exploradas com o objetivo
de resolver o Problema da Clusterizagao Capacitada (PCC). As técnicas adotadas e sua

integracao no método proposto sao detalhadas nas segoes subsequentes.

4.5 Swimulated Annealing

Em (OSMAN; CHRISTOFIDES, 1994) foi proposta uma abordagem baseada em Simula-
ted Annealing (SA), capaz de guiar um método de busca local iterativo, permitindo que o
processo de busca continue mesmo ap6s a deteccao de um 6timo local. Isso é realizado por
meio de critérios deterministicos ou probabilisticos que controlam a aceitagao ou rejei¢ao
de solugoes recém-geradas, inclusive solugoes piores do que a corrente.

O SA é uma meta-heuristica estocastica inspirada no processo fisico de recozi-
mento de metais, no qual um material é aquecido a altas temperaturas e posteriormente
resfriado de maneira controlada, permitindo que a estrutura cristalina alcance estados de
menor energia. De maneira andloga, o SA busca solugoes de alta qualidade explorando o
espago de busca com maior liberdade no inicio da execugao, aceitando solugoes piores com
maior probabilidade e reduzindo gradualmente essa probabilidade de aceitacao a medida
que a temperatura diminui. Dessa forma, o desempenho do algoritmo depende fortemente
da escolha adequada de seus parametros, especialmente da estratégia de resfriamento da
temperatura, tornando essencial um estudo cuidadoso de parametrizacao. Com a redugao
gradual da temperatura, o algoritmo passa a se comportar de maneira semelhante a uma
busca local classica, concentrando-se na intensificagao da busca em regioes promissoras.

A Figura 4.2 exemplifica o processo realizado pelo SA, que busca escapar da
armadilha de cair em 6timos locais por existir uma barreira de piores solugoes entre a
atual e uma possivel melhor solugao.

Formalmente, o Simulated Annealing admite a aceitacao de uma solugao vizinha
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Figura 4.2: Barreiras para a busca local encontrar novos 6timos locais.

s’ com valor da fungao objetivo pior que o da solugdao corrente s segundo um critério

probabilistico, usualmente definido por

pon=on (-2)
em que Af = f(s') — f(s) representa a variagao da func¢do objetivo e T' denota a tempe-
ratura do sistema. Esse mecanismo permite que o algoritmo atravesse barreiras do espaco
de busca associadas a 6timos locais, possibilitando a exploragao de regioes que nao seriam
acessiveis por métodos de busca local estritamente gulosos. A medida que a temperatura ¢
gradualmente reduzida conforme um esquema de resfriamento, a probabilidade de aceitar
solugoes piores diminui, conduzindo o algoritmo a um comportamento progressivamente

mais intensificativo, favorecendo a convergéncia para solucoes de melhor qualidade.

4.6 Variable Neighborhood Descent

O Variable Neighborhood Descent (VND) é uma meta-heuristica deterministica ampla-
mente empregada na resolugao de problemas de otimizacao combinatoéria. Trata-se de um

método iterativo que explora sistematicamente diferentes estruturas de vizinhanga com o
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objetivo de aprimorar uma solugao inicial. A ideia central do VND consiste em alternar
entre distintas vizinhancas, permitindo uma exploracao mais ampla do espaco de solugoes
e reduzindo a probabilidade de estagnacao em 6timos locais.

Este método, visto em (BRIMBERG et al., 2016) inicia a partir de uma solu-
¢ao viavel e a cada iteragao, aplica um procedimento de busca local sobre uma solucao
especifica. Caso seja encontrada uma solugao de melhor qualidade, essa solucao passa a
ser a nova solugao corrente e o algoritmo retorna a primeira vizinhanga. Caso contrario,
o método avanca para a proxima vizinhanca definida. O processo é encerrado quando
nenhuma melhoria é obtida apds a exploragao de todas as vizinhancas, caracterizando um
6timo local em relagao ao conjunto de vizinhancas consideradas.

O método de VND pode ser utilizado com uma modificacao em sua estrutura
classica. Em vez de explorar as vizinhancas em uma ordem fixa, adota-se uma estratégia
de randomizacao da ordem de exploracao das vizinhancas. Essa abordagem caracteriza
o método como um Randomized Variable Neighborhood Descent(RVND), cujo objetivo
é aumentar a capacidade de diversificacao da busca e reduzir a dependéncia da ordem
pré-definida das estruturas de vizinhanca.

O RVND explora miiltiplas estruturas de vizinhanca; assim, o RVND promove
um refinamento mais robusto das solugoes candidatas, especialmente quando integrado a

meta-heuristicas baseadas em perturbagao, como o Simulated Annealing.

4.7 Greedy Randomized Adaptive Search Procedure

O Greedy Randomized Adaptive Search Procedure (GRASP) (RESENDE; RIBEIRO, 2016)
¢ uma meta-heuristica iterativa amplamente utilizada na resolucao de problemas de oti-
mizacao combinatéria. O método combina uma fase de construcao gulosa e randomizada
com uma fase de busca local, visando explorar diferentes regioes do espago de solugoes e
reduzir a dependéncia de uma tnica solugao inicial.

Na fase de construgao, uma solugao viavel é gerada de forma incremental por
meio de um critério guloso. Apoés a fase construtiva, aplica-se um procedimento de busca
local com o objetivo de aprimorar a solugao obtida, explorando sua vizinhanca até que um

6timo local seja alcangado. Neste trabalho, a etapa de refinamento do GRASP ¢é realizada
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por meio do Variable Neighborhood Descent (VND), que permite a exploracao sisteméatica
de diferentes estruturas de vizinhanca. Esse ciclo de construcao e refinamento é repetido
por um nimero predefinido de iteracoes, sendo a melhor solu¢ao encontrada ao longo de
todas as execucoes armazenada como resultado final do algoritmo.

Pode ser utilizado uma variante reativa dessa meta-heuristica, intitulada Reactive
Greedy Randomized Adaptive Search Procedure (RGRASP). Diferentemente do GRASP
classico, o RGRASP utiliza um algoritmo guloso randomizado reativo na fase construtiva
em que ajusta de forma reativa a escolha do parametro o com base no desempenho
histérico das solugoes geradas, favorecendo valores que produzem solugoes de melhor

qualidade.
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5 Abordagens Propostas

Neste capitulo sao detalhadas as abordagens propostas para a solucao do PCC, descre-
vendo como os algoritmos discutidos nos capitulos anteriores foram adaptados, combina-
dos e implementados, bem como as principais decisoes de projeto adotadas ao longo do
desenvolvimento deste trabalho. As abordagens propostas exploram diferentes estraté-
gias heuristicas e meta-heuristicas, com o objetivo de equilibrar qualidade de solucao e
custo computacional, considerando explicitamente as restricoes de capacidade inerentes
ao problema.

Para elucidar melhor alguns pontos importantes das abordagens com foco no
PCC, sera tratado aqui algumas caracteristicas que influenciam a criacao dos métodos.
Podemos inicialmente trazer a importancia do peso dos vértices e do beneficio da asso-
ciacao entre dois vértices. Iniciando pelo peso, este é associado a cada vértice a partir
da instancia, ou seja, essa informacao é constante para cada vértice e foi determinado
pelos autores na criacao da instancia, sendo que neste capitulo sera visto que a soma
dos pesos de vértices no mesmo cluster é o valor de peso daquele cluster, que seria algo
como a capacidade alocada. No caso do beneficio, ele também é determinado a partir da
instancia sendo um valor constante para cada aresta do grafo completo. Ao criar uma
solucao para o PCC, gera-se um sub-grafo completo em que todas arestas entre vértices
de um mesmo cluster possuem um beneficio associado, com isso a soma destas arestas é
o beneficio associado a ao cluster e a soma do beneficio de cada cluster é o beneficio da
solucao.

Este trabalho utiliza uma abordagem hibrida de algoritmos heuristicos e meta-
heuristicos que visam gerar solugoes distintas por meio de diferentes estratégias combi-
nadas. A abordagem proposta consiste em um algoritmo Simulated Annealing (SA) que
recebe como solugao inicial o resultado de um algoritmo GRASP reativo. O objetivo de se
utilizar o algoritmo Reactive Greedy Randomized Adaptive Search Procedure (RGRASP)
na fase inicial do SA é gerar uma solugao inicial de boa qualidade para facilitar a conver-

géncia. Na fase de busca local, o SA utiliza o RVND com trés diferentes buscas locais,
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que fazem trocas de vértices entre clusters. Além disso, a combinagao com modificacao
da solugao atual por meio de uma perturbagao de uma porcentagem de vértices e clusters
gera vantagem ao permitir escapar de bacias de atragao e evitar convergéncia precoce do
SA.

Em sintese, este trabalho usa dois algoritmos como base: 0 RGRASP, que provou
ser mais efetivo na geragao de boas solugoes iniciais, e o SA para explorar o espago de busca
a partir da solucao criado pelo RGRASP. A combinacao proposta entre SA e RGRASP
incorpora, ao longo de suas execugoes, o método Variable Neighborhood Descent (RVND)
como mecanismo de refinamento, visando aprimorar as diferentes solugoes geradas durante
o processo de busca.

O Simulated Annealing (SA) é adotado como a meta-heuristica principal deste
trabalho e caracteriza-se como um método de busca local estocéstica, no qual solugoes
vizinhas sao exploradas a partir de perturbagoes controladas, sendo aceitas conforme um
critério probabilistico dependente da temperatura. Esse mecanismo permite ao algoritmo
escapar de 6timos locais ao admitir, de forma controlada, solugoes de pior qualidade. No
entanto, observou-se que as solugoes obtidas imediatamente apos tais perturbacoes nem
sempre apresentam qualidade suficiente para contribuir efetivamente com a intensifica-
¢ao da busca. Nesse contexto, a aplicagao do Random Variable Neighborhood Descent
(RVND) apos as perturbagoes possibilita o refinamento sistematico das solugoes geradas,
conduzindo o algoritmo a regioes mais promissoras do espago de busca e favorecendo a
identificacao de 6timos locais distintos daqueles previamente encontrados.

