
Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Bacharelado em Ciência da Computação

Uma abordagem híbrida de Meta-heurísticas
para solução do Problema da Clusterização

Capacitada

Vinícius Carlos de Oliveira

JUIZ DE FORA

JANEIRO, 2026

Uma abordagem híbrida de Meta-heurísticas
para solução do Problema da Clusterização

Capacitada

Vinícius Carlos de Oliveira

Universidade Federal de Juiz de Fora

Instituto de Ciências Exatas

Departamento de Ciência da Computação

Bacharelado em Ciência da Computação

Orientador: Luciana Brugiolo Gonçalves

Coorientador: Stênio Sã Rosário Furtado Soares

JUIZ DE FORA

JANEIRO, 2026

Uma abordagem híbrida de Meta-heurísticas para
solução do Problema da Clusterização Capacitada

Vinícius Carlos de Oliveira

MONOGRAFIA SUBMETIDA AO CORPO DOCENTE DO INSTITUTO DE CIÊN-

CIAS EXATAS DA UNIVERSIDADE FEDERAL DE JUIZ DE FORA, COMO PARTE

INTEGRANTE DOS REQUISITOS NECESSÁRIOS PARA A OBTENÇÃO DO GRAU

DE BACHAREL EM CIÊNCIA DA COMPUTAÇÃO.

Aprovada por:

Luciana Brugiolo Gonçalves
D.Sc. em Ciência da Computação

Stênio Sã Rosário Furtado Soares
D.Sc. em Ciência da Computação

Lorenza Leão Oliveira Moreno
D.Sc. em Informática

Luciana Conceição Dias Campos
D.Sc. em Engenharia Elétrica

JUIZ DE FORA

20 DE JANEIRO, 2026

A Deus, por tudo que fez

para que eu chegasse até aqui.

Resumo

O Problema da Clusterização Capacitada é amplamente estudado na literatura, tendo

diversas aplicações relevantes, como a entrega de encomendas e roteamento de veículos.

Diversas técnicas de otimização são usadas para tratar o problema, entre elas destaca-

se o Simulated Annealing (SA), uma meta-heurística que auxilia na busca do espaço de

solução, fazendo com que, por meio de perturbação e simulação de temperatura, aceite

soluções piores que a corrente, auxiliando a sair de ótimos locais. Para aprimorar as

soluções obtidas através do SA, a estratégia é combinada com o Randomized Variable

Neighborhood Descent (RVND), que realiza buscas locais sistemáticas em diferentes vizi-

nhanças, contribuindo para o refinamento das soluções obtidas. Além disso, incorpora-se

o Reactive Greedy Randomized Adaptive Search Procedure (RGRASP) junto com VND,

com o objetivo de gerar soluções iniciais mais promissoras e diversas. Essa integração entre

diversas meta-heurísticas visa acelerar a convergência para gerar soluções mais eficientes

e atrativas para problemas combinatórios complexos de otimização, como o PCC.

Palavras-chave: Inteligência Computacional, Otimização, Problema da Clusterização

Capacitada, Buscal Local, Metaheurísticas, Simulated Annealing, Reactive Greedy Ran-

domized Adaptive Search Procedure, Randomized Variable Neighborhood Descent, SA-

RGRASP-RVND.

Abstract

The Capacitated Clustering Problem (CCP) has been widely studied in the literature and

presents several relevant applications, such as parcel delivery and vehicle routing. Vari-

ous optimization techniques have been employed to address this problem, among which

Simulated Annealing (SA) stands out. SA is a metaheuristic that assists in exploring

the solution space by allowing, through perturbations and temperature simulation, the

acceptance of solutions worse than the current one. This mechanism helps generate di-

verse candidate solutions and escape local optima, enabling the search to move toward

new regions of the solution space. To further improve the solutions obtained by SA,

this strategy is combined with the Randomized Variable Neighborhood Descent (RVND),

which performs systematic local searches across different neighborhoods, contributing to

the refinement of the obtained solutions. Additionally, the Reactive Greedy Randomized

Adaptive Search Procedure (RGRASP) is incorporated together with VND to generate

more promising and diverse initial solutions, favoring local search in multiple regions of the

search space rather than relying solely on greedy strategies. This integration of multiple

metaheuristics aims to accelerate convergence and produce more efficient and competitive

solutions for complex combinatorial optimization problems such as the CCP.

Keywords: Computational Intelligence, Optimization, Capacitated Clustering Problem,

Local Search, Metaheuristics, Simulated Annealing, Reactive Greedy Randomized Adap-

tive Search Procedure, Randomized Variable Neighborhood Descent, SA-RGRASP-RVND.

Agradecimentos

Agradeço primeiramente a Deus por me impulsionar cada vez mais a novos e

incríveis desafios e por ter me mostrado um caminho tão especial para que eu pudesse

trilhar até aqui. Com Ele presente em todos os momentos da minha vida, tudo isso faz

sentido e me motiva a avançar cada vez mais, com vontade de fazer acontecer e de entregar

o meu melhor em cada lugar por onde eu passar.

Aos meus orientadores Luciana, Stênio e Lorenza, pelos quais tenho um carinho

especial, pela amizade, compreensão e paciência ao longo de todos esses anos, especi-

almente pelo tempo de espera até que fosse possível a conclusão deste trabalho. Es-

tendo também meus agradecimentos aos orientadores e coordenadores de projetos que

passei, dentre eles Marcelo Caniato, Alessandreia, Heder, Alex, Fabrício, Cristina Dusi,

por doarem o máximo de si aos projetos e liderarem os alunos com grande competência e

dedicação.

Da mesma forma, nada disso seria possível sem minha companheira de todos os

dias, Flávia, minha esposa, da qual com tanto carinho me ajuda a estar sempre firme e

disposto para enfrentar todas as batalhas da vida, sempre com sorriso no rosto e ânimo

renovado.

Aos meus pais, Vicente e Fátima, que com o sim deles à minha vida neste mundo,

me proporcionaram estar aqui hoje, colhendo os frutos do plantio que realizaram ao

longo de tantos anos. Tenho plena certeza que fizeram de tudo para me conduzir pelo

melhor caminho possível. Minha gratidão eterna por serem quem são, pelos ensinamentos,

conselhos e por todo carinho de sempre.

Ao meu irmão Vitor, meu fiel escudeiro, que desde bem novo me acompanhava

em tudo o que fazia e seguia meus passos. Destaco o orgulho que sinto por ele e o quanto

aprendo em nossas conversas e agradeço por estarmos sempre juntos. Hoje, é um grande

profissional e, felizmente, escolheu trilhar alguns caminhos profissionais diferentes dos

meus, de modo que não precisamos ter dois Vinícius na família.

Aproveito para deixar um agradecimento extremamente especial a todos os meus

familiares que, ao longo de todos esses anos de graduação, me ensinaram por meio de cada

atitude e palavra, sempre me encorajando a seguir em frente na busca pelos meus sonhos.

Em especial, agradeço aos meus primos Erivelton e Thiago, que desde sempre estiveram

ao meu lado como verdadeiros irmãos.

Aos meus amigos Leonardo e Tales, registro meu agradecimento por toda a traje-

tória que construímos juntos ao longo dos anos, compartilhando diferentes fases da vida,

desafios e conquistas. A convivência constante, marcada pelo apoio mútuo, pela presença

sincera e pelo incentivo recíproco, foi fundamental em diversos momentos dessa cami-

nhada. Estendo também meus agradecimentos a todos os demais amigos que, de forma

direta ou indireta, participaram da minha formação pessoal e acadêmica. Mesmo que o

contato atualmente seja menor, todos ocupam um lugar especial na minha história.

Aos meus sócios na Real Grana, Gabriel e Pedro, com quem aceitei o desafio de

construir uma startup do zero, agradeço pela força, parceria e companhia ao longo dessa

jornada, que muitas vezes é solitária. Hoje compreendo ainda mais a importância da

paciência que precisamos cultivar juntos para construir uma empresa que, de fato, gere

valor para a sociedade. Ressalto que essa trajetória só se tornou possível através de uma

oportunidade ímpar de conhece-los através da LMF UFJF, e que a partir das experiências

adquiridas nessa admirável universidade me permitem, atualmente, como CTO, aplicar

de forma prática todos os aprendizados construídos ao longo dessa formação.

Preciso também registrar importância dos diversos projetos e pessoas que marca-

ram minha vida acadêmica desde o início da graduação, sem citar nomes, pois são muitos

e sabem quem são. Agradeço a todos com quem tive contato ao longo dessa caminhada,

em especial às turmas do curso e membros dos projetos em que trabalhei. Agradeço ainda

desde meus primeiros passos como monitor de Algoritmos, experiência que despertou em

mim o entusiasmo pelo ensino, ao GETComp e aos amigos GETianos, por um período

marcante regado a café, ensino, pesquisa e extensão dentro da universidade. Agradeço

também ao projeto Buddy e à DRI, pela oportunidade de contato com a cultura global; à

Code Empresa Júnior, por me ensinar os caminhos do empreendedorismo e da liderança;

5

à Liga de Mercado Financeiro (LMF) — hoje Finance UFJF — por ter me acolhido em

uma de minhas grandes paixões; e à Liga de Empreendedorismo, Inovação e Startups

(LEIS), da qual fui idealizador e fundador e que hoje gera grandes frutos como projeto

de extensão da Faculdade de Administração da UFJF.

Por fim, deixo meu agradecimento especial a todos os professores do DCC e do

ICE, dos quais obtive ensinamentos valiosos e com quem levarei memórias marcantes

de pessoas excepcionais. Estendo também minha gratidão, de forma geral, ao quadro

de funcionários do curso e da UFJF, que ao longo desses anos contribuíram, de alguma

forma, para o meu enriquecimento pessoal e profissional.

6

“Você precisa sonhar grande, tem que mi-

rar na lua, porque se você errar pelo me-

nos você acerta nas estrelas”. Inclusive,

“Don’t Panic!”

Lair Ribeiro; Douglas Adams

Conteúdo

Lista de Figuras 9

Lista de Tabelas 10

Lista de Abreviações 11

1 Introdução 12

2 O Problema de Clusterização Capacitada 15

3 Trabalhos Relacionados 18

4 Fundamentação Teórica 22
4.1 Inteligência Computacional . 22
4.2 Heurísticas Construtivas . 22
4.3 Métodos de Busca Local . 23
4.4 Meta-heurísticas . 24
4.5 Simulated Annealing . 25
4.6 Variable Neighborhood Descent . 26
4.7 Greedy Randomized Adaptive Search Procedure 27

5 Abordagens Propostas 29
5.1 Solução inicial do RGRASP com Algoritmo Construtivo 31
5.2 Algoritmo Construtivo Randomizado Reativo 32
5.3 Randomized Variable Neighborhood Descent 35

5.3.1 Busca Local 1 - Realocação (Shift) 1-0 38
5.3.2 Busca Local 2 - Troca (Swap) 1-1 40
5.3.3 Busca Local 3 - Troca Assimétrica (Swap) 2-1 41

5.4 Perturbação - Desconstrução e Reconstrução 43
5.5 Reactive Greedy Randomized Adaptive Search Procedure 45
5.6 Abordagem Híbrida: Simulated Annealing com RGRASP e RVND 47

5.6.1 Cálculo da temperatura inicial . 50
5.6.2 Taxa de aceitação de soluções . 51
5.6.3 Taxa de resfriamento . 51

6 Experimentos Computacionais 52
6.1 Ambiente de testes . 52
6.2 Instâncias de teste . 52
6.3 Parametrização de variáveis . 53
6.4 Análise dos resultados obtidos . 55

7 Conclusão 61

Bibliografia 65

Lista de Figuras

2.1 Exemplo de vértices de um grafo clusterizado em 3 clusters distintos. . . . 15
2.2 Exemplo de instância do PCC com 14 nós e 4 clusters. 17

4.1 Ótimos locais e global em um espaço de solução explorado por uma heu-
rística de busca local em um problema de maximização. 24

4.2 Barreiras para a busca local encontrar novos ótimos locais. 26

5.1 Fluxograma completo da abordagem proposta 47

6.1 Comparação da média de resultados dos algoritmos propostos em 5 instân-
cias do conjunto de 82 vértices . 56

6.2 Comparação da média de resultados dos algoritmos propostos em 5 instân-
cias do conjunto de 240 vértices . 57

6.3 Comparação da média de resultados dos algoritmos propostos em 5 instân-
cias do conjunto de 480 vértices . 58

Lista de Tabelas

6.1 Comparação das diferentes abordagens . 55
6.2 Comparação com a melhor solução da literatura 59
6.3 Média das soluções em comparação com a literatura 60

Lista de Abreviações

DCC Departamento de Ciência da Computação

UFJF Universidade Federal de Juiz de Fora

PCC Problema da Clusterização Capacitada

CCP Capacitated Clustering Problem

SA Simulated Annealing

TS Tabu Search

GRASP Greedy Randomized Adaptive Search Procedure

RGRASP Reactive Greedy Randomized Adaptive Search Procedure

VNS Variable Neighborhood Search

VND Variable Neighborhood Descent

RVND Randomized Variable Neighborhood Descent

IRACE Iterated Racing for Automatic Algorithm Configuration

ILS Iterated Local Search

IG Iterated Greedy

IC Inteligência Computacional

12

1 Introdução

A versão clássica do problema de clusterização é amplamente estudada na literatura de

Otimização Combinatória, sendo fundamental em diversas áreas como análise de dados,

logística, bioinformática e redes complexas. Em sua forma clássica, o problema consiste

em agrupar elementos similares em um mesmo grupo denominado cluster, e elementos não

similares em clusters distintos (LUXBURG; WILLIAMSON; GUYON, 2012), oferecendo

uma maneira de extrair padrões relevantes em grandes conjuntos de dados.

Em muitos cenários, a versão clássica da clusterização não é suficiente para mode-

lar adequadamente as restrições de problemas reais, exigindo a incorporação de restrições

adicionais, como de capacidade. Entre essas variantes, destaca-se o Problema da Cluste-

rização Capacitada (PCC), introduzido por (MULVEY; BECK, 1984).

O Problema de Clusterização Capacitado (PCC) é um problema de Otimização

Combinatória (NEGREIROS et al., 2022) que consiste em particionar um conjunto de

elementos em clusters disjuntos. Cada elemento possui um peso associado e, para cada

par de elementos, define-se um valor de benefício que é contabilizado caso ambos sejam

alocados no mesmo cluster. O objetivo do PCC é formar os clusters de modo que a

soma dos pesos dos elementos em cada um deles respeite limites mínimo e máximo de

capacidade, enquanto se maximiza a função objetivo, definida como a soma dos benefícios

associados aos pares de elementos agrupados em um mesmo cluster (LAI et al., 2021).

Esse problema surge naturalmente em contextos nos quais há restrições operaci-

onais ou físicas sobre os clusters formados, ao mesmo tempo em que se deseja maximizar

algum critério de afinidade ou ganho interno aos cluster. De forma geral, o PCC possui

diversas aplicações relevantes que surgem em vários contextos diferentes (MURITIBA et

al., 2022), sendo adequado a problemas em que se deseja particionar um conjunto de ele-

mentos em clusters de modo que os elementos de cada cluster apresentem alta afinidade

interna, respeitando simultaneamente limites mínimos e máximos de capacidade. Esses

limites representam restrições físicas, operacionais ou econômicas, enquanto os benefícios

associados aos pares de elementos expressam similaridade, proximidade ou redução de

1 Introdução 13

custos, conforme discutido em (LAI et al., 2021).

