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Resumo

O eletrocardiograma (ECG) é essencial para o diagnóstico cardiovascular, mas sua inter-

pretação manual é demorada e sujeita à variabilidade. Embora técnicas de aprendizado

profundo (deep learning) prometam automatizar a segmentação de ondas, persistem de-

safios relacionados à escassez de dados anotados e à reprodutibilidade de arquiteturas

complexas.

Este trabalho combina uma revisão sistemática da literatura (2015–2025) com

um estudo experimental de replicação. A revisão, composta por 42 estudos, mapeou a

transição tecnológica de CNNs simples para modelos profundos e h́ıbridos com mecanismos

de atenção. A análise teórica identificou a predominância de bases públicas (QTDB,

LUDB) e evidenciou que o Data Augmentation consolidou-se como um componente cŕıtico

— e não apenas acessório — para mitigar o severo desbalanceamento de classes em cenários

de bases pequenas.

Complementarmente, o estudo prático avaliou a reprodutibilidade de duas arqui-

teturas representativas utilizando a base LUDB com validação estat́ıstica robusta. Os

resultados demonstraram a superioridade da abordagem puramente convolucional (Resi-

dual U-Net), que atingiu um F1-Score de 0,9544 (± 0,002), superando o modelo h́ıbrido

SEResUTer (F1-Score: 0,8373 ± 0,007), mesmo quando este último foi otimizado com au-

mento de dados. Conclui-se que, embora Transformers representem a tendência teórica,

modelos convolucionais robustos permanecem como a escolha mais eficiente e estável para

aplicações cĺınicas com restrição de dados rotulados.

Palavras-chave: Eletrocardiograma (ECG), aprendizado profundo, segmentação semântica,

redes neurais convolucionais, reprodutibilidade.



Resumo

The electrocardiogram (ECG) is essential for cardiovascular diagnosis, but its manual

interpretation is time-consuming and subject to inter-observer variability. Although deep

learning techniques promise to automate wave segmentation, challenges persist regarding

the scarcity of annotated data and the reproducibility of complex architectures.

This work combines a systematic literature review (2015–2025) with an experi-

mental replication study. The review, comprising 42 studies, mapped the technological

transition from simple 1D CNNs to deep and hybrid models with attention mechanisms.

Theoretical analysis identified the predominance of public databases (QTDB, LUDB)

and highlighted that Data Augmentation has consolidated itself as a critical compo-

nent—rather than just an accessory—to mitigate severe class imbalance in Small Data

scenarios.

Complementarily, the practical study evaluated the reproducibility of two repre-

sentative architectures using the LUDB database with robust statistical validation. Re-

sults demonstrated the superiority of the purely convolutional approach (Residual U-Net),

which achieved an F1-Score of 0.9544 (± 0.002), outperforming the hybrid SEResUTer

model (F1-Score: 0.8373 ± 0.007), even when the latter was optimized with data augmen-

tation. It is concluded that, while Transformers represent the theoretical trend, robust

convolutional models remain the most efficient and stable choice for clinical applications

with limited labeled data.

Keywords: Electrocardiogram (ECG), deep learning, semantic segmentation, convoluti-

onal neural networks, reproducibility.
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mento de um neurônio oculto, evidenciando o viés (b) e o processamento
interno de soma e ativação. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Comparação do fluxo de trabalho. Em cima, a abordagem tradicional exige
intervenção humana na engenharia de caracteŕısticas. Em baixo, o Deep
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1 Introdução

As doenças cardiovasculares (DCV) representam, atualmente, o maior desafio para a saúde

pública global. Dados recentes do estudo Global Burden of Disease (GBD)(Instituto de

Métrica e Avaliação em Saúde (IHME), 2025) de 2023 indicam que a doença isquêmica

do coração permanece como a principal causa de morte no mundo, seguida pelo Acidente

Vascular Cerebral (AVC), que ocupa a terceira posição no ranking global de mortalidade.

O estudo destaca ainda que, embora haja avanços, a mortalidade por doenças não trans-

misśıveis continua persistentemente elevada, evidenciando desigualdades cŕıticas no acesso

a diagnóstico e tratamento, especialmente em regiões com menores recursos. Esse cenário

global reflete-se diretamente na realidade brasileira: segundo o Ministério da Saúde, cerca

de 400 mil pessoas faleceram no páıs em 2022 em decorrência de problemas cardiovascu-

lares (Brasil. Ministério da Saúde, 2022).

Diante desse cenário cŕıtico, a rapidez e a precisão no diagnóstico tornam-se fato-

res determinantes para a sobrevivência do paciente. Nesse contexto, o eletrocardiograma

(ECG) consolida-se como a ferramenta padrão-ouro para a avaliação inicial da atividade

card́ıaca, por ser um exame não invasivo, de baixo custo e alta disponibilidade cĺınica

(HALL; GUYTON, 2017).

A interpretação do exame baseia-se na análise de padrões morfológicos espećıficos

que refletem o ciclo card́ıaco. O traçado eletrocardiográfico é composto por três deflexões

principais, cada uma correspondendo a um evento fisiológico distinto, como pode ser

visto na Figura 1.1. Segundo Hall e Guyton (2017), a primeira onda, denominada Onda

P, representa a despolarização atrial, momento em que o impulso elétrico se propaga

pelos átrios gerando sua contração. Na sequência, identifica-se o Complexo QRS, uma

estrutura de maior amplitude que sinaliza a despolarização ventricular. Devido à grande

massa muscular dos ventŕıculos responsável por bombear sangue para todo o corpo, este

evento elétrico é o mais proeminente do registro (DUBIN, 2000). O ciclo encerra-se com a

Onda T, que indica a repolarização ventricular, fase cŕıtica em que o miocárdio recupera

seu potencial elétrico preparando-se para o batimento seguinte.
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Figura 1.1: Representação esquemática das ondas do ECG e sua correlação com o ciclo
card́ıaco.