Além disso, constatou-se que a qualidade da solucao inicial exerce influéncia sig-
nificativa sobre o desempenho final do SA. Diante disso, 0 RGRASP foi empregado como
método para a geragao da solugao inicial. O RGRASP opera de forma iterativa, com-
binando uma fase construtiva gulosa e randomizada com a aplicagao do RVND para
o refinamento de cada solucao gerada. Esse processo é executado por um nimero pré-
determinado de iteragoes, apresentando baixo custo computacional. Apesar de sua rapida
execucao, o uso do RGRASP para a construgao da solugao inicial resulta em ganhos ex-
pressivos de qualidade, impactando positivamente o desempenho global da abordagem

hibrida proposta.
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5.1 Solucao inicial do RGRASP com Algoritmo Cons-

trutivo

O Algoritmo 1 descreve a heuristica construtiva gulosa e randomizada proposta neste
trabalho para a geragao de uma solucgao inicial executada dentro do RGRASP. A heuristica
tem como objetivo construir uma solugao viavel respeitando as restrigoes de capacidade e
custo, ao mesmo tempo em que busca uma boa qualidade inicial para posterior refinamento

pela meta-heuristica base SA.

Algoritmo 1: Heuristica Construtiva Gulosa e Randomizada

Entrada: grafoPonderado G, «, indMaxInserir
Saida: solucaolnicial

1 inicio
2 listaCandidatos < geraCandidatos(G)
3 listaCandidatos < ordenar PorCusto(listaCandidatos)
4 para cada Cluster j do vetor clusters faga
5 vertMaior Peso < escolheCandM aior Peso(listaCandidatos)
6 adicionaV ertCluster(vert Maior Peso, cluster|j])
7 fim para cada
8 para cada Cluster j do vetor clusters faga
9 enquanto listaCandidatos # Vazio faga
10 listaCandidatos < calculaBene ficioEmCadaCluster()
11 listaCandidatos < ordenar Por Bene ficio(listaCandidatos)
12 indMaxInserir < listaCandidatos.size * o
13 indMelhorVertCluster <— randNumEntre(0, indM azxInserir)
14 melhorCand < listaCandidatos|indMelhorV ertCluster]
15 melhorVertice <— melhorCand.vertice
16 melhorCluster <— melhorCand.cluster
17 addBestV ertCluster(bestVert, bestCluster)
18 removeListaCandidatos(indiceV ertInserir)
19 fim enqto
20 fim para cada
21 retorna solucao;
22 fim

Inicialmente, nas linhas 2 e 3 é gerado um conjunto de vértices candidatos, os
quais sao ordenados de acordo com um critério de custo associado ao problema , que sao
os vértices de maior peso, ou seja, sao ordenados do vértice de maior peso até o vértice de
menor peso. Em seguida nas linhas 4 a 7, para cada cluster a ser formado, seleciona-se
um vértice de maior peso dentre os candidatos disponiveis, garantindo que cada cluster

seja inicializado com ao menos um vértice representativo. Essa etapa visa assegurar uma
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distribuicao inicial equilibrada e viavel dos vértices entre os clusters.

Apos a fase de inicializagao, a partir da linha 8 até a linha 20 o algoritmo entra em
um processo iterativo de insercao dos vértices remanescentes. Enquanto houver candidatos
nao alocados, inicia-se a iteracao dos clusters na linha 8 e na linha 9 outra iteracao que
continua enquanto a lista de candidatos houver elementos. Dentro do processo iterativo é
avaliado o beneficio da insercao de cada vértice em cada cluster na linha 10, considerando
as restri¢oes do problema sendo que para cada vértice da lista de candidatos consideramos
o beneficio dele se associar a algum cluster, a partir da soma do beneficio associado a ele
e todos os vértices de cada cluster. Sendo assim, a cada iteracao onde um vértice é
escolhido e adicionado a um cluster, o beneficio de todos os vértices da lista de candidatos
tem que ser atualizada para considerar o novo beneficio de ser inserido naquel cluster que
foi atualizado com a entrada de mais um vértice.

Na linha 11 os candidatos sao entao ordenados de acordo com esse beneficio e
uma Lista Restrita de Candidatos (LRC) ¢é definida a partir do parametro de aleatoriedade
a € [0,1], o qual controla o equilibrio entre comportamento guloso e diversifica¢do. O
parametro « ird configurar qual a porcentagem dos melhores vértices da LRC seré utilizada
para escolher de forma randémica o proximo vértice a ser adicionado na solucgao.

Assim, na linha 12 é calculado a quantidade méxima de melhores candidatos
podem ser selecionados para a solugdo com base no valor de « € [0, 1] escolhido. Apods
essa escolha, entre as linhas 13 e 16 um vértice e um cluster sao selecionado de forma semi
aleatoria a partir da LRC, entre o primeiro vértice e o indice de vértice méximo calculado
com base no «, e assim inserido no cluster correspondente e removido da LRC nas linhas
17 e 18, desde que a insercao preserve a viabilidade da solucao.

Ao final do processo, obtém-se uma solugao inicial viavel para o PCC, constru-
ida de forma gulosa e randomizada, usada como primeira solu¢cao do RGRASP para ser

comparada com as proximas solucoes geradas internamente.

5.2 Algoritmo Construtivo Randomizado Reativo

Nesta secao ¢ apresentado o Algoritmo Construtivo Randomizado Reativo, utilizado

como componente construtivo do RGRASP para o Problema de Clusterizacao Capaci-
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tada (PCC). O objetivo desse algoritmo é gerar solugdes iniciais diversificadas e de boa
qualidade, equilibrando critérios gulosos e aleatérios por meio do uso de uma lista de
candidatos controlada pelo parametro a. Além disso, a abordagem reativa permite ajus-
tar dinamicamente o parametro o ao longo das iteragoes, favorecendo automaticamente
aqueles valores que conduzem a solucoes de melhor qualidade e aumentando a eficiéncia
do processo construtivo.

Para elucidar o conceito do parametro « e ser melhor compreendido ao ser lido o
pseudocodigo, podemos dizer que o valor dele é o parametro que

O valor de « é atualizado entre as linhas 20 e 24 onde é selecionado de forma
reativa a partir de um conjunto pré-definido, variando de 0,05 a 0,50, com probabilidades
inicialmente uniformes que sao atualizadas ap6s um nimero fixo de iteragoes, favorecendo
os valores de a associados as melhores solucoes encontradas.

Para elucidar o conceito do parametro « e facilitar a compreensao do pseudoco-
digo, define-se tal valor como o coeficiente que controla o equilibrio entre a intensificagao e
a diversificagao durante a fase de construgao, assim controlando o quanto o algoritmo sera
guloso. Na pratica, o a determina o limiar de qualidade para a inclusao de elementos da
Lista Restrita de Candidatos (LRC): valores baixos de a tornam o algoritmo mais guloso,
selecionando apenas as melhores opcoes locais, enquanto valores mais altos aumentam a
variancia das solugoes geradas. Em termos praticos, o a delimita o tamanho da Lista
Restrita de Candidatos (LRC): um valor de o = 0,2, por exemplo, instrui o algoritmo
a restringir o sorteio aleatorio exclusivamente aos 20% melhores vértices candidatos dis-
poniveis naquela iteracao. Periodicamente, as probabilidades de selegao de cada « sao
recalculadas, de modo que os valores que historicamente geraram as melhores solugoes
tenham suas chances de escolha aumentadas nas iteragoes seguintes.

Para elucidar o conceito do parametro « e facilitar a compreensao do pseudoco-
digo, define-se tal valor como o coeficiente que controla o equilibrio entre a voracidade e a
aleatoriedade na construcao da solugao. O valor de « é atualizado entre as linhas 20 e 24
onde é selecionado de forma reativa a partir de um conjunto pré-definido, variando de 0,05
a 0,50, com probabilidades inicialmente uniformes que sao atualizadas ap6s um ntmero

fixo de iteragoes, favorecendo os valores de « associados as melhores solugoes encontradas.
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Algoritmo 2: Algoritmo construtivo randomizado reativo

© 0o

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

Entrada: grafoG, «, iter Por Alpha, iter Max
Saida: Solugao Sx

contadorlter < 0;

S« 0;

Cria vetor de probabilidades com distribui¢ao uniforme P;
enquanto Nao atingir iter Max iteragoes faga

Cria lista de candidatos ordenada LC';
Adiciona um candidato aleatério dentre os o melhores da LC' a cada
cluster de S,
Atualiza e reordena a LC;
enquanto LC nao estiver vazia faga
Candidato < Escolhe aleatoriamente um Candidato dentre os «
melhores;
MelhorCluster < Encontra o melhor cluster para o Clandidato;
Insere o C'andidato no MelhorCluster de S
Atualiza e reordena a LC;
fim enqto
se Solucao for invidvel entao
| viabilize (S);
fim se
S# < Escolha a melhor solugao entre S e Sx;
Incremente ContadorIter;
se contadorlIter atingir iter Por Alpha entao
Atualize vetor de probabilidades P;
Escolha um novo «;
ContadorlIter < 0;
fim se

fim enqto
retorna Sx;

O Algoritmo 2 descreve o procedimento construtivo empregado a cada iteragao

do RGRASP. Inicialmente nas linhas 2 a 4 é inicializadas as variaveis e criado o vetor

de probabilidades que faz o algoritmo ser reativo as melhores solucoes, assim inicia-se a

iteracao entre as linhas 5 e 25, na linha 6 todos os vértices do grafo sao inseridos em

uma Lista de Candidatos (LC'), a qual é atualizada e ordenada na linha 8 de acordo

com o somatorio dos beneficios das arestas associadas a cada vértice. A construcao da

solugao inicia-se pela insercao de vértices escolhidos aleatoriamente dentre os a melhores

candidatos da LC na iteragao interna entre as linhas 9 e 14, garantindo diversidade

desde as primeiras decisoes. Em seguida, enquanto houver candidatos nao alocados, um
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vértice ¢é selecionado aleatoriamente a partir da LC' e inserido no cluster que proporciona
o maior beneficio incremental. O valor de « é atualizado entre as linhas 20 e 24 onde
¢é selecionado de forma reativa a partir de um conjunto pré-definido, variando de 0,05 a
0,50, com probabilidades inicialmente uniformes que sao atualizadas ap6s um nimero fixo

de iteracoes, favorecendo os valores de « associados as melhores solugoes encontradas.