Uma aplicação clássica do PCC ocorre no planejamento de instalações e na de-

finição de zonas operacionais em sistemas logísticos (DENG; BARD, 2011; MARTINEZ-

GAVARA et al., 2017). Nesses cenários, os nós representam regiões ou unidades de

atendimento, os pesos dos nós correspondem à demanda, os limites de capacidade asse-

guram a viabilidade operacional de cada cluster e os benefícios refletem ganhos logísticos

ao agrupar determinadas regiões. Essa modelagem é amplamente utilizada em redes de

processamento e distribuição, como serviços postais e empresas de transporte, onde o

PCC auxilia o desenho de áreas de atendimento e a integração de redes, possibilitando

ganhos operacionais e redução de recursos, como frota e tempo de deslocamento (BARD;

JARRAH, 2013; MURITIBA et al., 2022).

O PCC também é aplicado em redes de telecomunicações, como no problema de

minimização de handover em redes celulares (MORÁN-MIRABAL et al., 2013; MARTÍNEZ-

GAVARA et al., 2015). O handover ocorre quando um dispositivo móvel, como um

smartphone, precisa trocar a estação rádio-base à qual está conectado durante uma comu-

nicação ativa, devido à mobilidade do usuário ou à variação da qualidade do sinal. Trocas

frequentes podem aumentar a sinalização da rede e degradar a qualidade do serviço. Nessa

modelagem, os nós representam as estações rádio-base, responsáveis por fornecer acesso à

rede, enquanto os clusters correspondem aos controladores de rede (RNCs) que gerenciam

conjuntos dessas estações. Os benefícios refletem a redução de handovers ao agrupar es-

tações sob o mesmo controlador; os pesos representam a carga de tráfego das estações, e

os limites de capacidade correspondem às restrições técnicas dos RNCs.

Segundo (ZHOU et al., 2019), o PCC pertence a classe de problemas NP-Difíceis,

caracterizado por sua natureza combinatória e pela inexistência de algoritmos de tempo

polinomial conhecidos para a obtenção da solução ótima (RUAN; DA, 2010). Dessa forma,

torna-se necessário buscar uma heurística eficiente e o uso de estratégias de Otimização e

Inteligência Computacional, com o objetivo de obter soluções aproximadas de boa quali-

dade em tempo computacional viável (NEGREIROS et al., 2022; LAI et al., 2021).

Por fim, o PCC tem sido amplamente investigado na literatura por meio de di-

ferentes abordagens baseadas em algoritmos de otimização, e esses modelos têm como

1 Introdução 14

objetivo resolver problemas complexos, para os quais métodos exatos se tornam com-

putacionalmente inviáveis. Nesse contexto, o presente trabalho visa contribuir para o

avanço do estado da arte por meio da obtenção de soluções aproximadas para o PCC.

Para isso, propõe-se o desenvolvimento de um algoritmo híbrido que combina distintas

meta-heurísticas, buscando soluções sub-ótimas de forma eficiente e robusta, conforme

discutido em (HUSSAIN et al., 2019).

Nos próximos capítulos, o trabalho está organizado da seguinte forma. No Capí-

tulo 2, o problema abordado é descrito. O Capítulo 3 apresenta a revisão da literatura,

enfatizando os principais conceitos e as contribuições dos trabalhos relacionados ao pro-

blema. O Capítulo 4 é dedicado à apresentação da fundamentação teórica e dos conceitos

fundamentais que norteiam este trabalho. No Capítulo 5, são detalhadas as abordagens

propostas neste trabalho. No Capítulo 6 são apresentados os experimentos computaci-

onais realizados e a análise dos resultados obtidos. Por fim, o Capítulo 7 apresenta as

conclusões, destacando os principais aprendizados alcançados e indica possíveis trabalhos

futuros.

15

2 O Problema de Clusterização Capacitada

O Problema de Clusterização Capacitada (PCC) pode ser formalmente definido a partir

de um grafo não direcionado G = (V,E), em que V = {1, . . . , n} representa o conjunto de

elementos (ou vértices) a serem agrupados e E o conjunto de arestas que conectam pares

de vértices. Cada vértice i ∈ V possui um peso wi, enquanto a cada aresta (i, j) ∈ E

está associado um benefício bij, que representa o ganho obtido caso os vértices i e j sejam

alocados no mesmo cluster.

Como podemos ver na figura 2.1, que ilustra visualmente o objetivo fundamental

do problema abordado. À esquerda apresenta o conjunto de dados de entrada, represen-

tando os vértices dispersos no espaço. Na direita exemplifica a partição ideal almejada

no Problema de Clusterização Capacitado (PCC): a divisão desses vértices em subcon-

juntos disjuntos, que são diferenciados pelas cores, de modo que a homogeneidade interna

de cada grupo seja maximizada — ou seja, os membros de um mesmo cluster estejam

geograficamente próximos. Assim podemos ver de maneira visual que o benefício de um

vértice estar associado ao outro dentro de um cluster é o benefício que eles geram de esta-

rem próximos. Em outros problemas essa proximidade pode ser relativa a outros fatores,

como quantidade de entregas por exemplo.

Figura 2.1: Exemplo de vértices de um grafo clusterizado em 3 clusters distintos.

O objetivo do PCC é particionar o conjunto de vértices V em p clusters disjuntos.

O peso de cada cluster é dado pela soma dos pesos dos vértices que o compõem, devendo

2 O Problema de Clusterização Capacitada 16

respeitar limites mínimo e máximo de capacidade previamente definidos. A função obje-

tivo consiste em maximizar a soma dos benefícios das arestas cujos vértices pertencem ao

mesmo cluster, modelando situações práticas em que é necessário formar clusters equi-

librados sob restrições de capacidade, ao mesmo tempo em que se busca maximizar a

afinidade ou o ganho interno entre seus elementos do mesmo cluster.

Pode-se descrever o PCC matematicamente como um problema de Programação

Não-Linear Inteira, considerando os seguintes parâmetros e variáveis:

• V é o conjunto de vértices;

• E é o conjunto de arestas;

• C é o conjunto de clusters;

• n é o número de vértices;

• p é o número fixo de clusters;

• wi é o peso associado ao vértice i ∈ V ;

• bij é o benefício da aresta e = (i, j);

• ck é um cluster do conjunto C;

• L é o limite inferior para o somatório de pesos dos vértices de um cluster ;

• U é o limite superior para o somatório de pesos dos vértices de um cluster ;

• xic é uma variável binária que assume valor 1 caso o vértice i ∈ V seja alocado ao

cluster c ∈ C, e 0 caso contrário.

Maximizar z =

p∑
c=1

n−1∑
i=1

n∑
j=i+1

bijxicxjc (1a)

sujeito a
p∑

c=1

xic = 1 ∀i ∈ V (1b)

L ≤
n∑

i=1

wixic ≤ U ∀c ∈ {1, 2, ..., p} (1c)

xic ∈ {0, 1} ∀i ∈ V, ∀c ∈ {1, 2, ..., p} (1d)

2 O Problema de Clusterização Capacitada 17

As restrições (1b) garantem que cada vértice i seja atribuído a exatamente um

cluster. As Restrições de peso (1c) asseguram que os requisitos de capacidade mínima

(L) e a capacidade máxima (U) para cada cluster sejam satisfeitas. As Restrições (1d)

definem o domínio das variáveis. Por fim, a função objetivo (1a) consiste em maximizar

o somatório do benefício interno de cada cluster, dado pelo somatório dos benefícios

associados às arestas incidentes à vértices do mesmo cluster.

A Figura 2.2 ilustra um exemplo de instância para o PCC, em que dado um

grafo G = (V,E) ponderado nos vértices e nas arestas com |V | = 14 e wi = 1 para

todos os vértices vi ∈ V , com quantidade de clusters p = 4 e limites inferior e superior

[L,U] = [3, 4] para todos os clusters. Assim, o objetivo é particionar o conjunto V de

vértices em 4 clusters ck onde k ∈ {1, . . . , 4}, de forma que a soma dos benefícios das

arestas internas aos clusters (destacadas em vermelho) seja maximizada.

Figura 2.2: Exemplo de instância do PCC com 14 nós e 4 clusters.

Neste capítulo foi apresentado o Problema da Clusterização Capacitada (PCC),

um desafio clássico da Otimização Combinatória. Destaca-se que o PCC é um problema

NP-Difícil, o que implica que não há algoritmo conhecido capaz de encontrar uma solução

ótima em tempo polinomial. Portanto, é necessário recorrer a estratégias de Otimização

e Inteligência Computacional para obter boas soluções para o problema.

18

3 Trabalhos Relacionados

Neste capítulo é apresentado o estado da arte relacionado ao Problema da Clusterização

Capacitada (PCC), são discutidos os principais conceitos, modelos e abordagens propostos

na literatura e destacam-se as contribuições das pesquisas que influenciam diretamente o

desenvolvimento deste estudo.

O PCC foi introduzido formalmente na literatura por (MULVEY; BECK, 1984),

estabelecendo as bases fundamentais para a modelagem deste problema combinatório.

Após ser definido, ele tem sido objeto de estudo contínuo, evoluindo com o surgimento

de novas técnicas de otimização ao longo dos anos. Desta forma, os parágrafos seguintes

dedicam-se a detalhar os avanços alcançados na literatura recente, apresentando e dis-

cutindo cronologicamente os artigos mais relevantes dos últimos anos e suas respectivas

abordagens para a solução do problema.

No trabalho (MARTÍNEZ-GAVARA et al., 2015) foram realizados testes com

várias estratégias de busca, incluindo as que se movem para fora da região viável e uso

de estruturas de vizinhança dentro da estrutura GRASP. Foi explorado um TS com uma

vizinhança de troca 2-1 que se mostrou eficaz, realizando novos testes em instâncias que

até então não existiam na literatura.

No trabalho de (LAI; HAO, 2016) é apresentado o método IVNS que combina

um método Variable Neighborhood Descent (VND) estendido (EVND) para intensificação

das soluções e um procedimento de perturbação que remodela a solução corrente de forma

aleatória para explorar efetivamente o espaço de busca e ter diversificação das soluções.

O algoritmo proposto melhorou os resultados de 28 das 83 instâncias do tipo de minimi-

zação handover e encontrou o melhor resultado conhecido para outras 55 instâncias de

maximização , melhorando os resultados alcançados anteriormente.

No trabalho de (MARTINEZ-GAVARA et al., 2017) foi investigado a meta-

heurística (Greedy Randomized Adaptive Search Procedure) GRASP e a (Iterated Gre-

edy) IG, propondo uma nova vizinhança de troca 2-1 no GRASP, um algoritmo baseado

no IG e um algoritmo híbrido IG-GRASP. Utiliza-se uma construção de soluções indepen-

3 Trabalhos Relacionados 19

dentes do GRASP sem memória das soluções anteriores e usa o IG para obter soluções

baseadas em outras soluções na memória a fim de construir soluções a partir da recons-

trução parcial das anteriores do IG. Em seus resultados foi visto que a hibridização do

IG-GRASP foi capaz de encontrar bons resultados comparando aos métodos anteriores

a 2017. Portanto, este trabalho demonstrou que a construção baseada em memória é

um mecanismo eficaz dentro das técnicas de busca heurística e que algoritmos híbridos

combinando métodos gulosos com randômicos têm um grande potencial.

Em (BRIMBERG et al., 2019), são propostas duas abordagens baseadas na meta-

heurística (Variable Neighborhood Search) VNS. O primeiro segue uma abordagem VNS

padrão chamado de VNS Geral (GVNS - General VNS) e a segunda um VNS enviesado

(SVNS - Skewed VNS) que permite movimentos para soluções piores. Tanto o SVNS

quando o GVNS superaram o estado da arte até aquele momento, sendo o SVNS melhor no

geral. Isso sugere que o uso de critérios de aceitação antes de permitir outros movimentos

para novas soluções do SVNS é preferível à abordagem aleatória que é usada no GVNS

para mover para novas regiões do espaço de solução.

No trabalho (ZHOU et al., 2019) são apresentados dois algoritmos efetivos para

solucionar o PCC, um (Tabu Search) TS chamado de FITS que alterna entre explora-

ção em regiões de espaços de busca viáveis e inviáveis e um Algoritmo Memético (MA)

que combina o FITS com um crossover baseado em cluster dedicado. Os experimentos

computacionais foram executados para 183 instâncias e indicaram que FITS e MA geram

boas soluções.

Em (MAXIMO; NASCIMENTO, 2021) os autores apresentam um algoritmo hí-

brido baseado em (Iterated Local Search) ILS, que combina a busca local com perturba-

ções e estratégias de intensificação e diversificação para melhorar os resultados obtidos.

Os experimentos mostram que o algoritmo proposto é eficaz na obtenção de boas soluções.

Em (LAI et al., 2021) foi proposto um algoritmo de pesquisa de vizinhança vari-

ável usando decomposição de vizinhança (NDVNS). Essa estratégia acelera o processo de

busca e usa uma forma de perturbação probabilística para controlar a troca entre inten-

sificação de busca e diversificação, assim isola soluções candidatas promissoras a serem

consideradas em cada iteração de busca, acelera a busca na vizinhança e permite buscas

3 Trabalhos Relacionados 20

mais focadas. Os resultados foram executados para 110 instâncias comumente usadas na

literatura, encontrando a melhor média em todas as instâncias e melhor resultado em 70%

em relação a trabalhos anteriores.

Outro trabalho a tratar o PCC foi a abordagem de (LIU; GUO; ZENG, 2022b)

que propõe um Algoritmo Evolucionário de Membrana. Esse algoritmo foi proposto em

(OROZCO-ROSAS; MONTIEL; SEPúLVEDA, 2019) e usa operações evolutivas de mem-

brana, como divisão, fusão, seleção, citólise e outros. Os resultados deste trabalho mos-

tram que o número de instâncias em que o MEACCP pode encontrar a solução ótima é

até 9 vezes maior do que nos algoritmos da literatura e a estabilidade é melhor do que

todos os algoritmos comparados no passado.

Em (LIU; GUO; ZENG, 2022a) foi proposto um algoritmo híbrido chamado HA-

PCC, que possui um método de construção de solução viável mais guloso utilizando restri-

ções mais restritas que as originais da instância, com destruição e reconstrução da solução

para aumentar a diversidade da população e melhorar a velocidade de convergência. Das

90 instâncias utilizadas nos testes, em 58 dessas o HA-PCC possui a melhor solução média

da literatura, sendo a proposta que possui a melhor estabilidade.

Em (FALKNER; SCHMIDT-THIEME, 2023) foi proposto um método chamado

Neural Capacited Clustering que é a primeira abordagem baseada em Deep Learning.

Os autores utilizam K-Means para refinar a solução e uma rede neural para aprender e

prever as probabilidades de escolher um vértice para um cluster a partir de um conjunto

de dados de soluções subótimas passadas de outras instâncias do problema. Apesar de

superar várias soluções heurísticas da literatura, este trabalho utiliza instâncias de outro

problema, dificultando a comparação com os trabalhos que utilizam as instâncias próprias

PCC.

O trabalho mais recente da literatura (ALTUWAIM, 2023) propõe uma meta-

heurística baseada no algoritmo Artificial Bee Colony (ABC). A abordagem utiliza uma

estratégia construtiva inicial seguida da geração de soluções vizinhas e da aplicação de

busca local com probabilidade controlada, visando melhorar a qualidade das soluções ao

longo das iterações. Os resultados obtidos alcançam os melhores resultados da literatura,

embora sua eficiência dependa de uma escolha adequada de parâmetros para cada tipo

3 Trabalhos Relacionados 21

de instância e tenha sido utilizado apenas um conjunto de 10 instâncias com 82 vértices,

dificultando comparação com as demais instâncias usadas na literatura.

Por fim, foi visto que diversos trabalhos da literatura abordam o PCC por meio

de diferentes estratégias. Em conjunto, esses trabalhos reforçam a relevância do uso de

heurísticas e meta-heurísticas como ferramentas eficazes para tratar o PCC, especialmente

em cenários onde métodos exatos se tornam computacionalmente inviáveis.

A partir da revisão da literatura, observa-se que as principais abordagens pro-

postas para o PCC se concentram no uso de estratégias baseadas em busca local, com

destaque para métodos como VNS, GRASP, Busca Tabu e estratégias híbridas que com-

binam mecanismos de intensificação e diversificação. Trabalhos mais recentes também

exploram abordagens híbridas mais sofisticadas, incorporando aprendizado de máquina

ou estruturas bioinspiradas, evidenciando a maturidade do campo e o esforço contínuo

em obter soluções de melhor qualidade e maior estabilidade computacional.

Apesar desses avanços, nota-se que a maior parte dos trabalhos concentra-se em

estratégias nas quais a diversificação ocorre predominantemente por meio de perturbações

ou de mecanismos clássicos de mudança de vizinhança. Em contrapartida, há uma lacuna

na exploração sistemática de meta-heurísticas baseadas em critérios probabilísticos de

aceitação de soluções de não melhora, como o Simulated Annealing (SA).

De forma geral, os resultados reportados indicam que abordagens híbridas ten-

dem a apresentar desempenho superior quando comparadas a heurísticas isoladas. Dessa

forma, identifica-se uma oportunidade de pesquisa na proposição de uma abordagem hí-

brida que explore explicitamente a capacidade do SA em escapar de ótimos locais por meio

da aceitação controlada de soluções piores, aliada à geração de soluções iniciais de alta

qualidade utilizando GRASP, bem como ao refinamento sistemático via VND por meio

de estratégias de busca local baseadas em múltiplas vizinhanças. Essa lacuna motiva o

desenvolvimento do método proposto neste trabalho, que combina SA, GRASP reativo e

VND Randômico para alcançar soluções competitivas para o PCC.

22

4 Fundamentação Teórica

Este capítulo é destinado a introduzir a fundamentação teórica, necessária para o entendi-

mento do trabalho, apresentando definições, modelos, algoritmos e indicando os conceitos

fundamentais para o desenvolvimento deste trabalho.

4.1 Inteligência Computacional

A Inteligência Computacional (IC) compreende um conjunto de técnicas e algoritmos

inspirados em processos naturais e cognitivos, como algoritmos genéticos e métodos evo-

lutivos, com o objetivo de resolver problemas complexos. Nesse contexto, a IC possibilita

a obtenção de soluções aproximadas de boa qualidade em tempo reduzido, o que justifica

o crescente interesse da comunidade científica no desenvolvimento de métodos eficientes

para tratar problemas dessa natureza (SOUZA, 2008). Para atender a esse desafio, foram

desenvolvidas diversas heurísticas e técnicas voltadas à exploração eficiente do espaço de

busca. Entre elas, destacam-se as meta-heurísticas, que consistem em estruturas gerais

de busca capazes de orientar a construção e o aprimoramento de soluções por meio de

diferentes estratégias. Algumas dessas heurísticas e meta-heurísticas são utilizadas neste

trabalho e serão descritas nas seções subsequentes.

4.2 Heurísticas Construtivas

As heurísticas construtivas têm como objetivo gerar soluções iniciais para problemas de

otimização combinatória. Essas heurísticas podem empregar diferentes estratégias, como

abordagens gulosas, randomizadas ou híbridas, além de mecanismos baseados em seleção

probabilística e critérios de inserção. A combinação dessas estratégias é frequentemente

utilizada com o intuito de produzir soluções iniciais diversificadas. O principal obje-

tivo dos métodos construtivos é obter soluções viáveis de forma rápida, com baixo custo

computacional, servindo como ponto de partida para etapas posteriores do processo de

4.3 Métodos de Busca Local 23

otimização (BURKE et al., 2013).

4.3 Métodos de Busca Local

Um dos tipos de heurísticas mais utilizados para a obtenção de soluções de boa qualidade

em problemas de otimização combinatória são os métodos de Busca Local. Essas aborda-

gens são particularmente relevantes em problemas da classe NP-Difícil, nos quais se busca

otimizar uma função objetivo em um espaço de soluções que respeite um conjunto de

restrições. No entanto, devido à complexidade do espaço de busca, os algoritmos podem

convergir para soluções correspondentes a ótimos locais, sem conseguir identificar soluções

de melhor qualidade situadas em outras regiões do espaço de soluções.

O conceito fundamental que rege o funcionamento desses algoritmos é a definição

de uma estrutura de vizinhança. Formalmente, para uma solução candidata s perten-

cente ao espaço de busca S, define-se a vizinhança N(s) como o subconjunto de soluções

s′ ∈ S que podem ser alcançadas diretamente a partir de s através de uma operação de

movimento ou transformação simples entre vértices e estruturas criadas para problema.

Esses movimentos consistem em pequenas modificações na estrutura da solução corrente,

como a troca de elementos entre clusters ou a realocação de vértices. Dessa forma, a

busca local navega pelo espaço de soluções movendo-se iterativamente de uma solução

atual para uma de suas vizinhas, avaliando a qualidade destas para determinar se houve

melhoria e se será aceita como nova solução.

A Figura 4.1 ilustra a presença de ótimos locais em um problema de maximização.

Observa-se que algoritmos de busca local tendem a ficar presos nesses pontos de máximo

local e planícies sem reconhecer que pode haver soluções melhores. Assim as buscas locais

alteram a solução com objetivo de alcançar novos resultados e quando chegam em um

ponto como esses ótimos locais não conseguem sair deles, pois melhorias imediatas podem

não estar disponíveis na vizinhança.

Nesse contexto, os métodos de Busca Local atuam promovendo modificações con-

troladas na solução corrente, com o objetivo de explorar novas regiões do espaço de busca

ainda não visitadas. Essas modificações podem permitir a identificação de soluções asso-

ciadas a ótimos locais de melhor qualidade ou, em casos ideais, a aproximação do ótimo

4.4 Meta-heurísticas 24

global, que corresponde à solução ótima do problema.

Figura 4.1: Ótimos locais e global em um espaço de solução explorado por uma heurística
de busca local em um problema de maximização.

De forma geral, a Busca Local realiza um refinamento da solução inicial por meio

da exploração de soluções vizinhas (VOSS et al., 2012). Essas soluções podem ser geradas

a partir de operações simples, como, por exemplo, no caso do PCC, operações de trocas

de vértices entre clusters distintos, bem como inserções ou remoções de vértices em um

cluster.

O processo de Busca Local é conduzido de forma iterativa, avaliando a cada etapa

as soluções vizinhas geradas a partir da solução corrente. Esse procedimento é repetido

até que nenhum vizinho proporcione melhoria, interrompendo a execução no primeiro

ótimo local encontrado.

4.4 Meta-heurísticas

Na literatura de Otimização e Inteligência Computacional, as meta-heurísticas são ampla-

mente empregadas na resolução de problemas da classe NP-Difícil, para os quais não se

conhece algoritmo de tempo polinomial capaz de garantir a solução ótima. Essas técnicas

atuam orientando o processo de busca no espaço de soluções, equilibrando mecanismos de

intensificação e diversificação, reduzindo a probabilidade de estagnação em ótimos locais

(HUSSAIN et al., 2019).

4.5 Simulated Annealing 25

Diferentemente de heurísticas puramente construtivas ou gulosas, as meta-heurísticas,

via diferentes estratégias, buscam escapar de ótimos locais e explorar soluções potenci-

almente superiores em outras regiões do espaço de busca. Exemplos clássicos de meta-

heurísticas incluem Simulated Annealing (SA), Greedy Randomized Adaptive Search Pro-

cedures (GRASP) e Variable Neighborhood Search (VNS).

Neste trabalho, algumas dessas meta-heurísticas são exploradas com o objetivo

de resolver o Problema da Clusterização Capacitada (PCC). As técnicas adotadas e sua

integração no método proposto são detalhadas nas seções subsequentes.

4.5 Simulated Annealing

Em (OSMAN; CHRISTOFIDES, 1994) foi proposta uma abordagem baseada em Simula-

ted Annealing (SA), capaz de guiar um método de busca local iterativo, permitindo que o

processo de busca continue mesmo após a detecção de um ótimo local. Isso é realizado por

meio de critérios determinísticos ou probabilísticos que controlam a aceitação ou rejeição

de soluções recém-geradas, inclusive soluções piores do que a corrente.

O SA é uma meta-heurística estocástica inspirada no processo físico de recozi-

mento de metais, no qual um material é aquecido a altas temperaturas e posteriormente

resfriado de maneira controlada, permitindo que a estrutura cristalina alcance estados de

menor energia. De maneira análoga, o SA busca soluções de alta qualidade explorando o

espaço de busca com maior liberdade no início da execução, aceitando soluções piores com

maior probabilidade e reduzindo gradualmente essa probabilidade de aceitação à medida

que a temperatura diminui. Dessa forma, o desempenho do algoritmo depende fortemente

da escolha adequada de seus parâmetros, especialmente da estratégia de resfriamento da

temperatura, tornando essencial um estudo cuidadoso de parametrização. Com a redução

gradual da temperatura, o algoritmo passa a se comportar de maneira semelhante a uma

busca local clássica, concentrando-se na intensificação da busca em regiões promissoras.

A Figura 4.2 exemplifica o processo realizado pelo SA, que busca escapar da

armadilha de cair em ótimos locais por existir uma barreira de piores soluções entre a

atual e uma possível melhor solução.

Formalmente, o Simulated Annealing admite a aceitação de uma solução vizinha

4.6 Variable Neighborhood Descent 26

Figura 4.2: Barreiras para a busca local encontrar novos ótimos locais.

s′ com valor da função objetivo pior que o da solução corrente s segundo um critério

probabilístico, usualmente definido por

P (∆f) = exp

(
−∆f

T

)
,

em que ∆f = f(s′)− f(s) representa a variação da função objetivo e T denota a tempe-

ratura do sistema. Esse mecanismo permite que o algoritmo atravesse barreiras do espaço

de busca associadas a ótimos locais, possibilitando a exploração de regiões que não seriam

acessíveis por métodos de busca local estritamente gulosos. À medida que a temperatura é

gradualmente reduzida conforme um esquema de resfriamento, a probabilidade de aceitar

soluções piores diminui, conduzindo o algoritmo a um comportamento progressivamente

mais intensificativo, favorecendo a convergência para soluções de melhor qualidade.

4.6 Variable Neighborhood Descent

O Variable Neighborhood Descent (VND) é uma meta-heurística determinística ampla-

mente empregada na resolução de problemas de otimização combinatória. Trata-se de um

método iterativo que explora sistematicamente diferentes estruturas de vizinhança com o

4.7 Greedy Randomized Adaptive Search Procedure 27

objetivo de aprimorar uma solução inicial. A ideia central do VND consiste em alternar

entre distintas vizinhanças, permitindo uma exploração mais ampla do espaço de soluções

e reduzindo a probabilidade de estagnação em ótimos locais.

Este método, visto em (BRIMBERG et al., 2016) inicia a partir de uma solu-

ção viável e a cada iteração, aplica um procedimento de busca local sobre uma solução

específica. Caso seja encontrada uma solução de melhor qualidade, essa solução passa a

ser a nova solução corrente e o algoritmo retorna à primeira vizinhança. Caso contrário,

o método avança para a próxima vizinhança definida. O processo é encerrado quando

nenhuma melhoria é obtida após a exploração de todas as vizinhanças, caracterizando um

ótimo local em relação ao conjunto de vizinhanças consideradas.

O método de VND pode ser utilizado com uma modificação em sua estrutura

clássica. Em vez de explorar as vizinhanças em uma ordem fixa, adota-se uma estratégia

de randomização da ordem de exploração das vizinhanças. Essa abordagem caracteriza

o método como um Randomized Variable Neighborhood Descent(RVND), cujo objetivo

é aumentar a capacidade de diversificação da busca e reduzir a dependência da ordem

pré-definida das estruturas de vizinhança.

O RVND explora múltiplas estruturas de vizinhança; assim, o RVND promove

um refinamento mais robusto das soluções candidatas, especialmente quando integrado a

meta-heurísticas baseadas em perturbação, como o Simulated Annealing.

4.7 Greedy Randomized Adaptive Search Procedure

O Greedy Randomized Adaptive Search Procedure (GRASP) (RESENDE; RIBEIRO, 2016)

é uma meta-heurística iterativa amplamente utilizada na resolução de problemas de oti-

mização combinatória. O método combina uma fase de construção gulosa e randomizada

com uma fase de busca local, visando explorar diferentes regiões do espaço de soluções e

reduzir a dependência de uma única solução inicial.

Na fase de construção, uma solução viável é gerada de forma incremental por

meio de um critério guloso. Após a fase construtiva, aplica-se um procedimento de busca

local com o objetivo de aprimorar a solução obtida, explorando sua vizinhança até que um

ótimo local seja alcançado. Neste trabalho, a etapa de refinamento do GRASP é realizada

4.7 Greedy Randomized Adaptive Search Procedure 28

por meio do Variable Neighborhood Descent (VND), que permite a exploração sistemática

de diferentes estruturas de vizinhança. Esse ciclo de construção e refinamento é repetido

por um número predefinido de iterações, sendo a melhor solução encontrada ao longo de

todas as execuções armazenada como resultado final do algoritmo.

Pode ser utilizado uma variante reativa dessa meta-heurística, intitulada Reactive

Greedy Randomized Adaptive Search Procedure (RGRASP). Diferentemente do GRASP

clássico, o RGRASP utiliza um algoritmo guloso randomizado reativo na fase construtiva

em que ajusta de forma reativa a escolha do parâmetro α com base no desempenho

histórico das soluções geradas, favorecendo valores que produzem soluções de melhor

qualidade.

29

5 Abordagens Propostas

Neste capítulo são detalhadas as abordagens propostas para a solução do PCC, descre-

vendo como os algoritmos discutidos nos capítulos anteriores foram adaptados, combina-

dos e implementados, bem como as principais decisões de projeto adotadas ao longo do

desenvolvimento deste trabalho. As abordagens propostas exploram diferentes estraté-

gias heurísticas e meta-heurísticas, com o objetivo de equilibrar qualidade de solução e

custo computacional, considerando explicitamente as restrições de capacidade inerentes

ao problema.

Para elucidar melhor alguns pontos importantes das abordagens com foco no

PCC, será tratado aqui algumas características que influenciam a criação dos métodos.

Podemos inicialmente trazer a importância do peso dos vértices e do benefício da asso-

ciação entre dois vértices. Iniciando pelo peso, este é associado a cada vértice a partir

da instância, ou seja, essa informação é constante para cada vértice e foi determinado

pelos autores na criação da instância, sendo que neste capítulo será visto que a soma

dos pesos de vértices no mesmo cluster é o valor de peso daquele cluster, que seria algo

como a capacidade alocada. No caso do benefício, ele também é determinado a partir da

instância sendo um valor constante para cada aresta do grafo completo. Ao criar uma

solução para o PCC, gera-se um sub-grafo completo em que todas arestas entre vértices

de um mesmo cluster possuem um benefício associado, com isso a soma destas arestas é

o benefício associado a ao cluster e a soma do benefício de cada cluster é o benefício da

solução.

Este trabalho utiliza uma abordagem híbrida de algoritmos heurísticos e meta-

heurísticos que visam gerar soluções distintas por meio de diferentes estratégias combi-

nadas. A abordagem proposta consiste em um algoritmo Simulated Annealing (SA) que

recebe como solução inicial o resultado de um algoritmo GRASP reativo. O objetivo de se

utilizar o algoritmo Reactive Greedy Randomized Adaptive Search Procedure (RGRASP)

na fase inicial do SA é gerar uma solução inicial de boa qualidade para facilitar a conver-

gência. Na fase de busca local, o SA utiliza o RVND com três diferentes buscas locais,

5 Abordagens Propostas 30

que fazem trocas de vértices entre clusters. Além disso, a combinação com modificação

da solução atual por meio de uma perturbação de uma porcentagem de vértices e clusters

gera vantagem ao permitir escapar de bacias de atração e evitar convergência precoce do

SA.