5.3 Randomized Variable Neighborhood Descent

O RVND é o niicleo do processo de intensificacao deste trabalho, ele explora diferentes
estruturas de vizinhanca de forma randomica a partir da aplicacao das buscas locais
para refinara solucao atual. Esse processo continua até que todas as vizinhancgas sejam
exploradas sem melhora ou até que o limite de iteragoes seja atingido. O funcionamento

geral segue descrito abaixo:

1. Definic¢ao das vizinhangas e embaralhamento da ordem inicial.

2. Execucgao da busca local correspondente a vizinhanga atual ;.

3. Se houver melhoria, aceitar a solugao e retornar a primeira vizinhangca.
4. Caso contrario, avancar para a proxima vizinhanca.

5. Encerrar quando todas as vizinhangas forem exploradas sem melhora.

Além da randomizacao da sequéncia de vizinhangas, o RVND implementado in-
corpora um limite maximo de iteragoes como critério de parada adicional, evitando ciclos
excessivos de busca local e controlando o custo computacional do método. O critério de
aceitacao das solugoes segue a melhoria do valor da fungao objetivo, de modo que apenas
solugoes que apresentem ganho de beneficio em relacao a solugao corrente sao aceitas.
Essas modifica¢oes tornam o procedimento de busca local mais flexivel e adequado a
integracao com as meta-heuristicas empregadas neste trabalho.

O critério de parada padrao ¢é o fim das estruturas de vizinhanca, o que equivale
a nao se encontrar uma solu¢ao melhor em nenhuma vizinhanga, ou seja, as buscas locais

implementadas ja nao surtem efeitos positivos na solugao. Adicionalmente, foi incorporado
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um limite maximo de iteragoes como critério de parada suplementar, controlando assim o
custo computacional do algoritmo, visando restringir o niimero de buscas locais aplicadas
as solugoes intermediérias geradas pelo SA.

No contexto do procedimento de busca local utilizando RVND, as estruturas de
vizinhanga definidas abaixo nao sao exploradas em uma sequéncia deterministica. A cada
iteracao do RVND, a lista de vizinhancgas é embaralhada, e o algoritmo explora o espaco
de busca na ordem definida por essa permutacao aleatoria. O funcionamento de cada

movimento pode ser descrito da seguinte forma:

e Realocacao (Shift): examina a transferéncia unilateral de um vértice de seu clus-
ter atual para um cluster de destino. A operagao é validada apenas se a inserc¢ao
respeitar a capacidade do grupo receptor, sendo fundamental para ajustes finos no

balanceamento de carga.

e Troca (Swap): consiste na permuta simples entre dois vértices pertencentes a
grupos distintos. Diferente da realocacao, este movimento tende a manter o nivel
de preenchimento dos clusters relativamente estével, pois a entrada de um elemento

é compensada pela saida de outro.

e Troca Assimétrica (Swap 2-1): realiza a substitui¢do de dois vértices de um
mesmo grupo por um unico vértice proveniente de outro grupo. Trata-se de um
movimento mais agressivo, capaz de alterar significativamente a cardinalidade e a

configuragao espacial dos agrupamentos envolvidos.

A combinagao dessas trés vizinhancas dentro da estratégia do RVND confere
robustez ao algoritmo. Enquanto os movimentos de Realocagao e Troca atuam refinando
a solu¢do, o movimento assimétrico (2-1) além de refinar, também facilita a exploragao
de novas regioes do espaco de busca, permitindo que o método escape de 6timos locais
onde trocas simples seriam insuficientes para promover melhorias.

O Algoritmo 3 descreve formalmente o procedimento padrao do RVND que inicia
a partir de uma solugao viavel s dada como entrada e percorre iterativamente o conjunto
de vizinhancas Ny, N, ..., N,. O algoritmo inicia randomizando a lista de vizinhancas

na linha 2, assim a ordem de uso das buscas locais é aleatorizada. A cada iteracao entre
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as linhas 5 e 17, em que o critério de parada ¢ finalizar a busca em todas as vizinhancas
sem melhoria naquele ponto, alcancando entao um 6timo local.

Dentro do processo iterativo, na linha 6 uma nova solucao candidata s’ é gerada
por meio da aplicacao da vizinhanca corrente, fazendo entao a modificacao da solugao
atual por meio de uma das buscas locais. Entre as linhas 7 e 10 caso seja observada uma
melhoria no valor da fungdo objetivo, isto é, f(s') > f(s), a solugao é atualizada na linha
8 e o processo retorna a primeira vizinhancga na linha 9, reiniciando o ciclo de exploracao.
Caso contrario, a busca avanca para a proxima vizinhanca na linha 12. O procedimento
¢é encerrado quando todas as vizinhangas sao exploradas sem que qualquer melhoria seja
encontrada, que é o critério de parada da iteracao que pode ser visto na linha 5, assim
caracterizando um 6timo local em relacao ao conjunto de vizinhangas consideradas. Na
linha 15 o algoritmo verifica se a quantidade maxima de iteragoes do RVND foi alcangada,
o que faz a iteracao finalizar logo em seguida caso tenha alcancado. No contexto deste
trabalho, o RVND ¢ utilizado como mecanismo de intensificagao, sendo acoplado a meta-
heuristicas de mais alto nivel, contribuindo significativamente para o refinamento das

solucoes geradas e para o aumento da qualidade final dos resultados obtidos.
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Algoritmo 3: Randomized Variable Neighborhood Descent(RVND)
Entrada: Grafo G, Solucao inicial bestSolution, nimero maximo de
iteragoes maxIter
Saida: Solucao refinada bestSolution

1 inicio

2 Randomiza lista com k,,,, vizinhancas;
3 Contadorlter + 0;

4 k < 0;

5 enquanto k£ < k., faga

6 s' + gerarVizinhancaN™® (s);

7 se f(s') > f(s) entao

8 s« §';

9 k < 0;

10 fim se

11 senao

12 ‘ Incrementar(k);

13 fim se

14 Incrementar(Contadorlter);

15 se Contadorlter = maxlIter entao
16 ‘ break;

17 fim se

18 fim enqto

19 retorna s;

20 fim

Essa abordagem permite um balanceamento eficaz entre intensificagao e diversifi-
cagao, sendo amplamente utilizada em problemas combinatorios. Além disso, a aleatoriza-
¢ao inicial na ordem das vizinhangas reduz o risco de padroes deterministicos indesejados
e reforca a capacidade exploratoria do método. Abaixo as buscas locais utilizadas no

trabalho sao detalhadas para um melhor entendimento.

5.3.1 Busca Local 1 - Realocagao (Shift) 1-0

A Busca Local 1-to-0, tem como objetivo melhorar a solu¢ado movendo um tnico vértice de
um cluster para outro, desde que a operacao gere uma melhoria no beneficio e mantenha

a viabilidade dos clusters envolvidos.
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Algoritmo 4: Busca Local 1-0

Entrada: Solucao s

Saida: Solugao aprimorada s’

1 inicio

2 melhora < 0;

3 embaralhar ordem dos clusters;

4 para cada cluster g, faca

5 para cada vértice v € g, faga
6 para cada cluster g» # g1 faga

7 verificar viabilidade de mover v para gs;
8 calcular variacao de beneficio A;

9 se A > 0 entao

10 realizar movimento;

11 melhora < melhora + A;
12 fim se

13 fim para cada

14 fim para cada

15 fim para cada

16 retorna s’;

17 fim

Este procedimento considera todos os clusters em ordem aleatoria e, para cada
vértice de cada cluster, avalia o impacto de remové-lo de seu cluster atual e inseri-lo em

outro cluster. A operagao é aplicada apenas quando:
1. os limites inferior e superior dos clusters permanecem respeitados;
2. o ganho de beneficio ¢ estritamente positivo;
3. a alteracao nao gera violacao estrutural no problema.

A busca local do tipo 1-0 consiste em tentar mover um tunico vértice de um
cluster para outro, avaliando o impacto dessa movimentacao na fungao objetivo. Para
cada vértice v pertencente ao cluster g, o método verifica a viabilidade de inseri-lo em
outro cluster go, considerando tanto a restricao de limites de peso quanto a variagao no
beneficio.

A melhoria é calculada como a diferenca entre o beneficio perdido em g; devido a
remocao do vértice e o beneficio ganho pela inser¢ao em go. Se essa variacao for positiva,
o movimento é realizado. Esse processo é repetido sobre todos os vértices e clusters,
conduzindo a solu¢ao a um 6timo local associado aos movimentos 1-0. Apesar de ser

computacionalmente custoso, buscamos fazer a atualizagao apenas do que foi alterado.
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A introducao de embaralhamento na ordem dos clusters reduz o viés deterministico e
aumenta a capacidade de explorar multiplas composi¢oes de vizinhanga.

Ao longo do processo, o método armazena a melhor troca encontrada e, ao final,
aplica efetivamente a modificagao com a maior melhoria. Caso nenhuma troca resulte em

beneficio positivo, a busca local encerra-se sem modificagoes.

5.3.2 Busca Local 2 - Troca (Swap) 1-1

A Busca Local 1-to-1, realiza trocas entre pares de vértices pertencentes a clusters distin-
tos. O objetivo é encontrar melhorias no valor da fungao objetivo substituindo um vértice
de um cluster por outro vértice de outro cluster e fazendo a troca entre eles.

A cada iteracao, o algoritmo:
e seleciona dois clusters distintos;
e escolhe um vértice de cada cluster;

e avalia o impacto da troca simultanea entre os clusters.

Algoritmo 5: Busca Local 1-1
Entrada: Solucao s
Saida: Solugao aprimorada s

1 melhora < 0;
2 embaralhar ordem dos clusters;
3 para cada cluster g, faga
4 para cada vértice v, € g; faga
5 para cada cluster g» # g, faga
6 para cada vértice vy € g9 faga
7 verificar viabilidade da troca (v, vy) entre g; e go
8 calcular variacao de beneficio:
A= Arem(’ula gl) + Arem(”?a 92) + Aadd(vla 92) + Aadd(UQa gl)
9 se A > 0 entao
10 realizar troca (vq, v2);
11 melhora < melhora + A
12 fim se
13 fim para cada
14 fim para cada
15 fim para cada

16 fim para cada
17 return s

A busca local 1-1 explora vizinhancas formadas pela troca simultanea de um

vértice de cada par de clusters distintos. Dado um vértice v, pertencente ao cluster g; e
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um vértice vy pertencente ao cluster g, o método avalia a troca (vy <> vg).

A troca somente é considerada se respeitar as restricoes de viabilidade dos clus-
ters, especialmente os limites inferior e superior de peso. A variagao de beneficio é compu-
tada como a soma entre as redugoes de beneficio decorrentes das remogoes e 0s acréscimos
provenientes das insercoes. Se a troca apresentar melhoria positiva na func¢ao objetivo,
ela é executada.

Esse tipo de movimento é mais expressivo que a busca local 1-0, pois permite
modificar simultaneamente a configuracao de ambos os clusters envolvidos, podendo es-
capar de 6timos locais associados apenas & remocao e insercao simples. A troca 1-1 é
particularmente eficiente em problemas onde a estrutura da solucao é sensivel ao equilibrio
entre os clusters.

O custo e o beneficio resultantes sao comparados com o estado atual da solucao.

A operacao é aplicada apenas quando:
1. ambos os clusters permanecem viaveis;
2. hé ganho de beneficio maior que zero.

O processo termina quando nenhuma troca adicional melhora a solucgao.

5.3.3 Busca Local 3 - Troca Assimétrica (Swap) 2-1

A Busca Local 2-to-1 consiste na remocgao de dois vértices de um cluster e insergao de
um vértice em seu lugar, ou em movimentos equivalentes que envolvem multiplos vértices.
Esse tipo de vizinhanga é mais complexa, pois altera simultaneamente a composi¢ao e o

peso total dos clusters.
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Algoritmo 6: Busca Local 2-1

Entrada: Solucao s
Saida: Solugao aprimorada s

1 melhora < 0;

2 embaralhar ordem dos clusters;

3 para cada cluster g, faca

4 para cada cluster g» # g, faga

5 para cada par de vértices (vq,vp) C g1 faga

6 para cada vértice v, € g, faga

7 verificar viabilidade da troca {v,, vy} <> {v.}

8 calcular variacao de beneficio:
A7'em — Arem('vm 91) + Arem(vba 91) + Arem(vca 92)
A7"em < Aadd(va; 92) + Aadd(vln 92) + Aadd(vc; 91)
A Arem + Aadd

9 se A > 0 entao

10 remover v, e v, de g; e inserir em g, remover v, de g, e

inserir em ¢g; melhora < melhora + A

11 fim se

12 fim para cada

13 fim para cada

14 fim para cada

15 fim para cada
16 return s

A busca local 2-1 expande a vizinhanca explorada ao permitir trocas assimétricas
entre clusters, nas quais dois vértices de um cluster sao trocados por um tnico vértice do
cluster vizinho. Esse movimento é especialmente tutil em problemas onde os clusters pos-
suem faixas de viabilidade amplas e onde combinacgoes de vértices podem gerar beneficios
substancialmente superiores aos obtidos por modificacoes unitarias.

Para cada par de vértices (v,,vp) pertencentes ao cluster g e cada vértice v,
pertencente ao cluster g, é avaliada a troca {v,, vy} <> {v.}. O movimento é considerado
apenas se ambos os clusters permanecerem dentro dos limites de peso estabelecidos apos
a troca.

A variagao de beneficio é calculada pela combinacao das remocoes e insergoes
realizadas em ambos os clusters. Caso A seja positivo, a troca é executada. Esse tipo de
vizinhanga permite mudancas mais profundas na estrutura da solugao, proporcionando
saltos maiores no espaco de busca e aumentando a probabilidade de escapar de 6timos
locais que nao podem ser superados por vizinhangas 1-0 ou 1-1. Seu uso é particularmente
relevante em cenarios onde a estrutura dos clusters impede melhorias por vizinhangas mais

simples.
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5.4 Perturbacao - Desconstrucao e Reconstrucao

O mecanismo de perturbagao é feito de forma estruturada e é utilizado em dois momentos
diferentes, no RGRASP e no SA, sendo essencial para sair de 6timos locais e saltar para
novos espacos de busca para que o refinamento aconteca. Ele desempenha um papel
fundamental na estratégia deste trabalho, sendo executado a cada iteracao na solugao
corrente. Logo apds a execugao dele, é realizado um refinamento com as estruturas de
busca local do RVND, operando de uma forma que a pertubacao consiga sair de um
6timo local quando ¢é alcancado e encontrar novos espagos de busca. Esse algoritmo de
perturbacao opera em duas fases principais, a Desconstrugao e Reconstrucao e podem ser
vistas abaixo em detalhes.

Na etapa de desconstrucao, remove-se parcialmente a estrutura da solucao atual.
No algoritmo implementado, remove-se uma fracao dos vértices de alguns clusters, esco-

lhidos probabilisticamente com base nos parametros:
e pElementos: probabilidade de um vértice de um cluster ser removido;
e p(C'lusters: probabilidade de um cluster ser selecionado para remocao.

Os vértices removidos sao armazenados em uma lista de candidatos.
Apobs a desconstrucao, é feito o processo de reconstrugao, em que cada vértice

removido é reinserido na solugao utilizando uma estratégia gulosa. O algoritmo:
1. primeiro preenche clusters abaixo do limite inferior;

2. depois insere os vértices restantes, escolhendo, para cada um, o cluster que maximiza

0 beneficio incremental.

Como explicado acima e também pode ser visto no algoritmo 7, ele primeiro
faz a desconstrugao de parte da solugao e depois reconstroi de forma gulosa. Esse pro-
cesso permite escapar de 6timos locais e reconstruir solugoes mais robustas, preservando

parcialmente a estrutura original.
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Algoritmo 7: Perturbacao da Solucao

Entrada: Solucao s, parametros probabilee,, e probabil .,
Saida: Solugao perturbada s’
inicio

1
2 s’ < copia de s; criar lista de candidatos L;
3 para cada cluster g em s’ faga
4 q = |lg| - probabileenm |;
5 gerar probabilidade u € [0, 1];
6 se u < probabil,,,, entao
7 x para i < 1 to ¢q faga
8 gerar probabilidade r € [0, 1];
9 se r < probabil.,, entao
10 selecionar vértice aleatorio v € g;
11 remover v de g e adicionar v a L;
12 fim se
13 fim para
14 fim se
15 fim para cada
16 enquanto existe cluster g com custo(g) < lower(g) faga
17 para cada candidato ¢ € L calcular beneficio de inserc¢ao;
18 inserir o candidato com maior beneficio no cluster correspondente;
19 fim enqto
20 para cada candidato disponivel ¢ € L faga
21 encontrar cluster g de maior beneficio viavel;
22 inserir ¢ em g;
23 fim para cada
24 retorna s’;
25 fim

A etapa de perturbacao tem como objetivo diversificar a busca, deslocando a
solucao atual para uma regiao distinta do espago de busca. A estratégia adotada remove
probabilisticamente um subconjunto de vértices de cada cluster, controlado pelos para-
metros probabileen (probabilidade de remogao de elementos) e probabil,, , (probabilidade
de um cluster ser perturbado). Os vértices removidos sdo armazenados em uma lista de
candidatos e posteriormente reinseridos de maneira gulosa.

A reinser¢ao ocorre em duas fases. Primeiro, preenchem-se os clusters abaixo do
limite inferior, garantindo a viabilidade estrutural da solucdo. Em seguida, os demais
candidatos sao inseridos com base no maior beneficio marginal, definido como a soma
das distancias entre o candidato e os elementos do cluster receptor. Esse procedimento
conduz a solugao para uma nova regiao promissora, preservando parte da boa estrutura

previamente construida e permitindo a saida de 6timos locais.
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5.5 Reactive Greedy Randomized Adaptive Search Pro-

cedure

Esta segao descreve a utilizaggo do RGRASP, apresentado no Algoritmo 8, com foco

em explicar a meta-heuristica adotada, o conjunto de valores « considerados, o fluxo de

execuc¢ao, o mecanismo reativo empregado para sua selegao ao longo das iteragoes e o

critério de atualizacao da melhor solugao.