Em síntese, este trabalho usa dois algoritmos como base: o RGRASP, que provou

ser mais efetivo na geração de boas soluções iniciais, e o SA para explorar o espaço de busca

a partir da solução criado pelo RGRASP. A combinação proposta entre SA e RGRASP

incorpora, ao longo de suas execuções, o método Variable Neighborhood Descent (RVND)

como mecanismo de refinamento, visando aprimorar as diferentes soluções geradas durante

o processo de busca.

O Simulated Annealing (SA) é adotado como a meta-heurística principal deste

trabalho e caracteriza-se como um método de busca local estocástica, no qual soluções

vizinhas são exploradas a partir de perturbações controladas, sendo aceitas conforme um

critério probabilístico dependente da temperatura. Esse mecanismo permite ao algoritmo

escapar de ótimos locais ao admitir, de forma controlada, soluções de pior qualidade. No

entanto, observou-se que as soluções obtidas imediatamente após tais perturbações nem

sempre apresentam qualidade suficiente para contribuir efetivamente com a intensifica-

ção da busca. Nesse contexto, a aplicação do Random Variable Neighborhood Descent

(RVND) após as perturbações possibilita o refinamento sistemático das soluções geradas,

conduzindo o algoritmo a regiões mais promissoras do espaço de busca e favorecendo a

identificação de ótimos locais distintos daqueles previamente encontrados.

Além disso, constatou-se que a qualidade da solução inicial exerce influência sig-

nificativa sobre o desempenho final do SA. Diante disso, o RGRASP foi empregado como

método para a geração da solução inicial. O RGRASP opera de forma iterativa, com-

binando uma fase construtiva gulosa e randomizada com a aplicação do RVND para

o refinamento de cada solução gerada. Esse processo é executado por um número pré-

determinado de iterações, apresentando baixo custo computacional. Apesar de sua rápida

execução, o uso do RGRASP para a construção da solução inicial resulta em ganhos ex-

pressivos de qualidade, impactando positivamente o desempenho global da abordagem

híbrida proposta.

5.1 Solução inicial do RGRASP com Algoritmo Construtivo 31

5.1 Solução inicial do RGRASP com Algoritmo Cons-

trutivo

O Algoritmo 1 descreve a heurística construtiva gulosa e randomizada proposta neste

trabalho para a geração de uma solução inicial executada dentro do RGRASP. A heurística

tem como objetivo construir uma solução viável respeitando as restrições de capacidade e

custo, ao mesmo tempo em que busca uma boa qualidade inicial para posterior refinamento

pela meta-heurística base SA.

Algoritmo 1: Heurística Construtiva Gulosa e Randomizada
Entrada: grafoPonderado G, α, indMaxInserir
Saída: solucaoInicial

1 início
2 listaCandidatos← geraCandidatos(G)
3 listaCandidatos← ordenarPorCusto(listaCandidatos)
4 para cada Cluster j do vetor clusters faça
5 vertMaiorPeso← escolheCandMaiorPeso(listaCandidatos)
6 adicionaV ertCluster(vertMaiorPeso, cluster[j])

7 fim para cada
8 para cada Cluster j do vetor clusters faça
9 enquanto listaCandidatos ̸= Vazio faça

10 listaCandidatos← calculaBeneficioEmCadaCluster()
11 listaCandidatos← ordenarPorBeneficio(listaCandidatos)
12 indMaxInserir ← listaCandidatos.size ∗ α
13 indMelhorV ertCluster ← randNumEntre(0, indMaxInserir)
14 melhorCand← listaCandidatos[indMelhorV ertCluster]
15 melhorV ertice← melhorCand.vertice
16 melhorCluster ← melhorCand.cluster
17 addBestV ertCluster(bestV ert, bestCluster)
18 removeListaCandidatos(indiceV ertInserir)

19 fim enqto
20 fim para cada
21 retorna solucao;
22 fim

Inicialmente, nas linhas 2 e 3 é gerado um conjunto de vértices candidatos, os

quais são ordenados de acordo com um critério de custo associado ao problema , que são

os vértices de maior peso, ou seja, são ordenados do vértice de maior peso até o vértice de

menor peso. Em seguida nas linhas 4 a 7, para cada cluster a ser formado, seleciona-se

um vértice de maior peso dentre os candidatos disponíveis, garantindo que cada cluster

seja inicializado com ao menos um vértice representativo. Essa etapa visa assegurar uma

5.2 Algoritmo Construtivo Randomizado Reativo 32

distribuição inicial equilibrada e viável dos vértices entre os clusters.

Após a fase de inicialização, a partir da linha 8 até a linha 20 o algoritmo entra em

um processo iterativo de inserção dos vértices remanescentes. Enquanto houver candidatos

não alocados, inicia-se a iteração dos clusters na linha 8 e na linha 9 outra iteração que

continua enquanto a lista de candidatos houver elementos. Dentro do processo iterativo é

avaliado o benefício da inserção de cada vértice em cada cluster na linha 10, considerando

as restrições do problema sendo que para cada vértice da lista de candidatos consideramos

o benefício dele se associar a algum cluster, a partir da soma do benefício associado a ele

e todos os vértices de cada cluster. Sendo assim, a cada iteração onde um vértice é

escolhido e adicionado a um cluster, o benefício de todos os vértices da lista de candidatos

tem que ser atualizada para considerar o novo benefício de ser inserido naquel cluster que

foi atualizado com a entrada de mais um vértice.

Na linha 11 os candidatos são então ordenados de acordo com esse benefício e

uma Lista Restrita de Candidatos (LRC) é definida a partir do parâmetro de aleatoriedade

α ∈ [0, 1], o qual controla o equilíbrio entre comportamento guloso e diversificação. O

parâmetro α irá configurar qual a porcentagem dos melhores vértices da LRC será utilizada

para escolher de forma randômica o próximo vértice a ser adicionado na solução.

Assim, na linha 12 é calculado a quantidade máxima de melhores candidatos

podem ser selecionados para a solução com base no valor de α ∈ [0, 1] escolhido. Após

essa escolha, entre as linhas 13 e 16 um vértice e um cluster são selecionado de forma semi

aleatória a partir da LRC, entre o primeiro vértice e o índice de vértice máximo calculado

com base no α, e assim inserido no cluster correspondente e removido da LRC nas linhas

17 e 18, desde que a inserção preserve a viabilidade da solução.

Ao final do processo, obtém-se uma solução inicial viável para o PCC, constru-

ída de forma gulosa e randomizada, usada como primeira solução do RGRASP para ser

comparada com as próximas soluções geradas internamente.

5.2 Algoritmo Construtivo Randomizado Reativo

Nesta seção é apresentado o Algoritmo Construtivo Randomizado Reativo, utilizado

como componente construtivo do RGRASP para o Problema de Clusterização Capaci-

5.2 Algoritmo Construtivo Randomizado Reativo 33

tada (PCC). O objetivo desse algoritmo é gerar soluções iniciais diversificadas e de boa

qualidade, equilibrando critérios gulosos e aleatórios por meio do uso de uma lista de

candidatos controlada pelo parâmetro α. Além disso, a abordagem reativa permite ajus-

tar dinamicamente o parâmetro α ao longo das iterações, favorecendo automaticamente

aqueles valores que conduzem a soluções de melhor qualidade e aumentando a eficiência

do processo construtivo.

Para elucidar o conceito do parâmetro α e ser melhor compreendido ao ser lido o

pseudocódigo, podemos dizer que o valor dele é o parâmetro que

O valor de α é atualizado entre as linhas 20 e 24 onde é selecionado de forma

reativa a partir de um conjunto pré-definido, variando de 0,05 a 0,50, com probabilidades

inicialmente uniformes que são atualizadas após um número fixo de iterações, favorecendo

os valores de α associados às melhores soluções encontradas.

Para elucidar o conceito do parâmetro α e facilitar a compreensão do pseudocó-

digo, define-se tal valor como o coeficiente que controla o equilíbrio entre a intensificação e

a diversificação durante a fase de construção, assim controlando o quanto o algoritmo será

guloso. Na prática, o α determina o limiar de qualidade para a inclusão de elementos da

Lista Restrita de Candidatos (LRC): valores baixos de α tornam o algoritmo mais guloso,

selecionando apenas as melhores opções locais, enquanto valores mais altos aumentam a

variância das soluções geradas. Em termos práticos, o α delimita o tamanho da Lista

Restrita de Candidatos (LRC): um valor de α = 0,2, por exemplo, instrui o algoritmo

a restringir o sorteio aleatório exclusivamente aos 20% melhores vértices candidatos dis-

poníveis naquela iteração. Periodicamente, as probabilidades de seleção de cada α são

recalculadas, de modo que os valores que historicamente geraram as melhores soluções

tenham suas chances de escolha aumentadas nas iterações seguintes.

Para elucidar o conceito do parâmetro α e facilitar a compreensão do pseudocó-

digo, define-se tal valor como o coeficiente que controla o equilíbrio entre a voracidade e a

aleatoriedade na construção da solução. O valor de α é atualizado entre as linhas 20 e 24

onde é selecionado de forma reativa a partir de um conjunto pré-definido, variando de 0,05

a 0,50, com probabilidades inicialmente uniformes que são atualizadas após um número

fixo de iterações, favorecendo os valores de α associados às melhores soluções encontradas.

5.2 Algoritmo Construtivo Randomizado Reativo 34

Algoritmo 2: Algoritmo construtivo randomizado reativo
Entrada: grafoG, α, iterPorAlpha, iterMax
Saída: Solução S∗

1 início
2 contadorIter ← 0;
3 S ← ∅;
4 Cria vetor de probabilidades com distribuição uniforme P ;
5 enquanto Não atingir iterMax iterações faça
6 Cria lista de candidatos ordenada LC;
7 Adiciona um candidato aleatório dentre os α melhores da LC à cada

cluster de S;
8 Atualiza e reordena a LC;
9 enquanto LC não estiver vazia faça

10 Candidato← Escolhe aleatoriamente um Candidato dentre os α
melhores;

11 MelhorCluster ← Encontra o melhor cluster para o Candidato;
12 Insere o Candidato no MelhorCluster de S;
13 Atualiza e reordena a LC;
14 fim enqto
15 se Solução for inviável então
16 viabilize (S);
17 fim se
18 S∗ ← Escolha a melhor solução entre S e S∗;
19 Incremente ContadorIter;
20 se contadorIter atingir iterPorAlpha então
21 Atualize vetor de probabilidades P ;
22 Escolha um novo α;
23 ContadorIter ← 0;
24 fim se
25 fim enqto
26 retorna S∗;
27 fim

O Algoritmo 2 descreve o procedimento construtivo empregado a cada iteração

do RGRASP. Inicialmente nas linhas 2 a 4 é inicializadas as variáveis e criado o vetor

de probabilidades que faz o algoritmo ser reativo as melhores soluções, assim inicia-se a

iteração entre as linhas 5 e 25, na linha 6 todos os vértices do grafo são inseridos em

uma Lista de Candidatos (LC), a qual é atualizada e ordenada na linha 8 de acordo

com o somatório dos benefícios das arestas associadas a cada vértice. A construção da

solução inicia-se pela inserção de vértices escolhidos aleatoriamente dentre os α melhores

candidatos da LC na iteração interna entre as linhas 9 e 14, garantindo diversidade

desde as primeiras decisões. Em seguida, enquanto houver candidatos não alocados, um

5.3 Randomized Variable Neighborhood Descent 35

vértice é selecionado aleatoriamente a partir da LC e inserido no cluster que proporciona

o maior benefício incremental. O valor de α é atualizado entre as linhas 20 e 24 onde

é selecionado de forma reativa a partir de um conjunto pré-definido, variando de 0,05 a

0,50, com probabilidades inicialmente uniformes que são atualizadas após um número fixo

de iterações, favorecendo os valores de α associados às melhores soluções encontradas.

5.3 Randomized Variable Neighborhood Descent

O RVND é o núcleo do processo de intensificação deste trabalho, ele explora diferentes

estruturas de vizinhança de forma randômica a partir da aplicação das buscas locais

para refinara solução atual. Esse processo continua até que todas as vizinhanças sejam

exploradas sem melhora ou até que o limite de iterações seja atingido. O funcionamento

geral segue descrito abaixo:

1. Definição das vizinhanças e embaralhamento da ordem inicial.

2. Execução da busca local correspondente à vizinhança atual Nl.

3. Se houver melhoria, aceitar a solução e retornar à primeira vizinhança.

4. Caso contrário, avançar para a próxima vizinhança.

5. Encerrar quando todas as vizinhanças forem exploradas sem melhora.

Além da randomização da sequência de vizinhanças, o RVND implementado in-

corpora um limite máximo de iterações como critério de parada adicional, evitando ciclos

excessivos de busca local e controlando o custo computacional do método. O critério de

aceitação das soluções segue a melhoria do valor da função objetivo, de modo que apenas

soluções que apresentem ganho de benefício em relação à solução corrente são aceitas.

Essas modificações tornam o procedimento de busca local mais flexível e adequado à

integração com as meta-heurísticas empregadas neste trabalho.

O critério de parada padrão é o fim das estruturas de vizinhança, o que equivale

a não se encontrar uma solução melhor em nenhuma vizinhança, ou seja, as buscas locais

implementadas já não surtem efeitos positivos na solução. Adicionalmente, foi incorporado

5.3 Randomized Variable Neighborhood Descent 36

um limite máximo de iterações como critério de parada suplementar, controlando assim o

custo computacional do algoritmo, visando restringir o número de buscas locais aplicadas

às soluções intermediárias geradas pelo SA.

No contexto do procedimento de busca local utilizando RVND, as estruturas de

vizinhança definidas abaixo não são exploradas em uma sequência determinística. A cada

iteração do RVND, a lista de vizinhanças é embaralhada, e o algoritmo explora o espaço

de busca na ordem definida por essa permutação aleatória. O funcionamento de cada

movimento pode ser descrito da seguinte forma:

• Realocação (Shift): examina a transferência unilateral de um vértice de seu clus-

ter atual para um cluster de destino. A operação é validada apenas se a inserção

respeitar a capacidade do grupo receptor, sendo fundamental para ajustes finos no

balanceamento de carga.

• Troca (Swap): consiste na permuta simples entre dois vértices pertencentes a

grupos distintos. Diferente da realocação, este movimento tende a manter o nível

de preenchimento dos clusters relativamente estável, pois a entrada de um elemento

é compensada pela saída de outro.

• Troca Assimétrica (Swap 2-1): realiza a substituição de dois vértices de um

mesmo grupo por um único vértice proveniente de outro grupo. Trata-se de um

movimento mais agressivo, capaz de alterar significativamente a cardinalidade e a

configuração espacial dos agrupamentos envolvidos.

A combinação dessas três vizinhanças dentro da estratégia do RVND confere

robustez ao algoritmo. Enquanto os movimentos de Realocação e Troca atuam refinando

a solução, o movimento assimétrico (2-1) além de refinar, também facilita a exploração

de novas regiões do espaço de busca, permitindo que o método escape de ótimos locais

onde trocas simples seriam insuficientes para promover melhorias.

O Algoritmo 3 descreve formalmente o procedimento padrão do RVND que inicia

a partir de uma solução viável s dada como entrada e percorre iterativamente o conjunto

de vizinhanças N1, N2, . . . , Nk. O algoritmo inicia randomizando a lista de vizinhanças

na linha 2, assim a ordem de uso das buscas locais é aleatorizada. A cada iteração entre

5.3 Randomized Variable Neighborhood Descent 37

as linhas 5 e 17, em que o critério de parada é finalizar a busca em todas as vizinhanças

sem melhoria naquele ponto, alcançando então um ótimo local.