Algoritmo 8: RGRASP com RVND

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32

Entrada: Grafo (G, nimero maximo de iteragoes maxIter
Saida: Melhor solucao encontrada

inicio

bestSolution <~ GREEDYALGORITHM(G);

val Best < valor(bestSolution);

Definir conjunto de alfas « = {0.10,0.15,...,0.70};
Inicializar probabilidades iguais p(«;);

Inicializar somaResultados|i| < 0;

Inicializar qtdEscolhidoli] < 0;

Criar distribuigao discreta baseada em p(a;);

para iter = 1 ¢ maxlter faga

1 < indice sorteado segundo distribuicao discreta;
Qgtual < OK[Z],

currentSolution < RANDOMIZEDGREEDYALGORITHM(G, (tyal);
RVND CCP(G, currentSolution, 200);
somaResultados|i| <— somaResultados|i| + valor(currentSolution);
qtdEscolhidoli] < qtdEscolhidoli] + 1;
se currentSolution € vidvel e valor(currentSolution) > val Best
entao

fim

bestSolution < currentSolution;
val Best <— valor(currentSolution);

fim se
se iter mod 30 = 0 entao

para cada j em [1,...,|a|] faga

se qtdEscolhido[j] > 0 entao
média < somaResultados|j| / qtdEscolhidolj];
i) ¢ (GE5e,)", com 6 = 20;

fim se
fim para cada
Normalizar vetor ¢ para obter novas probabilidades;
Atualizar distribuigao discreta p(«);

fim se
fim para
retorna bestSolution;

O RGRASP ¢ utilizado para a construcao das solugoes iniciais

posteriormente
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empregadas no SA, no qual o processo construtivo guloso é combinado com mecanismos
de aleatoriedade controlada e adaptacao dinamica do parametro de aleatoriedade. Além
disso, cada solugao construida ¢é refinada por meio do RVND, apoés executar uma pertur-
bacao dos vértices e clusters, resultando em solucgoes iniciais mais robustas e proximas de
otimos locais de alta qualidade, o que exerce influéncia direta na eficiéncia e na qualidade
da busca conduzida pelo Simulated Annealing, pois, quando o SA é executado, as solugoes
inicialmente criadas sao promissoras.

O Algoritmo 8 inicia-se com a obtencao de uma solucao inicial por meio de um
algoritmo guloso deterministico na linha 2, utilizado como referéncia para a avaliacao das
solugoes subsequentes. A cada iteragao do RGRASP, um valor de « é selecionado de
forma probabilistica a partir de um conjunto pré-definido na linha 4 e na distribuicao
discreta de probabilidades na linha 8. Ao iniciar a iteragao da linha 9 a 30 usando como
critério de parada o parametro de quantidade de iteragoes méaximas, nas linhas 10 e 11 o
algoritmo fixa o parametro a atual a ser empregado na fase construtiva do algoritmo guloso
randomizado reativo na linha 12, responsavel por gerar uma solucao inicial diversificada.
Em seguida na linha 13, essa solugao ¢ submetida ao procedimento RVND especifico
para o PCC, que explora sistematicamente diferentes estruturas de vizinhanca visando a
obtencao de um 6timo local.

Ao longo das iteragoes, estatisticas associadas a cada valor de « s@o atualizadas
entre as linhas 20 e 26, permitindo o ajuste reativo das probabilidades de selecao com
base na qualidade média das solugoes obtidas. Periodicamente, como pode ser visto na
linha 20, a cada 30 iteragoes, essas probabilidades sao recalculadas e na linha 27 e 28 ¢é
feita a normalizacao e atualizacao da distribuigao discreta, responsavel por ser escolhido o
parametro « na préxima iteracao, favorecendo valores de v com melhor desempenho rela-
tivo, enquanto a melhor solugao viavel encontrada durante todo o processo ¢ armazenada

como solucao final do algoritmo.
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5.6 Abordagem Hibrida: Simulated Annealing com
RGRASP e RVND

Nesta segao é apresentada a abordagem hibrida que integra as meta-heuristicas Simulated
Annealing (SA), RGRASP e RVND em um tnico framework de otimizagao. A estratégia
adotada explora a complementaridade entre essas técnicas, utilizando o RGRASP como
mecanismo de geragao de solugoes iniciais diversificadas, o RVND como procedimento
de intensificacao local e o SA como método base e de aceitacao probabilistica capaz de
escapar de 6timos locais. Essa combinacao visa equilibrar de forma eficiente os processos
de diversificagao e intensificacao da busca, permitindo uma explora¢gao mais robusta do
espaco de solugoes. No fluxograma visto na imagem 5.1 e nos paragrafos a seguir, sao
apresentados como os principais componentes da abordagem proposta se interagem entre

eles no decorrer do processo de otimizacgao.

RGRASP

Iteragdes

‘ Perturbacdo & RVND [

oA
‘ Chama Algoritmo RGRASP ’

'

[ Perturbagéo ’

y

[ RVND Apés Penurbagﬁ?]

v

Verifica se aceita solugdo pior
pela probabilidade da
temperatura atual

'

Calcula Temperatura Nova ]

v

[ Retorna Melhor Solugao ]

Figura 5.1: Fluxograma completo da abordagem proposta
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Algoritmo 9: Meta-heuristica Simulated Annealing (SA) aplicada ao PCC
Entrada: grafo, a, txAceitacao, iter MaxSA, iterMaxV ND,
porctgPerturbElementos, porctgPerturbClusters
Saida: s: solucao subdtima do PCC

1 inicio

2 tempAtual« temperaturalnicial(tempAtual, 1.25,0.95, iter M azx);
3 best < RGRASP _RVND(grafo);

4 s* «— s;

5 contEstagnacao < 0;

6 enquanto tempAtual > tempFinal faga

7 cont Estagnacao <— cont Estagnacao + 1;

8 enquanto iterTempAtual < iterMaxSA faga
9 se contEstagnacao > iter Max x 0.3 entao
10 ‘ break;

11 fim se

12 iterTempAtual < iterTempAtual +1 s

Perturbacao(sx, porctgPerturbElementos, porctgPerturbClusters)
s" <= RVND(s*, iter MaxV N D)

13 A «+ §'.valor() — s.valor()

14 se A > 0 entao

15 se s’ € vidvel e s'.valor() > best.valor() entao
16 ‘ best < Copia(s’) cont Estagnacao < 0
17 fim se

18 s <— Copia(s’)

19 fim se
20 senao
21 u < Rand(0, 1) se u < e&/tempAtual ent3o
22 | s < Copia(s’)
23 fim se
24 fim se
25 fim enqto
26 tempAtual < o - tempAtual;
27 iterTempAtual < 0
28 fim enqto
29 retorna best;
30 fim

O Algoritmo 9 descreve a meta-heuristica hibrida proposta, na qual podem ser
observadas com mais clareza a estruturacao da meta-heuristica SA e as etapas em que
foram combinados o RGRASP e o RVND. Inicialmente, é calculada a temperatura inicial
por meio de um procedimento especifico de calibragao, conforme descrito na subsegao
5.6.1. Em seguida, uma solucao inicial de alta qualidade é gerada utilizando o algoritmo
RGRASP RVND, o qual combina uma construc¢ao gulosa randomizada reativa com re-
finamento por RVND. Essa solugao ¢é utilizada como ponto de partida para o processo

de busca do SA, sendo também armazenada como a melhor solucao encontrada até o
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momento.

O lago principal do algoritmo corresponde ao processo de resfriamento do SA, no
qual a temperatura é progressivamente reduzida até atingir um valor final predefinido.
Para cada temperatura corrente, é executado um laco interno que realiza um ntmero
méaximo de iteragoes controlado por iterMazSA. Em cada iteracao, a solucao corrente
é submetida a um operador de perturbacao, no qual uma porcentagem dos vértices e
dos clusters da solugao é modificada, conforme os parametros porctgPerturbElementos e
porctgPerturbClusters. Essa perturbacao visa promover diversificacao e permitir a explo-
ragao de novas regioes do espago de busca.

Apbs a perturbacao, a solucao candidata é refinada por meio do método RVND,
limitado a um ntmero maximo de iteragoes (iterMazVND), atuando como mecanismo de
intensificagao local. A aceitacdo da nova solucao segue o critério classico do Simulated
Annealing: solucoes que apresentam melhora no valor da fungao objetivo sao sempre
aceitas, enquanto solugoes piores podem ser aceitas com uma probabilidade dependente
da variacao de qualidade A e da temperatura atual, conforme definido na subsecao 5.6.2.

Adicionalmente, o algoritmo incorpora um critério de estagnagao, monitorado
por meio de um contador de iteragdes consecutivas sem melhoria. Caso esse contador
ultrapasse 30% do ntumero maximo de iteracoes permitidas para a temperatura corrente,
o lago interno é interrompido antecipadamente, evitando gasto computacional excessivo
em regides pouco promissoras do espago de busca. Ao final de cada ciclo interno, a
temperatura é atualizada segundo a taxa de resfriamento definida na Se¢ao 5.6.3.

Por fim, ao término do processo de resfriamento, a melhor solugao viavel encon-
trada ao longo de toda a execugao é retornada como solugao sub6tima do PCC. A com-
binagao entre diversificagdo controlada (SA), intensificagdo local (RVND) e construgao
inicial robusta (RGRASP) resulta em um método hibrido capaz de explorar eficiente-
mente o espaco de solugoes e obter solugoes de alta qualidade para instancias complexas

do problema.
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5.6.1 Calculo da temperatura inicial

Para este trabalho, utilizou-se um método extra para realizar o calculo da temperatura
inicial. Este método recebe uma taxa de aceitacao minima [ e itera sobre varias solucoes,
com incrementos graduais de temperatura enquanto a taxa de aceitacao nao atingir o
minimo esperado. Portanto, para o melhor entendimento de como é feito o célculo da
temperatura inicial, que ¢ uma das coisas mais importantes nessa meta-heuristica.

O algoritmo 10 ilustra o método utilizado para se encontrar uma boa temperatura
inicial. Este método recebe uma taxa de aceitacao minima e itera sobre varias solucoes,
com incrementos graduais de temperatura ditados por  enquanto a aceitagao nao atingir

o minimo esperado.