Dentro do processo iterativo, na linha 6 uma nova solução candidata s′ é gerada

por meio da aplicação da vizinhança corrente, fazendo então a modificação da solução

atual por meio de uma das buscas locais. Entre as linhas 7 e 10 caso seja observada uma

melhoria no valor da função objetivo, isto é, f(s′) > f(s), a solução é atualizada na linha

8 e o processo retorna à primeira vizinhança na linha 9, reiniciando o ciclo de exploração.

Caso contrário, a busca avança para a próxima vizinhança na linha 12. O procedimento

é encerrado quando todas as vizinhanças são exploradas sem que qualquer melhoria seja

encontrada, que é o critério de parada da iteração que pode ser visto na linha 5, assim

caracterizando um ótimo local em relação ao conjunto de vizinhanças consideradas. Na

linha 15 o algoritmo verifica se a quantidade máxima de iterações do RVND foi alcançada,

o que faz a iteração finalizar logo em seguida caso tenha alcançado. No contexto deste

trabalho, o RVND é utilizado como mecanismo de intensificação, sendo acoplado a meta-

heurísticas de mais alto nível, contribuindo significativamente para o refinamento das

soluções geradas e para o aumento da qualidade final dos resultados obtidos.

5.3 Randomized Variable Neighborhood Descent 38

Algoritmo 3: Randomized Variable Neighborhood Descent(RVND)
Entrada: Grafo G, Solução inicial bestSolution, número máximo de

iterações maxIter
Saída: Solução refinada bestSolution

1 início
2 Randomiza lista com kmax vizinhanças;
3 ContadorIter ← 0;
4 k ← 0;
5 enquanto k < kmax faça
6 s′ ← gerarV izinhancaN (k)(s);
7 se f(s′) > f(s) então
8 s← s′;
9 k ← 0;

10 fim se
11 senão
12 Incrementar(k);
13 fim se
14 Incrementar(ContadorIter);
15 se ContadorIter = maxIter então
16 break;
17 fim se
18 fim enqto
19 retorna s;
20 fim

Essa abordagem permite um balanceamento eficaz entre intensificação e diversifi-

cação, sendo amplamente utilizada em problemas combinatórios. Além disso, a aleatoriza-

ção inicial na ordem das vizinhanças reduz o risco de padrões determinísticos indesejados

e reforça a capacidade exploratória do método. Abaixo as buscas locais utilizadas no

trabalho são detalhadas para um melhor entendimento.

5.3.1 Busca Local 1 - Realocação (Shift) 1-0

A Busca Local 1-to-0, tem como objetivo melhorar a solução movendo um único vértice de

um cluster para outro, desde que a operação gere uma melhoria no benefício e mantenha

a viabilidade dos clusters envolvidos.

5.3 Randomized Variable Neighborhood Descent 39

Algoritmo 4: Busca Local 1–0
Entrada: Solucao s
Saída: Solução aprimorada s′

1 início
2 melhora ← 0;
3 embaralhar ordem dos clusters ;
4 para cada cluster g1 faça
5 para cada vértice v ∈ g1 faça
6 para cada cluster g2 ̸= g1 faça
7 verificar viabilidade de mover v para g2;
8 calcular variação de benefício ∆;
9 se ∆ > 0 então

10 realizar movimento;
11 melhora ← melhora + ∆;
12 fim se
13 fim para cada
14 fim para cada
15 fim para cada
16 retorna s′;
17 fim

Este procedimento considera todos os clusters em ordem aleatória e, para cada

vértice de cada cluster, avalia o impacto de removê-lo de seu cluster atual e inseri-lo em

outro cluster. A operação é aplicada apenas quando:

1. os limites inferior e superior dos clusters permanecem respeitados;

2. o ganho de benefício é estritamente positivo;

3. a alteração não gera violação estrutural no problema.

A busca local do tipo 1–0 consiste em tentar mover um único vértice de um

cluster para outro, avaliando o impacto dessa movimentação na função objetivo. Para

cada vértice v pertencente ao cluster g1, o método verifica a viabilidade de inseri-lo em

outro cluster g2, considerando tanto a restrição de limites de peso quanto a variação no

benefício.

A melhoria é calculada como a diferença entre o benefício perdido em g1 devido à

remoção do vértice e o benefício ganho pela inserção em g2. Se essa variação for positiva,

o movimento é realizado. Esse processo é repetido sobre todos os vértices e clusters,

conduzindo a solução a um ótimo local associado aos movimentos 1–0. Apesar de ser

computacionalmente custoso, buscamos fazer a atualização apenas do que foi alterado.

5.3 Randomized Variable Neighborhood Descent 40

A introdução de embaralhamento na ordem dos clusters reduz o viés determinístico e

aumenta a capacidade de explorar múltiplas composições de vizinhança.

Ao longo do processo, o método armazena a melhor troca encontrada e, ao final,

aplica efetivamente a modificação com a maior melhoria. Caso nenhuma troca resulte em

benefício positivo, a busca local encerra-se sem modificações.

5.3.2 Busca Local 2 - Troca (Swap) 1-1

A Busca Local 1-to-1, realiza trocas entre pares de vértices pertencentes a clusters distin-

tos. O objetivo é encontrar melhorias no valor da função objetivo substituindo um vértice

de um cluster por outro vértice de outro cluster e fazendo a troca entre eles.

A cada iteração, o algoritmo:

• seleciona dois clusters distintos;

• escolhe um vértice de cada cluster ;

• avalia o impacto da troca simultânea entre os clusters.

Algoritmo 5: Busca Local 1–1
Entrada: Solução s
Saída: Solução aprimorada s

1 melhora ← 0;
2 embaralhar ordem dos clusters ;
3 para cada cluster g1 faça
4 para cada vértice v1 ∈ g1 faça
5 para cada cluster g2 ̸= g1 faça
6 para cada vértice v2 ∈ g2 faça
7 verificar viabilidade da troca (v1, v2) entre g1 e g2
8 calcular variação de benefício:

∆ = ∆rem(v1, g1) + ∆rem(v2, g2) + ∆add(v1, g2) + ∆add(v2, g1)
9 se ∆ > 0 então

10 realizar troca (v1, v2);
11 melhora ← melhora + ∆

12 fim se
13 fim para cada
14 fim para cada
15 fim para cada
16 fim para cada
17 return s

A busca local 1–1 explora vizinhanças formadas pela troca simultânea de um

vértice de cada par de clusters distintos. Dado um vértice v1 pertencente ao cluster g1 e

5.3 Randomized Variable Neighborhood Descent 41

um vértice v2 pertencente ao cluster g2, o método avalia a troca (v1 ↔ v2).

A troca somente é considerada se respeitar as restrições de viabilidade dos clus-

ters, especialmente os limites inferior e superior de peso. A variação de benefício é compu-

tada como a soma entre as reduções de benefício decorrentes das remoções e os acréscimos

provenientes das inserções. Se a troca apresentar melhoria positiva na função objetivo,

ela é executada.

Esse tipo de movimento é mais expressivo que a busca local 1–0, pois permite

modificar simultaneamente a configuração de ambos os clusters envolvidos, podendo es-

capar de ótimos locais associados apenas à remoção e inserção simples. A troca 1–1 é

particularmente eficiente em problemas onde a estrutura da solução é sensível ao equilíbrio

entre os clusters.

O custo e o benefício resultantes são comparados com o estado atual da solução.

A operação é aplicada apenas quando:

1. ambos os clusters permanecem viáveis;

2. há ganho de benefício maior que zero.

O processo termina quando nenhuma troca adicional melhora a solução.

5.3.3 Busca Local 3 - Troca Assimétrica (Swap) 2-1

A Busca Local 2-to-1 consiste na remoção de dois vértices de um cluster e inserção de

um vértice em seu lugar, ou em movimentos equivalentes que envolvem múltiplos vértices.

Esse tipo de vizinhança é mais complexa, pois altera simultaneamente a composição e o

peso total dos clusters.

5.3 Randomized Variable Neighborhood Descent 42

Algoritmo 6: Busca Local 2–1
Entrada: Solução s
Saída: Solução aprimorada s

1 melhora ← 0;
2 embaralhar ordem dos clusters ;
3 para cada cluster g1 faça
4 para cada cluster g2 ̸= g1 faça
5 para cada par de vértices (va, vb) ⊂ g1 faça
6 para cada vértice vc ∈ g2 faça
7 verificar viabilidade da troca {va, vb} ↔ {vc}
8 calcular variação de benefício:

∆rem ← ∆rem(va, g1) + ∆rem(vb, g1) + ∆rem(vc, g2)
∆rem ← ∆add(va, g2) + ∆add(vb, g2) + ∆add(vc, g1)
∆← ∆rem +∆add

9 se ∆ > 0 então
10 remover va e vb de g1 e inserir em g2 remover vc de g2 e

inserir em g1 melhora ← melhora + ∆
11 fim se
12 fim para cada
13 fim para cada
14 fim para cada
15 fim para cada
16 return s

A busca local 2–1 expande a vizinhança explorada ao permitir trocas assimétricas

entre clusters, nas quais dois vértices de um cluster são trocados por um único vértice do

cluster vizinho. Esse movimento é especialmente útil em problemas onde os clusters pos-

suem faixas de viabilidade amplas e onde combinações de vértices podem gerar benefícios

substancialmente superiores aos obtidos por modificações unitárias.

Para cada par de vértices (va, vb) pertencentes ao cluster g1 e cada vértice vc

pertencente ao cluster g2, é avaliada a troca {va, vb} ↔ {vc}. O movimento é considerado

apenas se ambos os clusters permanecerem dentro dos limites de peso estabelecidos após

a troca.

A variação de benefício é calculada pela combinação das remoções e inserções

realizadas em ambos os clusters. Caso ∆ seja positivo, a troca é executada. Esse tipo de

vizinhança permite mudanças mais profundas na estrutura da solução, proporcionando

saltos maiores no espaço de busca e aumentando a probabilidade de escapar de ótimos

locais que não podem ser superados por vizinhanças 1–0 ou 1–1. Seu uso é particularmente

relevante em cenários onde a estrutura dos clusters impede melhorias por vizinhanças mais

simples.

5.4 Perturbação - Desconstrução e Reconstrução 43

5.4 Perturbação - Desconstrução e Reconstrução

O mecanismo de perturbação é feito de forma estruturada e é utilizado em dois momentos

diferentes, no RGRASP e no SA, sendo essencial para sair de ótimos locais e saltar para

novos espaços de busca para que o refinamento aconteça. Ele desempenha um papel

fundamental na estratégia deste trabalho, sendo executado a cada iteração na solução

corrente. Logo após a execução dele, é realizado um refinamento com as estruturas de

busca local do RVND, operando de uma forma que a pertubação consiga sair de um

ótimo local quando é alcançado e encontrar novos espaços de busca. Esse algoritmo de

perturbação opera em duas fases principais, a Desconstrução e Reconstrução e podem ser

vistas abaixo em detalhes.

Na etapa de desconstrução, remove-se parcialmente a estrutura da solução atual.

No algoritmo implementado, remove-se uma fração dos vértices de alguns clusters, esco-

lhidos probabilisticamente com base nos parâmetros:

• pElementos: probabilidade de um vértice de um cluster ser removido;

• pClusters: probabilidade de um cluster ser selecionado para remoção.

Os vértices removidos são armazenados em uma lista de candidatos.

Após a desconstrução, é feito o processo de reconstrução, em que cada vértice

removido é reinserido na solução utilizando uma estratégia gulosa. O algoritmo:

1. primeiro preenche clusters abaixo do limite inferior;

2. depois insere os vértices restantes, escolhendo, para cada um, o cluster que maximiza

o benefício incremental.

Como explicado acima e também pode ser visto no algoritmo 7, ele primeiro

faz a desconstrução de parte da solução e depois reconstrói de forma gulosa. Esse pro-

cesso permite escapar de ótimos locais e reconstruir soluções mais robustas, preservando

parcialmente a estrutura original.

5.4 Perturbação - Desconstrução e Reconstrução 44

Algoritmo 7: Perturbação da Solução
Entrada: Solução s, parâmetros probabilelem e probabilgrp
Saída: Solução perturbada s′

1 início
2 s′ ← cópia de s; criar lista de candidatos L;
3 para cada cluster g em s′ faça
4 q = ⌊|g| · probabilelem⌋;
5 gerar probabilidade u ∈ [0, 1];
6 se u ≤ probabilgrp então
7 x para i← 1 to q faça
8 gerar probabilidade r ∈ [0, 1];
9 se r ≤ probabilelem então

10 selecionar vértice aleatório v ∈ g;
11 remover v de g e adicionar v a L;
12 fim se
13 fim para
14 fim se
15 fim para cada
16 enquanto existe cluster g com custo(g) < lower(g) faça
17 para cada candidato c ∈ L calcular benefício de inserção;
18 inserir o candidato com maior benefício no cluster correspondente;
19 fim enqto
20 para cada candidato disponível c ∈ L faça
21 encontrar cluster g de maior benefício viável;
22 inserir c em g;
23 fim para cada
24 retorna s′;
25 fim

A etapa de perturbação tem como objetivo diversificar a busca, deslocando a

solução atual para uma região distinta do espaço de busca. A estratégia adotada remove

probabilisticamente um subconjunto de vértices de cada cluster, controlado pelos parâ-

metros probabilelem (probabilidade de remoção de elementos) e probabilgrp (probabilidade

de um cluster ser perturbado). Os vértices removidos são armazenados em uma lista de

candidatos e posteriormente reinseridos de maneira gulosa.

A reinserção ocorre em duas fases. Primeiro, preenchem-se os clusters abaixo do

limite inferior, garantindo a viabilidade estrutural da solução. Em seguida, os demais

candidatos são inseridos com base no maior benefício marginal, definido como a soma

das distâncias entre o candidato e os elementos do cluster receptor. Esse procedimento

conduz à solução para uma nova região promissora, preservando parte da boa estrutura

previamente construída e permitindo a saída de ótimos locais.

5.5 Reactive Greedy Randomized Adaptive Search Procedure 45

5.5 Reactive Greedy Randomized Adaptive Search Pro-

cedure

Esta seção descreve a utilização do RGRASP, apresentado no Algoritmo 8, com foco

em explicar a meta-heurística adotada, o conjunto de valores α considerados, o fluxo de

execução, o mecanismo reativo empregado para sua seleção ao longo das iterações e o

critério de atualização da melhor solução.
Algoritmo 8: RGRASP com RVND

Entrada: Grafo G, número máximo de iterações maxIter
Saída: Melhor solução encontrada

1 início
2 bestSolution← GreedyAlgorithm(G);
3 valBest← valor(bestSolution);
4 Definir conjunto de alfas α = {0.10, 0.15, . . . , 0.70};
5 Inicializar probabilidades iguais p(αi);
6 Inicializar somaResultados[i] ← 0;
7 Inicializar qtdEscolhido[i] ← 0;
8 Criar distribuição discreta baseada em p(αi);
9 para iter = 1 é maxIter faça

10 i← índice sorteado segundo distribuição discreta;
11 αatual ← α[i];
12 currentSolution← RandomizedGreedyAlgorithm(G,αatual);
13 RVND_CCP(G, currentSolution, 200);
14 somaResultados[i] ← somaResultados[i] + valor(currentSolution);
15 qtdEscolhido[i] ← qtdEscolhido[i] + 1;
16 se currentSolution é viável e valor(currentSolution) > valBest

então
17 bestSolution← currentSolution;
18 valBest← valor(currentSolution);
19 fim se
20 se iter mod 30 = 0 então
21 para cada j em [1, . . . , |α|] faça
22 se qtdEscolhido[j] > 0 então
23 média ← somaResultados[j] / qtdEscolhido[j];
24 q[j]←

(média
valBest

)δ, com δ = 20;
25 fim se
26 fim para cada
27 Normalizar vetor q para obter novas probabilidades;
28 Atualizar distribuição discreta p(α);
29 fim se
30 fim para
31 retorna bestSolution;
32 fim

O RGRASP é utilizado para a construção das soluções iniciais posteriormente

5.5 Reactive Greedy Randomized Adaptive Search Procedure 46

empregadas no SA, no qual o processo construtivo guloso é combinado com mecanismos

de aleatoriedade controlada e adaptação dinâmica do parâmetro de aleatoriedade. Além

disso, cada solução construída é refinada por meio do RVND, após executar uma pertur-

bação dos vértices e clusters, resultando em soluções iniciais mais robustas e próximas de

ótimos locais de alta qualidade, o que exerce influência direta na eficiência e na qualidade

da busca conduzida pelo Simulated Annealing, pois, quando o SA é executado, as soluções

inicialmente criadas são promissoras.