Entrada: Grafo G(V, E), 8, TaxaDeAceitacao, Iter PorTemperatura
Saida: Melhor solugao encontrada, Temperatura inicial

1 inicio

2 sk <— ConstrutivoRandomizadoReativo();

3 S — S%;

4 Temperatura < 100;

5 Contadorlter < 0;

6 aceitos < 0;

7 enquanto Taza de aceitagio nao for atingida faga
8 ContadorlIter < 0;

9 enquanto Contadorlter < Iter PorTemperatura faga
10 Incrementar(Contadorlter);

11 s < Perturbacao(s,0.3);

12 A f(s) — f(s5):

13 se A > 0 entao

14 S% < s;

15 Incrementar(aceitos);

16 fim se

17 senao

18 se Condi¢ao de aceitagao for satisfeita entao
19 | Incrementar(aceitos);
20 fim se
21 fim se
22 fim enqto
23 Temperatura = Temperatura x f3;
24 fim enqto
25 retorna sk, T'emperatura;

26 fim
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5.6.2 Taxa de aceitagao de solucoes

O critério de aceitagao segue o modelo classico do SA. Se a solugao vizinha apresenta
melhoria em relacao a solugao corrente, ela é imediatamente aceita. Caso contrario, a
solugao pior pode ser aceita com uma probabilidade dada por:

P(aceitacao) = e®/7,

onde A representa a variacao de qualidade (beneficio) entre as solugoes, e T' é a
temperatura atual. Essa estratégia controlada de aceitagao de solugoes piores permite ao
algoritmo escapar de 6timos locais e explorar regioes mais amplas, sendo especialmente
relevante em problemas combinatoérios altamente restritivos como o PCC.

Ao fim de cada ciclo de iteracao, a temperatura é atualizada de acordo com um fa-
tor de resfriamento «, que aplica um decaimento multiplicativo. O processo prossegue até
que a temperatura final seja atingida. Apos o término do resfriamento, o algoritmo realiza
uma busca local final utilizando RVND para garantir que a melhor solu¢ao encontrada
esteja devidamente otimizada.

A taxa de aceitacao A formulada na equacao 1 considera a diferenca de qualidade

A dividida pela temperatura atual 7.

A = exp®/T (1)

Sempre que uma solucao é aceita, seja pela equacao 1 ou por ela ser a melhor

conhecida, é realizado um ntmero fixo de iteragoes de refinamento pelo RVND.

5.6.3 Taxa de resfriamento

Para a taxa de resfriamento 7, formulada na equagao 2, os decrementos ocorrem em
funcao de um percentual a e um valor ¢. Este valor constante foi necessario para acelerar
o resfriamento em baixas temperaturas, devido a alta taxa de estagnacao das solucgoes.

Assim, a nova temperatura 7,, é dada por:

T, = (T,,—1 X a) — (¢ X NumeroDeEstagnacoes) (2)
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6 Experimentos Computacionais

Neste capitulo apresentam-se a metodologia de teste, o ambiente computacional, para-
metros, os resultados dos testes da estratégia proposta, a analise e comparagao com os

resultados das estratégias de referéncia na literatura para solugao do PCC.

6.1 Ambiente de testes

Todos os algoritmos foram implementados em C++ 17, compilados utilizando o GCC
6.3.0 com a diretiva -03 e executados em um computador com a seguinte configuragao:
processador Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz, com 32 GB de memoéria RAM
DDRA4, no sistema operacional Linux Deepin.

Buscando garantir uma comparagao justa com a literatura, ja que sao execu-
tados em processadores diferentes, buscamos um multiplicador baseado no benchmark
PassMark CPU Mark!. Verificou-se que o processador (Intel Xeon E5-2670) utilizado no
trabalho de referéncia da literatura em (LIU; GUO; ZENG, 2022a) tem 6% mais poder
computacional que o processador (Intel Core i7-8700) usado para executar os resultados
deste trabalho, com pontuacao de 12.748, contra 13.473. Portanto, os tempos de execu-
¢ao foram multiplicados por um fator aproximado de 0,94 para manter a paridade entre

o0 hardware dos dois trabalhos.

6.2 Instancias de teste

Para a avaliacao computacional dos métodos propostos, foram utilizadas instancias per-
tencentes ao conjunto de benchmark denominado CCPLIB?, amplamente empregado na
literatura para experimentos envolvendo o PCC. Ao todo, foram consideradas 50 instan-
cias, divididas em diferentes subconjuntos, conforme descrito a seguir.

Essas instancias utilizadas na literatura possuem algumas caracteristicas: consti-

!Disponivel em: <https://www.cpubenchmark.net/compare/3099vs2337/>
2Disponivel em: <https://grafo.etsii.urjc.es/optsicom/ccp.html>
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tuem grafos completos, as instancias sao agrupadas conforme o nimero de vértices, todos
os vértices possuem peso e todos os clusters tém o mesmo limite de capacidade. O pri-
meiro conjunto é baseado nas instancias propostas por Deng e Bard (DENG; BARD,
2011) no contexto do problema de entrega de correspondéncias, consistindo em 10 instan-
cias de n = 82 vértices e p = 8 clusters, com limites de capacidade definidos como L = 25
e U = 75. O segundo conjunto, denominado RanReal, foi originalmente proposto por
(GALLEGO et al., 2013) no contexto do Mazimally Diverse Grouping Problem (MDGP).
Esse conjunto é dividido em dois subconjuntos: 20 instancias com n = 240, p = 12, limite
inferior L = 75 e limite superior U = 125, e outras 20 instancias com n = 480, p = 20,
L =100 e U = 150.

De forma resumida, as seguintes instancias da CCPLIB foram utilizadas nos

experimentos:

e 10 instancias Sparse82.
e 20 instancias RanReal240.

e 20 instancias RanReal4&0.

6.3 Parametrizagao de variaveis

Com o coddigo desenvolvido, foi necessaria a realizagao de testes, buscando uma melhor
parametrizacao com o intuito de estabelecer os melhores parametros para serem utiliza-
dos nas meta-heuristicas desenvolvidas (JUNIOR et al., 2004). Para ajustar os parame-
tros do método proposto, utilizou-se o pacote Iterated Racing for Automatic Algorithm
Configuration (IRACE) (LOPEZ-IBANEZ et al., 2016), que permite identificar, de forma
progressiva e estatisticamente guiada, as combinagoes de parametros que levam ao melhor
desempenho do algoritmo em um conjunto representativo de instancias. O IRACE utiliza
o mecanismo de racing, no qual diferentes configuragdes competem entre si e aquelas com
desempenho estatisticamente inferior sao descartadas progressivamente, permitindo uma
exploracao eficiente do espago de parametros.

A etapa de parametrizacao tem papel fundamental na obtencao de solugoes de

alta qualidade e a utilizagao do IRACE ajuda a identificar a parametrizacao de variaveis
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e definir a melhor combinagao que alinhe o melhor custo-beneficio entre esfor¢o com-
putacional e tempo de execucao. Foram executados testes extensivos com uma grande
diversidade de intervalos dos parametros distintos e algumas instancias representativas do
conjunto. Esses pardmetros, juntamente com as instancias representativas do problema,
compoem o conjunto de entrada do IRACE. Dados os testes realizados para ajustar os
melhores parametros a serem utilizados, o IRACE sugeriu como parametros ideais para

executar os experimentos computacionais:

Quantidade maxima de iteragoes do RVND: 400

e Decaimento de temperatura do SA («): 0.4

e Quantidade de iteracoes em uma mesma temperatura do SA: 600
e Temperatura final do SA: 10

e Quantidade de iteragoes do GRASP: 10

e Porcentagem de perturbacao dos elementos: 0.4

e Porcentagem de perturbacao dos clusters: 0.4

e Algoritmo Construtivo Guloso Randomizado: 10 vezes para cada parametro a =

0,1, a = 0,2, a = 0,3, sendo 100 iteragoes da Heuristica Construtiva;

e Algoritmo Construtivo Guloso Randomizado Reativo: 10 vezes para cada instancia,
sendo 1000 iteracoes da Heuristica Construtiva e a cada 50 iteragoes, as probabili-

dades sdo recalculadas.

Ao final da execucao do IRACE foram identificadas as variaveis com maior im-
pacto no comportamento do método SA-RGRASP-RVND, retornando o conjunto de pa-
rametros mais promissor, que entao foi utilizado na fase final dos experimentos. Esse
processo sistematico de parametrizacao permite melhorar o desempenho do algoritmo,

assegurar reprodutibilidade e fundamentagao na escolha dos parametros.
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6.4 Analise dos resultados obtidos

Para cada instancia de teste, o algoritmo SA-RGRASP-RVND foi executado 10 vezes para
realizar a selecao dos melhores resultados e calcular as médias dos e tempo de execugao
das solugoes. Nas tabelas de comparacoes deste capitulo, os valores destacados em negrito
indicam os melhores resultados quanto ao custo da solucao. Optou-se por apresentar a
comparacao da média e do tempo dos resultados para 5 instancias de cada conjunto que
sao representativas ao comparar os resultados das outras instancias de cada conjunto.

A Tabela 6.1 apresenta as melhores comparagoes entre as diferentes combinacoes
das abordagens propostas para tratar o problema. Comparando os algoritmos construidos
nesse trabalho, a combinagao do SA, RGRASP e RVND ¢ significativamente superior a
todas as outras em todas as instancias testadas e podemos identificar a mehoria que cada

método meta-heuristica traz na construgao do resultado final da abordagem hibrida.

Tabela 6.1: Comparacao das diferentes abordagens

Instancia SA RGRASP-RVND SA-RVND SA-RGRASP-RVND
Sparse82 01 1164.06 1280.38 1239.80 1343.08
Sparse82 02 1145.77 1209.39 1257.30 1306.64
Sparse82 03 1157.73 1262.39 1243.98 1353.94
Sparse82 04 1127.13 1196.87 1201.51 1291.22
Sparse82 05 1216.10 1174.40 1304.02 1352.35
RanReal240 01 168789.48 218270.09 214159.67 224968.01
RanReal240 02 156239.54 193872.50 199701.43 204624.36
RanReal240 03 152533.29 170139.34 186315.37 199059.56
RanReal240 04 165881.31 209216.79 195997.35 225627.16
RanReal240 05 152252.34 190255.18 190271.18 195564.48
RanReal480 01 378306.50 014388.34 543450.75 555489.92
RanReal480 02 377185.34 480280.37 486389.75 511280.50
RanReal480 03 369109.68 473195.12 463515.68 497725.86
RanReal480 04 380258.15 504997.56 505911.87 522572.81
RanReal480_ 05 373964.62 454005.96 467338.46 484084.66

Nas figuras 6.1, 6.2 e 6.3 é possivel ver com mais clareza a dimensao dos resultados
em comparacao. Como dito, o SA-RGRASP-RVND ganha de todos, porém na construcao
desses algoritmos pode-se perceber em qual area cada um se destaca com base no que foi
estudado na literaturae comprovado nas pratica deste trabalho.