O Algoritmo 8 inicia-se com a obtenção de uma solução inicial por meio de um

algoritmo guloso determinístico na linha 2, utilizado como referência para a avaliação das

soluções subsequentes. A cada iteração do RGRASP, um valor de α é selecionado de

forma probabilística a partir de um conjunto pré-definido na linha 4 e na distribuição

discreta de probabilidades na linha 8. Ao iniciar a iteração da linha 9 a 30 usando como

critério de parada o parâmetro de quantidade de iterações máximas, nas linhas 10 e 11 o

algoritmo fixa o parâmetro α atual a ser empregado na fase construtiva do algoritmo guloso

randomizado reativo na linha 12, responsável por gerar uma solução inicial diversificada.

Em seguida na linha 13, essa solução é submetida ao procedimento RVND específico

para o PCC, que explora sistematicamente diferentes estruturas de vizinhança visando a

obtenção de um ótimo local.

Ao longo das iterações, estatísticas associadas a cada valor de α são atualizadas

entre as linhas 20 e 26, permitindo o ajuste reativo das probabilidades de seleção com

base na qualidade média das soluções obtidas. Periodicamente, como pode ser visto na

linha 20, a cada 30 iterações, essas probabilidades são recalculadas e na linha 27 e 28 é

feita a normalização e atualização da distribuição discreta, responsável por ser escolhido o

parâmetro α na próxima iteração, favorecendo valores de α com melhor desempenho rela-

tivo, enquanto a melhor solução viável encontrada durante todo o processo é armazenada

como solução final do algoritmo.

5.6 Abordagem Híbrida: Simulated Annealing com RGRASP e RVND 47

5.6 Abordagem Híbrida: Simulated Annealing com

RGRASP e RVND

Nesta seção é apresentada a abordagem híbrida que integra as meta-heurísticas Simulated

Annealing (SA), RGRASP e RVND em um único framework de otimização. A estratégia

adotada explora a complementaridade entre essas técnicas, utilizando o RGRASP como

mecanismo de geração de soluções iniciais diversificadas, o RVND como procedimento

de intensificação local e o SA como método base e de aceitação probabilística capaz de

escapar de ótimos locais. Essa combinação visa equilibrar de forma eficiente os processos

de diversificação e intensificação da busca, permitindo uma exploração mais robusta do

espaço de soluções. No fluxograma visto na imagem 5.1 e nos parágrafos a seguir, são

apresentados como os principais componentes da abordagem proposta se interagem entre

eles no decorrer do processo de otimização.

Figura 5.1: Fluxograma completo da abordagem proposta

5.6 Abordagem Híbrida: Simulated Annealing com RGRASP e RVND 48

Algoritmo 9: Meta-heurística Simulated Annealing (SA) aplicada ao PCC
Entrada: grafo, α, txAceitacao, iterMaxSA, iterMaxV ND,

porctgPerturbElementos, porctgPerturbClusters
Saída: s: solução subótima do PCC

1 início
2 tempAtual← temperaturaInicial(tempAtual, 1.25, 0.95, iterMax);
3 best← RGRASP_RVND(grafo);
4 s* ← s;
5 contEstagnacao← 0;
6 enquanto tempAtual > tempFinal faça
7 contEstagnacao← contEstagnacao+ 1;
8 enquanto iterTempAtual < iterMaxSA faça
9 se contEstagnacao > iterMax ∗ 0.3 então

10 break;
11 fim se
12 iterTempAtual← iterTempAtual + 1 s′ ←

Perturbacao(s∗, porctgPerturbElementos, porctgPerturbClusters)
s′ ← RVND(s∗, iterMaxV ND)

13 ∆← s′.valor()− s.valor()
14 se ∆ > 0 então
15 se s′ é viável e s′.valor() > best.valor() então
16 best← Copia(s′) contEstagnacao← 0
17 fim se
18 s← Copia(s′)
19 fim se
20 senão
21 u← Rand(0, 1) se u < e∆/tempAtual então
22 s← Copia(s′)
23 fim se
24 fim se
25 fim enqto
26 tempAtual← α · tempAtual;
27 iterTempAtual← 0

28 fim enqto
29 retorna best;
30 fim

O Algoritmo 9 descreve a meta-heurística híbrida proposta, na qual podem ser

observadas com mais clareza a estruturação da meta-heurística SA e as etapas em que

foram combinados o RGRASP e o RVND. Inicialmente, é calculada a temperatura inicial

por meio de um procedimento específico de calibração, conforme descrito na subseção

5.6.1. Em seguida, uma solução inicial de alta qualidade é gerada utilizando o algoritmo

RGRASP_RVND, o qual combina uma construção gulosa randomizada reativa com re-

finamento por RVND. Essa solução é utilizada como ponto de partida para o processo

de busca do SA, sendo também armazenada como a melhor solução encontrada até o

5.6 Abordagem Híbrida: Simulated Annealing com RGRASP e RVND 49

momento.

O laço principal do algoritmo corresponde ao processo de resfriamento do SA, no

qual a temperatura é progressivamente reduzida até atingir um valor final predefinido.

Para cada temperatura corrente, é executado um laço interno que realiza um número

máximo de iterações controlado por iterMaxSA. Em cada iteração, a solução corrente

é submetida a um operador de perturbação, no qual uma porcentagem dos vértices e

dos clusters da solução é modificada, conforme os parâmetros porctgPerturbElementos e

porctgPerturbClusters. Essa perturbação visa promover diversificação e permitir a explo-

ração de novas regiões do espaço de busca.

Após a perturbação, a solução candidata é refinada por meio do método RVND,

limitado a um número máximo de iterações (iterMaxVND), atuando como mecanismo de

intensificação local. A aceitação da nova solução segue o critério clássico do Simulated

Annealing : soluções que apresentam melhora no valor da função objetivo são sempre

aceitas, enquanto soluções piores podem ser aceitas com uma probabilidade dependente

da variação de qualidade ∆ e da temperatura atual, conforme definido na subseção 5.6.2.

Adicionalmente, o algoritmo incorpora um critério de estagnação, monitorado

por meio de um contador de iterações consecutivas sem melhoria. Caso esse contador

ultrapasse 30% do número máximo de iterações permitidas para a temperatura corrente,

o laço interno é interrompido antecipadamente, evitando gasto computacional excessivo

em regiões pouco promissoras do espaço de busca. Ao final de cada ciclo interno, a

temperatura é atualizada segundo a taxa de resfriamento definida na Seção 5.6.3.

Por fim, ao término do processo de resfriamento, a melhor solução viável encon-

trada ao longo de toda a execução é retornada como solução subótima do PCC. A com-

binação entre diversificação controlada (SA), intensificação local (RVND) e construção

inicial robusta (RGRASP) resulta em um método híbrido capaz de explorar eficiente-

mente o espaço de soluções e obter soluções de alta qualidade para instâncias complexas

do problema.

5.6 Abordagem Híbrida: Simulated Annealing com RGRASP e RVND 50

5.6.1 Cálculo da temperatura inicial

Para este trabalho, utilizou-se um método extra para realizar o cálculo da temperatura

inicial. Este método recebe uma taxa de aceitação mínima β e itera sobre várias soluções,

com incrementos graduais de temperatura enquanto a taxa de aceitação não atingir o

mínimo esperado. Portanto, para o melhor entendimento de como é feito o cálculo da

temperatura inicial, que é uma das coisas mais importantes nessa meta-heurística.

O algoritmo 10 ilustra o método utilizado para se encontrar uma boa temperatura

inicial. Este método recebe uma taxa de aceitação mínima e itera sobre várias soluções,

com incrementos graduais de temperatura ditados por β enquanto a aceitação não atingir

o mínimo esperado.

Entrada: Grafo G(V,E), β, TaxaDeAceitacao, IterPorTemperatura
Saída: Melhor solução encontrada, Temperatura inicial

1 início
2 s∗ ← ConstrutivoRandomizadoReativo();
3 s← s∗;
4 Temperatura← 100;
5 ContadorIter ← 0;
6 aceitos← 0;
7 enquanto Taxa de aceitação não for atingida faça
8 ContadorIter ← 0;
9 enquanto ContadorIter < IterPorTemperatura faça

10 Incrementar(ContadorIter);
11 s← Perturbacao(s, 0.3);
12 ∆← f(s)− f(s∗);
13 se ∆ > 0 então
14 s∗ ← s;
15 Incrementar(aceitos);
16 fim se
17 senão
18 se Condição de aceitação for satisfeita então
19 Incrementar(aceitos);
20 fim se
21 fim se
22 fim enqto
23 Temperatura = Temperatura× β;
24 fim enqto
25 retorna s∗, T emperatura;
26 fim

5.6 Abordagem Híbrida: Simulated Annealing com RGRASP e RVND 51

5.6.2 Taxa de aceitação de soluções

O critério de aceitação segue o modelo clássico do SA. Se a solução vizinha apresenta

melhoria em relação à solução corrente, ela é imediatamente aceita. Caso contrário, a

solução pior pode ser aceita com uma probabilidade dada por:

P (aceitação) = e∆/T ,

onde ∆ representa a variação de qualidade (benefício) entre as soluções, e T é a

temperatura atual. Essa estratégia controlada de aceitação de soluções piores permite ao

algoritmo escapar de ótimos locais e explorar regiões mais amplas, sendo especialmente

relevante em problemas combinatórios altamente restritivos como o PCC.

Ao fim de cada ciclo de iteração, a temperatura é atualizada de acordo com um fa-

tor de resfriamento α, que aplica um decaimento multiplicativo. O processo prossegue até

que a temperatura final seja atingida. Após o término do resfriamento, o algoritmo realiza

uma busca local final utilizando RVND para garantir que a melhor solução encontrada

esteja devidamente otimizada.

A taxa de aceitação A formulada na equação 1 considera a diferença de qualidade

∆ dividida pela temperatura atual T .

A = exp∆/T (1)

Sempre que uma solução é aceita, seja pela equação 1 ou por ela ser a melhor

conhecida, é realizado um número fixo de iterações de refinamento pelo RVND.

5.6.3 Taxa de resfriamento

Para a taxa de resfriamento Tn formulada na equação 2, os decrementos ocorrem em

função de um percentual α e um valor c. Este valor constante foi necessário para acelerar

o resfriamento em baixas temperaturas, devido à alta taxa de estagnação das soluções.

Assim, a nova temperatura Tn é dada por:

Tn = (Tn−1 × α)− (c×NumeroDeEstagnacoes) (2)

52

6 Experimentos Computacionais

Neste capítulo apresentam-se a metodologia de teste, o ambiente computacional, parâ-

metros, os resultados dos testes da estratégia proposta, a análise e comparação com os

resultados das estratégias de referência na literatura para solução do PCC.

6.1 Ambiente de testes

Todos os algoritmos foram implementados em C++ 17, compilados utilizando o GCC

6.3.0 com a diretiva -O3 e executados em um computador com a seguinte configuração:

processador Intel(R) Core(TM) i7-8700 CPU @ 3.20 GHz, com 32 GB de memória RAM

DDR4, no sistema operacional Linux Deepin.

Buscando garantir uma comparação justa com a literatura, já que são execu-

tados em processadores diferentes, buscamos um multiplicador baseado no benchmark

PassMark CPU Mark1. Verificou-se que o processador (Intel Xeon E5-2670) utilizado no

trabalho de referência da literatura em (LIU; GUO; ZENG, 2022a) tem 6% mais poder

computacional que o processador (Intel Core i7-8700) usado para executar os resultados

deste trabalho, com pontuação de 12.748, contra 13.473. Portanto, os tempos de execu-

ção foram multiplicados por um fator aproximado de 0,94 para manter a paridade entre

o hardware dos dois trabalhos.

6.2 Instâncias de teste

Para a avaliação computacional dos métodos propostos, foram utilizadas instâncias per-

tencentes ao conjunto de benchmark denominado CCPLIB2, amplamente empregado na

literatura para experimentos envolvendo o PCC. Ao todo, foram consideradas 50 instân-

cias, divididas em diferentes subconjuntos, conforme descrito a seguir.

Essas instâncias utilizadas na literatura possuem algumas características: consti-
1Disponível em: <https://www.cpubenchmark.net/compare/3099vs2337/>
2Disponível em: <https://grafo.etsii.urjc.es/optsicom/ccp.html>

https://www.cpubenchmark.net/compare/3099vs2337/
https://grafo.etsii.urjc.es/optsicom/ccp.html

6.3 Parametrização de variáveis 53

tuem grafos completos, as instâncias são agrupadas conforme o número de vértices, todos

os vértices possuem peso e todos os clusters têm o mesmo limite de capacidade. O pri-

meiro conjunto é baseado nas instâncias propostas por Deng e Bard (DENG; BARD,

2011) no contexto do problema de entrega de correspondências, consistindo em 10 instân-

cias de n = 82 vértices e p = 8 clusters, com limites de capacidade definidos como L = 25

e U = 75. O segundo conjunto, denominado RanReal, foi originalmente proposto por

(GALLEGO et al., 2013) no contexto do Maximally Diverse Grouping Problem (MDGP).

Esse conjunto é dividido em dois subconjuntos: 20 instâncias com n = 240, p = 12, limite

inferior L = 75 e limite superior U = 125, e outras 20 instâncias com n = 480, p = 20,

L = 100 e U = 150.

De forma resumida, as seguintes instâncias da CCPLIB foram utilizadas nos

experimentos:

• 10 instâncias Sparse82.

• 20 instâncias RanReal240.

• 20 instâncias RanReal480.

6.3 Parametrização de variáveis

Com o código desenvolvido, foi necessária a realização de testes, buscando uma melhor

parametrização com o intuito de estabelecer os melhores parâmetros para serem utiliza-

dos nas meta-heurísticas desenvolvidas (JÚNIOR et al., 2004). Para ajustar os parâme-

tros do método proposto, utilizou-se o pacote Iterated Racing for Automatic Algorithm

Configuration (IRACE) (LÓPEZ-IBÁÑEZ et al., 2016), que permite identificar, de forma

progressiva e estatisticamente guiada, as combinações de parâmetros que levam ao melhor

desempenho do algoritmo em um conjunto representativo de instâncias. O IRACE utiliza

o mecanismo de racing, no qual diferentes configurações competem entre si e aquelas com

desempenho estatisticamente inferior são descartadas progressivamente, permitindo uma

exploração eficiente do espaço de parâmetros.