Nas figuras citadas percebe-se que na maioria das instancias o SA-RVND ¢é o

segundo vencedor na comparagao dos resultados. Isso pode ser explicado dado a natureza
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Figura 6.1: Comparagao da média de resultados dos algoritmos propostos em 5 instancias
do conjunto de 82 vértices

do SA de continuar realizando sucessivas pertubacgoes e em seguida a execugao do RVND,
sempre em uma mesma solug¢ao. Sendo que enquanto ele itera até chegar na temperatura
minima permitida, ele probabilisticamente aceita novas solugoes que podem ser piores,
fazendo com que os espaco de busca seja movido muitas vezes para um outro espaco com
um 6timo local que seja melhor. Portanto, a partir do momento que ele aceitou piorar
a solucao, podendo estar em outro local de busca diferente - porém de certa forma ja
bastante aprimorado - ele pode através do RVND executar as buscas locais sucessivas e
assim encontrar uma solu¢ao em uma melhor solugao em outro 6timo local.

Ja se tratando do RGRASP-RVND, seu beneficio é focado na construcao de
diversas solugoes aprimoradas, pois a caracteristica principal do RGRASP ¢é criar uma
nova solugao com construtivo randomizado e reativo a cada iteragao, dessa forma ele
sempre busca criar as solugoes reativamente mais promissoras com os melhores valores de
«. Somado a isso, a cada iteragao onde é gerada uma nova solugao, esta passa por um
processo de pertubacgao quando chega um ntimero determinado de iteragoes sem melhora
e pela execucao do RVND que faz a busca local até que nao consiga melhorar a solugao
corrente. Sendo entao um algoritmo promissor que sai de 6timos locais e é refinado,
percebe-se que ele entrega boas solugoes, proximas da solucao do SA-RVND, com algumas

instancias até ultrapassando a solugao do SA-RVND, porém sem a caracteristica do SA
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Figura 6.2: Comparagao da média de resultados dos algoritmos propostos em 5 instancias
do conjunto de 240 vértices
de aceitar solugoes piores ele nao consegue sair de alguns 6timos locais e fica atras dele.

Por fim, é possivel perceber que o SA s6 funciona bem juntamente com outros
métodos, ja que sozinho ele nao realiza buscas locais, sendo este o beneficio do RVND,
e nao consegue trazer diferentes solugoes do espago de busca ao nao usar o RGRASP.
Portanto, utilizando apenas um algoritmo guloso randomizado e a prépria perturbacao,
ele nao tem forga para conseguir refinar a solugao e testar diversas solugoes iniciais que
podem ser promissoras.

Assim, apesar da combinacao do RGRASP utilizando apenas RVND apresentar
resultados competitivos, a meta-heuristica Simulated Annealing quando combinada ape-
nas com RVND conseguiu ter melhores resultados para a maioria das instancias, indicando
que o SA ajuda a diversificar as solugoes com a aceitagao de solugoes piores. Portanto,
ao combinar essas 3 meta-heuristicas, é possivel ao mesmo tempo iniciar com uma boa
solugao usando RGRASP, diversificar bem as solugoes pelo uso do SA e fazer um bom
trabalho de busca local com RVND.

A Tabela 6.2 mostra a comparagao com a literatura, considerando a melhor so-
lugao obtida para cada instancia dentre as 10 execucoes realizadas. Pode-se notar que o
método proposto consegue ter um resultado melhor que o da literatura recente em duas

instancias do tipo Sparse, com 82 vértices e nas demais desse conjunto é possivel alcan-
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Figura 6.3: Comparagao da média de resultados dos algoritmos propostos em 5 instancias
do conjunto de 480 vértices

car a melhor solugao. Para os demais conjuntos de instancias, RanReal de 240 e 480
vértices, a abordagem da literatura apresenta resultados melhores. Vale destacar que o
SA-RGRASP-RVND apresenta resultados muito proximos aos da melhor solu¢ao da lite-
ratura, em algumas instancias com diferenca apenas na segunda casa decimal, mostrando
o potencial do método proposto.

Como forma de analisar a robustez da abordagem proposta em relagao a litera-
tura, a tabela 6.3 apresenta a comparacao dos resultados quanto a média da qualidade
das solugoes obtidas, considerando todas as 10 execugoes. Além disso, a tabela mostra o
tempo de processamento, em segundos, demandado por cada abordagem.

Podemos ver que o resultado e o tempo médio de execu¢ao do SA-RGRASP-
RVND sao competitivos em todas as instancias. Ao comparar o tempo médio de execu-
¢ao, observa-se nas instancias de 82 e 240 vértices tempos bem proximos aos da literatura
recente. Pode-se conferir que ha um aumento no tempo de execugao & medida que a quan-
tidade de vértices cresce. Essa discrepancia no tempo de execugao, principalmente para
instancias com maior quantidade de vértices, ocorreu a partir do resultado mais recente
da literatura atualizado como referéncia neste trabalho. Ao acompanhar a literatura é
possivel ver que para resultados anteriores ao atual, a abordagem proposta também ganha

no tempo, possuindo uma execuc¢ao pelo menos 4 vezes mais rapida.
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Tabela 6.2: Comparacao com a melhor solucao da literatura

Instancia Best Literatura Best SA-RGRASP-RVND  Diferenca (%)
Sparse82 01 1342.17 1343.08 0.07
Sparse82 02 1306.64 1306.64 0.00
Sparse82 03 1353.94 1353.94 0.00
Sparse82 04 1291.22 1291.22 0.00
Sparse82 05 1352.35 1352.35 0.00
Sparse82 06 1354.61 1354.62 0.01
Sparse82 07 1266.94 1266.94 0.00
Sparse82 08 1393.02 1393.02 0.00
Sparse82 09 1294.12 1294.12 0.00
Sparse82_ 10 1356.98 1356.98 0.00

RanReal240 01 225003.70 224768.07 -0.11
RanReal240 02 204624.36 204456.67 -0.08
RanReal240 03 199079.37 198971.21 -0.05
RanReal240 04 225683.17 224727.21 -0.42
RanReal240 05 195564.48 195440.94 -0.06
RanReal240 06 216747.32 216721.07 -0.01
RanReal240 07 209305.70 209288.34 -0.01
RanReal240 08 205246.82 205140.91 -0.05
RanReal240 09 209186.90 209015.07 -0.08
RanReal240 10 193062.60 192992.24 -0.04
RanReal240 11 204722.75 204625.61 -0.05
RanReal240 12 201117.11 200888.69 -0.11
RanReal240 13 202345.48 202035.87 -0.15
RanReal240 14 228971.03 228703.47 -0.12
RanReal240 15 191263.28 190835.77 -0.22
RanReal240 16 204081.46 203879.95 -0.10
RanReal240 17 195561.36 194978.68 -0.30
RanReal240 18 195167.14 194874.72 -0.15
RanReal240 19 199307.33 199060.84 -0.12
RanReal240 20 212323.22 211998.91 -0.15
RanReal480 01 556639.68 554743.59 -0.34
RanReal480 02 511666.95 209753.95 -0.37
RanReal480 03 497846.57 496546.98 -0.26
RanReal480 04 523588.42 521849.75 -0.33
RanReal480 05 485122.31 483128.12 -0.41
RanReal480 06 534982.12 533885.20 -0.21
RanReal480 07 546892.45 545801.83 -0.20
RanReal480 08 533411.78 532362.44 -0.20
RanReal480 09 556112.36 955996.69 -0.02
RanReal480 10 520104.92 519327.55 -0.15
RanReal480 11 523450.04 523228.93 -0.04
RanReal480 12 501596.63 501074.90 -0.10
RanReal480 13 534638.19 533759.92 -0.16
RanReal480 14 513777.84 513171.43 -0.12
RanReal480 15 516941.11 516133.40 -0.16
RanReal480 16 549371.23 549235.94 -0.03
RanReal480 17 537483.76 537289.90 -0.04
RanReal480 18 525813.39 524926.00 -0.17
RanReal480 19 522158.86 521548.87 -0.12
RanReal480 20 518288.03 518080.79 -0.04
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Tabela 6.3: Média das solugdes em comparagao com a literatura

Média da qualidade e do tempo de processamento

Instancia Aver Lit T _Lit (s) | Aver  SA-RGRASP-RVND T SA-VND (s) | Dif. (%)
Sparse82 01 1342.17 13 1342.17 41 0.00
Sparse82 02 1306.64 20 1306.64 36 0.00
Sparse82 03 1353.94 4 1353.94 46 0.00
Sparse82 04 1291.22 27 1291.22 72 0.00
Sparse82 05 1352.35 4 1352.35 42 0.00

RanReal240 01 224897.01 127 224086.06 149 -0.36
RanReal240 02 204515.06 111 204041.70 165 -0.23
RanReal240 03 198915.84 135 198263.04 139 -0.33
RanReal240 04 225346.54 124 224673.38 147 -0.30
RanReal240 05 195469.00 135 195009.36 142 -0.24
RanReal480 01 555338.06 340 554171.29 1840.00 -0.21
RanReal480 02 510924.27 355 509113.23 2174.00 -0.35
RanReal480 03 497109.59 352 496301.99 1879.00 -0.16
RanReald80 04 521999.31 399 521397.65 2461.00 -0.12
RanReal480 05 484092.59 335 483007.46 1608.00 -0.22
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7 Conclusao

Este trabalho propoe abordagens para a solucao do Problema da Clusterizacao Capacitada
(PCC). Foi utilizada uma abordagem hibrida contendo SA, RGRASP e RVND, que em
conjunto trouxeram bons resultados. Foi usado um método de perturbagao que faz uma
desconstrugao parcial da solugao e posteriormente a reconstrucgao e o uso de 3 métodos de
vizinhanga no RVND para realizar buscas locais a fim de gerar campos de busca diferentes,
otimizando sempre o valor objetivo do problema e obedecendo as restrigoes do PCC.

A partir dos testes foi visto que os resultados sao consistentes, ou seja, possuem
uma média proxima da literatura e nao variam muito. Isso se deve ao refinamento com
RVND, onde as solugoes convergem para um 6timo local e em conjunto o SA ajuda a
nao estacionar em apenas um 6timo local, que através da perturbacao e do critério de
aceitacao de piores solugoes faz com que uma nova solugao gerada mude de espago de
busca. Adicionalmente, ao usar o RGRASP em conjunto, entrega-se uma vantagem para
o SA que inicia com a primeira solu¢ao ja em um 6timo local promissor e assim inicia o
processo do SA ja minimamente refinado.

Algumas decisbes importantes tomadas foram feitas ao observar que a solucgao
convergia e ficava presa em um 6timo local em poucas repetigoes. Tal comportamento
acontecia mais frequentemente dado a utilizagao do VND em sua versao nao randomi-
zada, associado ao fato da estratégia de busca ser utilizada apds a perturbacao, onde os
parametros até entao nao estavam sendo suficientes para sair da zona de atracao de um
6timo local. Com o objetivo de obter melhorias mais significativas nas solugoes e mitigar
as limitagoes observadas, adotou-se uma abordagem randomizada com RVND, além de
ajustar os parametros para intensificar o nivel de perturbacao sobre os vértices e clusters.

Através das comparagoes entre os algoritmos propostos, notou-se que o SA puro
apenas com solucdo inicial e perturbacoes nao consegue obter solucdes boas. E necessé-
rio ter outra meta-heuristica que dé suporte ao SA fazendo sucessivas buscas locais com
o RVND, sendo possivel gerar melhores solu¢oes pelo refinamento do espago de busca.

Porém, mesmo que o RVND consiga solucoes muito boas, ele também nao consegue me-
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lhorar mais o resultado sozinho, pois ao encontrar 6étimos locais ele nao consegue sair por
si s6. Portanto, o SA se mostra um grande aliado do RVND ao sair dos 6timos locais e
diversificar as proximas solugoes.

Com os resultados experimentais evidenciou que o fator responsavel pela melhoria
da qualidade das solucoes dentro da meta-heuristica Simulated Annealing foi o mecanismo
de perturbacao e posterior refinamento com RVND. Observou-se que ao aplicar o RVND
de forma criteriosa apos perturbacoes significativas, desempenha papel fundamental na
conducao da busca a novos 6timos locais. Ja a aplicacao excessiva do RVND logo apoés
a fase construtiva do RGRASP mostrou-se pouco eficaz, que apesar de gerar varias so-
lugoes e melhorar a solugao gerada pelo RGRASP, muitas iteragdes nao trazem maiores
ganhos. Isso indica que investir demasiadamente na melhoria da soluc¢ao inicial pode levar
a estagnacao em 6timos locais, reduzindo a capacidade exploratéria do método.

Verificou-se que mesmo apés mil iteragoes do RGRASP, a melhor solucao obtida
nao superou a encontrada pelo SA-GRASP, reforcando a importancia de um equilibrio
entre qualidade inicial e potencial de diversificacao. Em contrapartida, o uso do RGRASP
para geracao das solugoes iniciais do SA ajudou muito o processo de buscar uma solugao
de melhor qualidade, tendo resultados melhores no método hibrido em comparagao com
apenas usar um método guloso, semi-guloso ou randomizado como solugao inicial.

Além disso, os experimentos demonstraram que estratégias de perturbacao mais
agressivas no SA, como a remocao de até 50% dos elementos da solucao e perturbar pelo
menos 30% a 60% dos clusters, foram decisivas para alcancar solucoes de qualidade equi-
valente as melhores da literatura. A reducao da porcentagem de clusters perturbados de
80% para 30% mostrou-se eficaz para manter o beneficio maximo com menor tempo de
execucao, evidenciando a sensibilidade do método & parametrizagao das variaveis. Foi
visto que apesar de aumentar o tempo computacional, uma maior porcentagem de per-
turbagao gera solugoes que sao bem proximas a literatura. Entao com isso, a partir da
parametrizacao pelo IRACE, optou-se por utilizar a combinacao de parametros com me-
lhor custo beneficio, assim utilizamos os parametros que resultavam nas melhores solucoes,
porém apenas aqueles com o menor tempo de execugao do método.

Por fim, foi constatado que a combinacao entre perturbacao e RVND revelou-se
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particularmente eficiente, caracterizando um comportamento préximo ao de uma busca
local iterada (ILS) embutida no SA, na qual a diversifica¢ao é promovida pela perturbagao
e a intensificagdo pela busca local randomizada. Essa configuracao permitiu que 90% das
execucoes de testes nas instancias de 82 vértices atingisse a melhor solugao conhecida
em menos de 1 minuto, com algumas solucoes geradas em até 3 segundos. Assim, os
resultados reforcam a adequagao do uso do RGRASP para geragdo da solugao inicial,
do RVND como mecanismo de refinamento e do SA como abordagem de perturbacao
e aceitacao de solugoes piores para sair de 6timos locais é particularmente interessante,
destacando-se portanto, a importancia na decisao do uso hibrido das meta-heuristicas e
na parametrizagao de varidveis para se atingir solugoes melhores em tempo mais rapido.

Durante o desenvolvimento do método, foram identificadas limitagoes importan-
tes, principalmente relacionadas ao aumento do tempo computacional quando parametros
mais agressivos eram adotados, efeito que se intensifica conforme o tamanho das instan-
cias cresce. Observou-se elevada sensibilidade no processo de ajuste dos parametros, uma
vez que pequenas variagoes impactam significativamente tanto a qualidade das solugoes
quanto o tempo de execucao, dificultando a defini¢ao de configuragoes estaveis, princi-
palmente pela dificuldade em encontrar parametros que funcionem de forma satisfatoria
em todos os conjuntos de instancias. Em particular, o controle da taxa de aceitacao de
solugbes piores no SA mostrou-se desafiador. Além disso, a defini¢do de uma combina-
¢ao hibrida eficiente entre SA, RGRASP e RVND evidenciou a complexidade inerente ao
equilibrio entre diversificacao e intensificacao da busca.

De forma mais especifica, constatou-se dificuldade em estabelecer uma parame-
trizagao adequada, sugerindo que configuragoes fixas tendem a apresentar desempenho
diferentes quando usadas em varios conjuntos de instancias com caracteristicas distintas.
Nesse contexto, mostra-se promissora a definicao de parametros baseada em caracteris-
ticas estruturais das instancias, como o nimero de vértices, o ntumero de clusters e a
soma dos beneficios associados ao grafo completo. Observou-se também que, para ins-
tancias de grande porte, especialmente aquelas com 480 vértices, o custo combinatério
cresce de forma acentuada, impactando diretamente a escalabilidade do método. Embora

o desempenho seja competitivo para instancias pequenas e médias, esse comportamento
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evidencia a necessidade de refatoracao do cédigo com foco em otimizacao computacional,
bem como de estratégias que permitam aceitar mais solugoes piores nas fases iniciais do
SA, por meio de fungoes de resfriamento da temperatura mais suaves, principalmente no
inicio do método.

Por fim, constatou-se que o método é extremamente sensivel & escolha dos para-
metros, sendo que pequenas variacoes podem impactar significativamente os valores finais,
a média das execucgoes e, principalmente, o tempo de processamento. Como evidéncia,
apos a calibragao automatica dos parametros utilizando o IRACE, foi possivel manter
— e em alguns casos melhorar — a qualidade das solu¢oes, ao mesmo tempo em que o
tempo médio de execugao para instancias com 240 vértices foi reduzido de aproximada-
mente 2100 segundos para 149 segundos, tornando o método competitivo em termos de
tempo em comparacao com as melhores abordagens da literatura. Dessa forma, estudos
futuros devem continuar explorando estratégias de ajuste de parametros e otimizacoes
estruturais, visando melhorar os resultados sem comprometer excessivamente o tempo de
execucao, ou, quando viavel, permitir um aumento controlado do tempo computacional
para alcancar solugoes ainda mais préoximas do estado da arte.

Como trabalhos futuros, pretende-se investigar estratégias mais robustas de pa-
rametrizagao automatica, capazes de adaptar dinamicamente os parametros do algoritmo
as caracteristicas das instancias, como o nimero de vértices, de clusters e soma de bene-
ficios do grafo completo, incluindo também o uso de técnicas de aprendizado de méquina
para apoiar a selecao dindmica de pardmetros e decisdes de busca. Além disso, planeja-
se aprimorar a etapa de perturbacao principalmente quando ha estagnacao, tornando-a
semi-gulosa, bem como reduzir o tempo de execugao por meio da otimizacao de recéalculos
redundantes e da incorporacgao de estruturas de memoria para armazenamento de custos
previamente computados. Outras diregdes incluem a avaliagao de fungbes de aceitagao
e resfriamento alternativas no Simulated Annealing, o uso do algoritmo construtivo em
cenarios de estagnagao, técnicas de paralelizacao e poda, além da aplicagao da abordagem
proposta em instancias de maior escala e a outros problemas de otimizacao combinatoria,

visando ampliar a validade e a generalizagao dos resultados obtidos.
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