A etapa de parametrização tem papel fundamental na obtenção de soluções de

alta qualidade e a utilização do IRACE ajuda a identificar a parametrização de variáveis

6.3 Parametrização de variáveis 54

e definir a melhor combinação que alinhe o melhor custo-benefício entre esforço com-

putacional e tempo de execução. Foram executados testes extensivos com uma grande

diversidade de intervalos dos parâmetros distintos e algumas instâncias representativas do

conjunto. Esses parâmetros, juntamente com as instâncias representativas do problema,

compõem o conjunto de entrada do IRACE. Dados os testes realizados para ajustar os

melhores parâmetros a serem utilizados, o IRACE sugeriu como parâmetros ideais para

executar os experimentos computacionais:

• Quantidade máxima de iterações do RVND: 400

• Decaimento de temperatura do SA (α): 0.4

• Quantidade de iterações em uma mesma temperatura do SA: 600

• Temperatura final do SA: 10

• Quantidade de iterações do GRASP: 10

• Porcentagem de perturbação dos elementos: 0.4

• Porcentagem de perturbação dos clusters : 0.4

• Algoritmo Construtivo Guloso Randomizado: 10 vezes para cada parâmetro α =

0,1, α = 0,2, α = 0,3, sendo 100 iterações da Heurística Construtiva;

• Algoritmo Construtivo Guloso Randomizado Reativo: 10 vezes para cada instância,

sendo 1000 iterações da Heurística Construtiva e a cada 50 iterações, as probabili-

dades são recalculadas.

Ao final da execução do IRACE foram identificadas as variáveis com maior im-

pacto no comportamento do método SA-RGRASP-RVND, retornando o conjunto de pa-

râmetros mais promissor, que então foi utilizado na fase final dos experimentos. Esse

processo sistemático de parametrização permite melhorar o desempenho do algoritmo,

assegurar reprodutibilidade e fundamentação na escolha dos parâmetros.

6.4 Análise dos resultados obtidos 55

6.4 Análise dos resultados obtidos

Para cada instância de teste, o algoritmo SA-RGRASP-RVND foi executado 10 vezes para

realizar a seleção dos melhores resultados e calcular as médias dos e tempo de execução

das soluções. Nas tabelas de comparações deste capítulo, os valores destacados em negrito

indicam os melhores resultados quanto ao custo da solução. Optou-se por apresentar a

comparação da média e do tempo dos resultados para 5 instâncias de cada conjunto que

são representativas ao comparar os resultados das outras instâncias de cada conjunto.

A Tabela 6.1 apresenta as melhores comparações entre as diferentes combinações

das abordagens propostas para tratar o problema. Comparando os algoritmos construídos

nesse trabalho, a combinação do SA, RGRASP e RVND é significativamente superior a

todas as outras em todas as instâncias testadas e podemos identificar a mehoria que cada

método meta-heurística traz na construção do resultado final da abordagem híbrida.

Tabela 6.1: Comparação das diferentes abordagens
Instância SA RGRASP-RVND SA-RVND SA-RGRASP-RVND
Sparse82_01 1164.06 1280.38 1239.80 1343.08
Sparse82_02 1145.77 1209.39 1257.30 1306.64
Sparse82_03 1157.73 1262.39 1243.98 1353.94
Sparse82_04 1127.13 1196.87 1201.51 1291.22
Sparse82_05 1216.10 1174.40 1304.02 1352.35
RanReal240_01 168789.48 218270.09 214159.67 224968.01
RanReal240_02 156239.54 193872.50 199701.43 204624.36
RanReal240_03 152533.29 170139.34 186315.37 199059.56
RanReal240_04 165881.31 209216.79 195997.35 225627.16
RanReal240_05 152252.34 190255.18 190271.18 195564.48
RanReal480_01 378306.50 514388.34 543450.75 555489.92
RanReal480_02 377185.34 480280.37 486389.75 511280.50
RanReal480_03 369109.68 473195.12 463515.68 497725.86
RanReal480_04 380258.15 504997.56 505911.87 522572.81
RanReal480_05 373964.62 454005.96 467338.46 484084.66

Nas figuras 6.1, 6.2 e 6.3 é possível ver com mais clareza a dimensão dos resultados

em comparação. Como dito, o SA-RGRASP-RVND ganha de todos, porém na construção

desses algoritmos pode-se perceber em qual área cada um se destaca com base no que foi

estudado na literaturae comprovado nas prática deste trabalho.

Nas figuras citadas percebe-se que na maioria das instâncias o SA-RVND é o

segundo vencedor na comparação dos resultados. Isso pode ser explicado dado a natureza

6.4 Análise dos resultados obtidos 56

Figura 6.1: Comparação da média de resultados dos algoritmos propostos em 5 instâncias
do conjunto de 82 vértices

do SA de continuar realizando sucessivas pertubações e em seguida a execução do RVND,

sempre em uma mesma solução. Sendo que enquanto ele itera até chegar na temperatura

mínima permitida, ele probabilisticamente aceita novas soluções que podem ser piores,

fazendo com que os espaço de busca seja movido muitas vezes para um outro espaço com

um ótimo local que seja melhor. Portanto, a partir do momento que ele aceitou piorar

a solução, podendo estar em outro local de busca diferente - porém de certa forma já

bastante aprimorado - ele pode através do RVND executar as buscas locais sucessivas e

assim encontrar uma solução em uma melhor solução em outro ótimo local.

Já se tratando do RGRASP-RVND, seu benefício é focado na construção de

diversas soluções aprimoradas, pois a característica principal do RGRASP é criar uma

nova solução com construtivo randomizado e reativo a cada iteração, dessa forma ele

sempre busca criar as soluções reativamente mais promissoras com os melhores valores de

α. Somado a isso, a cada iteração onde é gerada uma nova solução, esta passa por um

processo de pertubação quando chega um número determinado de iterações sem melhora

e pela execução do RVND que faz a busca local até que não consiga melhorar a solução

corrente. Sendo então um algoritmo promissor que sai de ótimos locais e é refinado,

percebe-se que ele entrega boas soluções, próximas da solução do SA-RVND, com algumas

instâncias até ultrapassando a solução do SA-RVND, porém sem a característica do SA

6.4 Análise dos resultados obtidos 57

Figura 6.2: Comparação da média de resultados dos algoritmos propostos em 5 instâncias
do conjunto de 240 vértices

de aceitar soluções piores ele não consegue sair de alguns ótimos locais e fica atrás dele.

Por fim, é possível perceber que o SA só funciona bem juntamente com outros

métodos, já que sozinho ele não realiza buscas locais, sendo este o benefício do RVND,

e não consegue trazer diferentes soluções do espaço de busca ao não usar o RGRASP.

Portanto, utilizando apenas um algoritmo guloso randomizado e a própria perturbação,

ele não tem força para conseguir refinar a solução e testar diversas soluções iniciais que

podem ser promissoras.

Assim, apesar da combinação do RGRASP utilizando apenas RVND apresentar

resultados competitivos, a meta-heurística Simulated Annealing quando combinada ape-

nas com RVND conseguiu ter melhores resultados para a maioria das instâncias, indicando

que o SA ajuda a diversificar as soluções com a aceitação de soluções piores. Portanto,

ao combinar essas 3 meta-heurísticas, é possível ao mesmo tempo iniciar com uma boa

solução usando RGRASP, diversificar bem as soluções pelo uso do SA e fazer um bom

trabalho de busca local com RVND.

A Tabela 6.2 mostra a comparação com a literatura, considerando a melhor so-

lução obtida para cada instância dentre as 10 execuções realizadas. Pode-se notar que o

método proposto consegue ter um resultado melhor que o da literatura recente em duas

instâncias do tipo Sparse, com 82 vértices e nas demais desse conjunto é possível alcan-

6.4 Análise dos resultados obtidos 58

Figura 6.3: Comparação da média de resultados dos algoritmos propostos em 5 instâncias
do conjunto de 480 vértices

çar a melhor solução. Para os demais conjuntos de instâncias, RanReal de 240 e 480

vértices, a abordagem da literatura apresenta resultados melhores. Vale destacar que o

SA-RGRASP-RVND apresenta resultados muito próximos aos da melhor solução da lite-

ratura, em algumas instâncias com diferença apenas na segunda casa decimal, mostrando

o potencial do método proposto.

Como forma de analisar a robustez da abordagem proposta em relação à litera-

tura, a tabela 6.3 apresenta a comparação dos resultados quanto à média da qualidade

das soluções obtidas, considerando todas as 10 execuções. Além disso, a tabela mostra o

tempo de processamento, em segundos, demandado por cada abordagem.

Podemos ver que o resultado e o tempo médio de execução do SA-RGRASP-

RVND são competitivos em todas as instâncias. Ao comparar o tempo médio de execu-

ção, observa-se nas instâncias de 82 e 240 vértices tempos bem próximos aos da literatura

recente. Pode-se conferir que há um aumento no tempo de execução à medida que a quan-

tidade de vértices cresce. Essa discrepância no tempo de execução, principalmente para

instâncias com maior quantidade de vértices, ocorreu a partir do resultado mais recente

da literatura atualizado como referência neste trabalho. Ao acompanhar a literatura é

possível ver que para resultados anteriores ao atual, a abordagem proposta também ganha

no tempo, possuindo uma execução pelo menos 4 vezes mais rápida.

6.4 Análise dos resultados obtidos 59

Tabela 6.2: Comparação com a melhor solução da literatura
Instancia Best Literatura Best SA-RGRASP-RVND Diferença (%)

Sparse82_01 1342.17 1343.08 0.07
Sparse82_02 1306.64 1306.64 0.00
Sparse82_03 1353.94 1353.94 0.00
Sparse82_04 1291.22 1291.22 0.00
Sparse82_05 1352.35 1352.35 0.00
Sparse82_06 1354.61 1354.62 0.01
Sparse82_07 1266.94 1266.94 0.00
Sparse82_08 1393.02 1393.02 0.00
Sparse82_09 1294.12 1294.12 0.00
Sparse82_10 1356.98 1356.98 0.00

RanReal240_01 225003.70 224768.07 -0.11
RanReal240_02 204624.36 204456.67 -0.08
RanReal240_03 199079.37 198971.21 -0.05
RanReal240_04 225683.17 224727.21 -0.42
RanReal240_05 195564.48 195440.94 -0.06
RanReal240_06 216747.32 216721.07 -0.01
RanReal240_07 209305.70 209288.34 -0.01
RanReal240_08 205246.82 205140.91 -0.05
RanReal240_09 209186.90 209015.07 -0.08
RanReal240_10 193062.60 192992.24 -0.04
RanReal240_11 204722.75 204625.61 -0.05
RanReal240_12 201117.11 200888.69 -0.11
RanReal240_13 202345.48 202035.87 -0.15
RanReal240_14 228971.03 228703.47 -0.12
RanReal240_15 191263.28 190835.77 -0.22
RanReal240_16 204081.46 203879.95 -0.10
RanReal240_17 195561.36 194978.68 -0.30
RanReal240_18 195167.14 194874.72 -0.15
RanReal240_19 199307.33 199060.84 -0.12
RanReal240_20 212323.22 211998.91 -0.15
RanReal480_01 556639.68 554743.59 -0.34
RanReal480_02 511666.95 509753.95 -0.37
RanReal480_03 497846.57 496546.98 -0.26
RanReal480_04 523588.42 521849.75 -0.33
RanReal480_05 485122.31 483128.12 -0.41
RanReal480_06 534982.12 533885.20 -0.21
RanReal480_07 546892.45 545801.83 -0.20
RanReal480_08 533411.78 532362.44 -0.20
RanReal480_09 556112.36 555996.69 -0.02
RanReal480_10 520104.92 519327.55 -0.15
RanReal480_11 523450.04 523228.93 -0.04
RanReal480_12 501596.63 501074.90 -0.10
RanReal480_13 534638.19 533759.92 -0.16
RanReal480_14 513777.84 513171.43 -0.12
RanReal480_15 516941.11 516133.40 -0.16
RanReal480_16 549371.23 549235.94 -0.03
RanReal480_17 537483.76 537289.90 -0.04
RanReal480_18 525813.39 524926.00 -0.17
RanReal480_19 522158.86 521548.87 -0.12
RanReal480_20 518288.03 518080.79 -0.04

6.4 Análise dos resultados obtidos 60

Tabela 6.3: Média das soluções em comparação com a literatura
Média da qualidade e do tempo de processamento

Instancia Aver_Lit T_Lit (s) Aver_SA-RGRASP-RVND T_SA-VND (s) Dif. (%)
Sparse82_01 1342.17 13 1342.17 41 0.00
Sparse82_02 1306.64 20 1306.64 36 0.00
Sparse82_03 1353.94 4 1353.94 46 0.00
Sparse82_04 1291.22 27 1291.22 72 0.00
Sparse82_05 1352.35 4 1352.35 42 0.00

RanReal240_01 224897.01 127 224086.06 149 -0.36
RanReal240_02 204515.06 111 204041.70 165 -0.23
RanReal240_03 198915.84 135 198263.04 139 -0.33
RanReal240_04 225346.54 124 224673.38 147 -0.30
RanReal240_05 195469.00 135 195009.36 142 -0.24
RanReal480_01 555338.06 340 554171.29 1840.00 -0.21
RanReal480_02 510924.27 355 509113.23 2174.00 -0.35
RanReal480_03 497109.59 352 496301.99 1879.00 -0.16
RanReal480_04 521999.31 399 521397.65 2461.00 -0.12
RanReal480_05 484092.59 335 483007.46 1608.00 -0.22

61

7 Conclusão

Este trabalho propõe abordagens para a solução do Problema da Clusterização Capacitada

(PCC). Foi utilizada uma abordagem híbrida contendo SA, RGRASP e RVND, que em

conjunto trouxeram bons resultados. Foi usado um método de perturbação que faz uma

desconstrução parcial da solução e posteriormente a reconstrução e o uso de 3 métodos de

vizinhança no RVND para realizar buscas locais a fim de gerar campos de busca diferentes,

otimizando sempre o valor objetivo do problema e obedecendo as restrições do PCC.

A partir dos testes foi visto que os resultados são consistentes, ou seja, possuem

uma média próxima da literatura e não variam muito. Isso se deve ao refinamento com

RVND, onde as soluções convergem para um ótimo local e em conjunto o SA ajuda a

não estacionar em apenas um ótimo local, que através da perturbação e do critério de

aceitação de piores soluções faz com que uma nova solução gerada mude de espaço de

busca. Adicionalmente, ao usar o RGRASP em conjunto, entrega-se uma vantagem para

o SA que inicia com a primeira solução já em um ótimo local promissor e assim inicia o

processo do SA já minimamente refinado.

Algumas decisões importantes tomadas foram feitas ao observar que a solução

convergia e ficava presa em um ótimo local em poucas repetições. Tal comportamento

acontecia mais frequentemente dado à utilização do VND em sua versão não randomi-

zada, associado ao fato da estratégia de busca ser utilizada após a perturbação, onde os

parâmetros até então não estavam sendo suficientes para sair da zona de atração de um

ótimo local. Com o objetivo de obter melhorias mais significativas nas soluções e mitigar

as limitações observadas, adotou-se uma abordagem randomizada com RVND, além de

ajustar os parâmetros para intensificar o nível de perturbação sobre os vértices e clusters.

Através das comparações entre os algoritmos propostos, notou-se que o SA puro

apenas com solução inicial e perturbações não consegue obter soluções boas. É necessá-

rio ter outra meta-heurística que dê suporte ao SA fazendo sucessivas buscas locais com

o RVND, sendo possível gerar melhores soluções pelo refinamento do espaço de busca.

Porém, mesmo que o RVND consiga soluções muito boas, ele também não consegue me-

7 Conclusão 62

lhorar mais o resultado sozinho, pois ao encontrar ótimos locais ele não consegue sair por

si só. Portanto, o SA se mostra um grande aliado do RVND ao sair dos ótimos locais e

diversificar as próximas soluções.

Com os resultados experimentais evidenciou que o fator responsável pela melhoria

da qualidade das soluções dentro da meta-heurística Simulated Annealing foi o mecanismo

de perturbação e posterior refinamento com RVND. Observou-se que ao aplicar o RVND

de forma criteriosa após perturbações significativas, desempenha papel fundamental na

condução da busca a novos ótimos locais. Já a aplicação excessiva do RVND logo após

a fase construtiva do RGRASP mostrou-se pouco eficaz, que apesar de gerar várias so-

luções e melhorar a solução gerada pelo RGRASP, muitas iterações não trazem maiores

ganhos. Isso indica que investir demasiadamente na melhoria da solução inicial pode levar

à estagnação em ótimos locais, reduzindo a capacidade exploratória do método.

Verificou-se que mesmo após mil iterações do RGRASP, a melhor solução obtida

não superou a encontrada pelo SA-GRASP, reforçando a importância de um equilíbrio

entre qualidade inicial e potencial de diversificação. Em contrapartida, o uso do RGRASP

para geração das soluções iniciais do SA ajudou muito o processo de buscar uma solução

de melhor qualidade, tendo resultados melhores no método híbrido em comparação com

apenas usar um método guloso, semi-guloso ou randomizado como solução inicial.

Além disso, os experimentos demonstraram que estratégias de perturbação mais

agressivas no SA, como a remoção de até 50% dos elementos da solução e perturbar pelo

menos 30% a 60% dos clusters, foram decisivas para alcançar soluções de qualidade equi-

valente às melhores da literatura. A redução da porcentagem de clusters perturbados de

80% para 30% mostrou-se eficaz para manter o benefício máximo com menor tempo de

execução, evidenciando a sensibilidade do método à parametrização das variáveis. Foi

visto que apesar de aumentar o tempo computacional, uma maior porcentagem de per-

turbação gera soluções que são bem próximas à literatura. Então com isso, a partir da

parametrização pelo IRACE, optou-se por utilizar a combinação de parâmetros com me-

lhor custo beneficio, assim utilizamos os parâmetros que resultavam nas melhores soluções,

porém apenas aqueles com o menor tempo de execução do método.

Por fim, foi constatado que a combinação entre perturbação e RVND revelou-se

7 Conclusão 63

particularmente eficiente, caracterizando um comportamento próximo ao de uma busca

local iterada (ILS) embutida no SA, na qual a diversificação é promovida pela perturbação

e a intensificação pela busca local randomizada. Essa configuração permitiu que 90% das

execuções de testes nas instâncias de 82 vértices atingisse a melhor solução conhecida

em menos de 1 minuto, com algumas soluções geradas em até 3 segundos. Assim, os

resultados reforçam a adequação do uso do RGRASP para geração da solução inicial,

do RVND como mecanismo de refinamento e do SA como abordagem de perturbação

e aceitação de soluções piores para sair de ótimos locais é particularmente interessante,

destacando-se portanto, a importância na decisão do uso híbrido das meta-heurísticas e

na parametrização de variáveis para se atingir soluções melhores em tempo mais rápido.

Durante o desenvolvimento do método, foram identificadas limitações importan-

tes, principalmente relacionadas ao aumento do tempo computacional quando parâmetros

mais agressivos eram adotados, efeito que se intensifica conforme o tamanho das instân-

cias cresce. Observou-se elevada sensibilidade no processo de ajuste dos parâmetros, uma

vez que pequenas variações impactam significativamente tanto a qualidade das soluções

quanto o tempo de execução, dificultando a definição de configurações estáveis, princi-

palmente pela dificuldade em encontrar parâmetros que funcionem de forma satisfatória

em todos os conjuntos de instâncias. Em particular, o controle da taxa de aceitação de

soluções piores no SA mostrou-se desafiador. Além disso, a definição de uma combina-

ção híbrida eficiente entre SA, RGRASP e RVND evidenciou a complexidade inerente ao

equilíbrio entre diversificação e intensificação da busca.

De forma mais específica, constatou-se dificuldade em estabelecer uma parame-

trização adequada, sugerindo que configurações fixas tendem a apresentar desempenho

diferentes quando usadas em vários conjuntos de instâncias com características distintas.

Nesse contexto, mostra-se promissora a definição de parâmetros baseada em caracterís-

ticas estruturais das instâncias, como o número de vértices, o número de clusters e a

soma dos benefícios associados ao grafo completo. Observou-se também que, para ins-

tâncias de grande porte, especialmente aquelas com 480 vértices, o custo combinatório

cresce de forma acentuada, impactando diretamente a escalabilidade do método. Embora

o desempenho seja competitivo para instâncias pequenas e médias, esse comportamento

7 Conclusão 64

evidencia a necessidade de refatoração do código com foco em otimização computacional,

bem como de estratégias que permitam aceitar mais soluções piores nas fases iniciais do

SA, por meio de funções de resfriamento da temperatura mais suaves, principalmente no

início do método.

Por fim, constatou-se que o método é extremamente sensível à escolha dos parâ-

metros, sendo que pequenas variações podem impactar significativamente os valores finais,

a média das execuções e, principalmente, o tempo de processamento. Como evidência,

após a calibração automática dos parâmetros utilizando o IRACE, foi possível manter

— e em alguns casos melhorar — a qualidade das soluções, ao mesmo tempo em que o

tempo médio de execução para instâncias com 240 vértices foi reduzido de aproximada-

mente 2100 segundos para 149 segundos, tornando o método competitivo em termos de

tempo em comparação com as melhores abordagens da literatura. Dessa forma, estudos

futuros devem continuar explorando estratégias de ajuste de parâmetros e otimizações

estruturais, visando melhorar os resultados sem comprometer excessivamente o tempo de

execução, ou, quando viável, permitir um aumento controlado do tempo computacional

para alcançar soluções ainda mais próximas do estado da arte.

Como trabalhos futuros, pretende-se investigar estratégias mais robustas de pa-

rametrização automática, capazes de adaptar dinamicamente os parâmetros do algoritmo

às características das instâncias, como o número de vértices, de clusters e soma de bene-

fícios do grafo completo, incluindo também o uso de técnicas de aprendizado de máquina

para apoiar a seleção dinâmica de parâmetros e decisões de busca. Além disso, planeja-

se aprimorar a etapa de perturbação principalmente quando há estagnação, tornando-a

semi-gulosa, bem como reduzir o tempo de execução por meio da otimização de recálculos

redundantes e da incorporação de estruturas de memória para armazenamento de custos

previamente computados. Outras direções incluem a avaliação de funções de aceitação

e resfriamento alternativas no Simulated Annealing, o uso do algoritmo construtivo em

cenários de estagnação, técnicas de paralelização e poda, além da aplicação da abordagem

proposta em instâncias de maior escala e a outros problemas de otimização combinatória,

visando ampliar a validade e a generalização dos resultados obtidos.

BIBLIOGRAFIA 65

Bibliografia

ALTUWAIM, B. A metaheuristic to solve the capacitated clustering problem. Journal
of Al-Azhar University Engineering Sector, Al-Azhar University; Faculty of Engineering,
v. 18, n. 69, p. 884–899, 2023. ISSN 1687-8418. Disponível em: <https://jaes.journals.
ekb.eg/article_324294.html>.

BARD, J. F.; JARRAH, A. I. Integrating commercial and residential pickup and delivery
networks: A case study. Omega, Elsevier, v. 41, n. 4, p. 706–720, 2013.

BRIMBERG, J.; MLADENOVIĆ, N.; TODOSIJEVIĆ, R.; UROŠEVIĆ, D. Variable
neighborhood descent for the capacitated clustering problem. In: SPRINGER. Discrete
Optimization and Operations Research: 9th International Conference, DOOR 2016, Vla-
divostok, Russia, September 19-23, 2016, Proceedings 9. [S.l.], 2016. p. 336–349.

BRIMBERG, J.; MLADENOVIĆ, N.; TODOSIJEVIĆ, R.; UROŠEVIĆ, D. Solving the
capacitated clustering problem with variable neighborhood search. Annals of Operations
Research, Springer, v. 272, p. 289–321, 2019.

BURKE, E. K.; GENDREAU, M.; HYDE, M.; KENDALL, G.; OCHOA, G.; ÖZCAN,
E.; QU, R. Hyper-heuristics: A survey of the state of the art. Journal of the Operational
Research Society, Springer, v. 64, p. 1695–1724, 2013.

DENG, Y.; BARD, J. F. A reactive grasp with path relinking for capacitated clustering.
Journal of Heuristics, v. 17, n. 2, 2011.

FALKNER, J. K.; SCHMIDT-THIEME, L. Neural capacitated clustering. arXiv preprint
arXiv:2302.05134, 2023.

GALLEGO, M.; LAGUNA, M.; MARTI, R.; DUARTE, A. Tabu search with strategic
oscillation for the maximally diverse grouping problem. The Journal of the Operational
Research Society, v. 64, 05 2013.

HUSSAIN, K.; SALLEH, M. N. M.; CHENG, S.; SHI, Y. Metaheuristic research: a
comprehensive survey. Artificial intelligence review, Springer, v. 52, p. 2191–2233, 2019.

JÚNIOR, A. D.; SILVA, R. S.; MUNDIM, K. C.; DARDENNE, L. E. Performance and
parameterization of the algorithm simplified generalized simulated annealing. Genetics
and Molecular Biology, SciELO Brasil, v. 27, p. 616–622, 2004.

LAI, X.; HAO, J.-K. Iterated variable neighborhood search for the capacitated clus-
tering problem. Engineering Applications of Artificial Intelligence, v. 56, p. 102–120,
2016. ISSN 0952-1976. Disponível em: <https://www.sciencedirect.com/science/article/
pii/S095219761630135X>.

LAI, X.; HAO, J.-K.; FU, Z.-H.; YUE, D. Neighborhood decomposition-driven varia-
ble neighborhood search for capacitated clustering. Computers & Operations Research,
Elsevier, v. 134, p. 105362, 2021.

https://jaes.journals.ekb.eg/article_324294.html
https://jaes.journals.ekb.eg/article_324294.html
https://www.sciencedirect.com/science/article/pii/S095219761630135X
https://www.sciencedirect.com/science/article/pii/S095219761630135X

BIBLIOGRAFIA 66

LIU, Y.; GUO, P.; ZENG, Y. Ha-ccp: A hybrid algorithm for solving capacitated clus-
tering problem. Computational Intelligence and Neuroscience, Hindawi, v. 2022, p. 1–24,
01 2022.

LIU, Y.; GUO, P.; ZENG, Y. Meaccp: A membrane evolutionary algorithm for capaci-
tated clustering problem. Information Sciences, Elsevier, v. 591, p. 319–343, 2022. ISSN
0020-0255.

LÓPEZ-IBÁÑEZ, M.; DUBOIS-LACOSTE, J.; CÁCERES, L. P.; BIRATTARI, M.;
STÜTZLE, T. The irace package: Iterated racing for automatic algorithm configuration.
Operations Research Perspectives, Elsevier, v. 3, p. 43–58, 2016.

LUXBURG, U. V.; WILLIAMSON, R. C.; GUYON, I. Clustering: Science or art?
In: JMLR WORKSHOP AND CONFERENCE PROCEEDINGS. Proceedings of ICML
workshop on unsupervised and transfer learning. [S.l.], 2012. p. 65–79.

MARTÍNEZ-GAVARA, A.; CAMPOS, V.; GALLEGO, M.; LAGUNA, M.; MARTÍ, R.
Tabu search and grasp for the capacitated clustering problem. Computational Optimiza-
tion and Applications, Springer, v. 62, p. 589–607, 2015.

MARTINEZ-GAVARA, A.; LANDA-SILVA, D.; CAMPOS, V.; MARTI, R. Randomized
heuristics for the capacitated clustering problem. Information Sciences, Elsevier, v. 417,
p. 154–168, 2017.

MAXIMO, V. R.; NASCIMENTO, M. C. A hybrid adaptive iterated local search with
diversification control to the capacitated vehicle routing problem. European Journal of
Operational Research, v. 294, n. 3, p. 1108–1119, 2021. ISSN 0377-2217. Disponível em:
<https://www.sciencedirect.com/science/article/pii/S037722172100117X>.

MORÁN-MIRABAL, L.; GONZÁLEZ-VELARDE, J.; RESENDE, M. G.; SILVA, R. M.
Randomized heuristics for handover minimization in mobility networks. Journal of Heu-
ristics, Springer, v. 19, p. 845–880, 2013.

MULVEY, J. M.; BECK, M. P. Solving capacitated clustering problems. European Journal
of Operational Research, Elsevier, v. 18, n. 3, p. 339–348, 1984.

MURITIBA, A. E. F.; GOMES, M. J. N.; SOUZA, M. F. de; ORIA, H. L. G. Path-
relinking with tabu search for the capacitated centered clustering problem. Expert Systems
with Applications, Elsevier, v. 198, p. 116766, 2022.

NEGREIROS, M. J.; MACULAN, N.; PALHANO, A. W.; MURITIBA, A. E.; BATISTA,
P. L. Capacitated clustering models to real life applications. artificial intelligence (AI),
v. 3, p. 8, 2022.

OROZCO-ROSAS, U.; MONTIEL, O.; SEPúLVEDA, R. Mobile robot path planning
using membrane evolutionary artificial potential field. Applied Soft Computing, v. 77,
p. 236–251, 2019. ISSN 1568-4946. Disponível em: <https://www.sciencedirect.com/
science/article/pii/S1568494619300420>.

OSMAN, I. H.; CHRISTOFIDES, N. Capacitated clustering problems by hybrid simulated
annealing and tabu search. International Transactions in Operational Research, Elsevier,
v. 1, n. 3, p. 317–336, 1994.

RESENDE, M. G.; RIBEIRO, C. C. Optimization by GRASP. [S.l.]: Springer, 2016.

https://www.sciencedirect.com/science/article/pii/S037722172100117X
https://www.sciencedirect.com/science/article/pii/S1568494619300420
https://www.sciencedirect.com/science/article/pii/S1568494619300420

BIBLIOGRAFIA 67

RUAN, D.; DA, R. Computational Intelligence in Complex Decision Making Systems.
[S.l.]: Springer, 2010.

SOUZA, M. J. F. Inteligência computacional para otimização. Notas de aula, De-
partamento de Computaçao, Universidade Federal de Ouro Preto, disponıvel em
http://www. decom. ufop. br/prof/marcone/InteligenciaComputacional/InteligenciaCom-
putacional. pdf, v. 6, 2008.

VOSS, S.; MARTELLO, S.; OSMAN, I. H.; ROUCAIROL, C. Meta-heuristics: Advances
and trends in local search paradigms for optimization. Springer Science & Business Media,
2012.

ZHOU, Q.; BENLIC, U.; WU, Q.; HAO, J.-K. Heuristic search to the capacitated cluste-
ring problem. European Journal of Operational Research, Elsevier, v. 273, n. 2, p. 464–487,
2019.

	Lista de Figuras
	Lista de Tabelas
	Lista de Abreviações
	Introdução
	O Problema de Clusterização Capacitada
	Trabalhos Relacionados
	Fundamentação Teórica
	Inteligência Computacional
	Heurísticas Construtivas
	Métodos de Busca Local
	Meta-heurísticas
	Simulated Annealing
	Variable Neighborhood Descent
	Greedy Randomized Adaptive Search Procedure

	Abordagens Propostas
	Solução inicial do RGRASP com Algoritmo Construtivo
	Algoritmo Construtivo Randomizado Reativo
	Randomized Variable Neighborhood Descent
	Busca Local 1 - Realocação (Shift) 1-0
	Busca Local 2 - Troca (Swap) 1-1
	Busca Local 3 - Troca Assimétrica (Swap) 2-1

	Perturbação - Desconstrução e Reconstrução
	Reactive Greedy Randomized Adaptive Search Procedure
	Abordagem Híbrida: Simulated Annealing com RGRASP e RVND
	Cálculo da temperatura inicial
	Taxa de aceitação de soluções
	Taxa de resfriamento

	Experimentos Computacionais
	Ambiente de testes
	Instâncias de teste
	Parametrização de variáveis
	Análise dos resultados obtidos

	Conclusão
	Bibliografia