Fonte: Adaptado de Manuais MSD (2024).

Tradicionalmente, a identificação dessas ondas e de seus intervalos é realizada por

especialistas de forma manual, um processo trabalhoso, demorado e sujeito à variabilidade

inter e intraobservador (ALAM; AGUIRRE; STULTZ, 2024). Essa tarefa torna-se ainda

mais desafiadora na presença de patologias, como ilustrado na Figura 1.2, onde arrit-

mias ou isquemias alteram drasticamente a morfologia padrão, dificultando a delimitação

precisa das ondas. Essa limitação é especialmente cŕıtica em cenários de alta demanda,

como unidades de terapia intensiva e monitoramento cont́ınuo, nos quais a velocidade e a

precisão do diagnóstico são cruciais. A automatização dessa análise, por meio de algorit-

mos e técnicas de aprendizado de máquina, surge como uma alternativa promissora para

mitigar tais dificuldades (GOOVAERTS et al., 2018).

Nos últimos anos, o avanço das técnicas de aprendizado profundo (deep learning)

transformou a análise de ECG. Diferentemente dos métodos tradicionais, que dependiam

de extração manual de caracteŕısticas, as redes neurais profundas são capazes de aprender

representações complexas diretamente a partir do sinal bruto (FAUST et al., 2018). Essa

evolução viabilizou modelos capazes de realizar a segmentação automática das ondas

P, QRS e T, ampliando o potencial para aplicações cĺınicas em tempo real e para o
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(a) Fibrilação Atrial (Arritmia)
Ausência de Onda P

(Linha de base tremida)

(b) Infarto Agudo (Supra de ST)
Elevação do Segmento ST
(Fusão com a Onda T)

Linha de Base

Figura 1.2: Exemplos de patologias que dificultam a segmentação automática. Em (a),
a Fibrilação Atrial elimina a Onda P e insere rúıdo na linha de base. Em (b), o Infarto
eleva o segmento ST, alterando drasticamente a morfologia da repolarização ventricular.

Fonte: Elaborada pelo autor (2025).

desenvolvimento de sistemas de apoio à decisão médica.

Apesar desses avanços, a transição desses modelos para a prática cĺınica enfrenta

barreiras significativas. A principal delas reside na generalização: modelos treinados

em ambientes controlados frequentemente falham ao processar sinais do mundo real. Isso

ocorre, em grande parte, porque o desenvolvimento de algoritmos modernos ainda depende

substancialmente de bases de dados ‘clássicas’, adquiridas com tecnologias de décadas

passadas. Exemplos notáveis são a Massachusetts Institute of Technology - Beth Israel

Hospital (MIT-BIH) Arrhythmia Database, lançada em 1980 (MOODY; MARK, 2001),

e a QT Database, de 1997 (LAGUNA et al., 1997). Embora pioneiras, essas coleções

apresentam limitações frente às demandas atuais de Deep Learning : possuem um número

reduzido de pacientes e sinais que não refletem integralmente a diversidade demográfica

nem os artefatos dos dispositivos modernos (HONG et al., 2020). Somado a isso, há

uma notável escassez de anotações detalhadas validadas por múltiplos especialistas, o que

restringe o treinamento supervisionado, além do fato de muitos modelos operarem como

“caixas-pretas”, dificultando a interpretabilidade cĺınica.
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1.1 Objetivos

O objetivo principal deste trabalho é investigar o estado da arte em delimitação tempo-

ral de ińıcio e fim de ondas do eletrocardiograma (ECG) com técnicas de deep learning,

aliando uma revisão sistemática da literatura recente (2015–2025) a uma análise experi-

mental. Dessa forma, o estudo engloba simultaneamente uma perspectiva teórica e uma

perspectiva prática, visando oferecer uma śıntese cŕıtica da literatura e avaliar a reprodu-

tibilidade e o desempenho de arquiteturas representativas.

Para cumprir esse propósito geral, o trabalho foi estruturado em dois eixos com-

plementares:

• (i) Revisão Sistemática: mapeamento das arquiteturas de deep learning predo-

minantes na literatura, das bases públicas utilizadas e das métricas de avaliação

aplicadas à segmentação das ondas P, QRS e T.

• (ii) Replicação Experimental: implementação e análise comparativa de duas

arquiteturas distintas, sendo uma convolucional e outra h́ıbrida com mecanismos de

atenção, com o objetivo de avaliar sua viabilidade prática, estabilidade e desempe-

nho em condições reais de treinamento.

Para operacionalizar esses eixos, foram definidos os seguintes objetivos espećıficos:

• Identificar e categorizar as arquiteturas de deep learning mais recorrentes na

literatura recente para a segmentação de ondas do ECG;

• Mapear as bases de dados públicas predominantes e as estratégias de Data

Augmentation empregadas para mitigar a escassez de dados anotados;

• Levantar as métricas de avaliação padronizadas utilizadas para aferir o desem-

penho dos modelos de segmentação;

• Realizar um estudo experimental de replicação para avaliar a viabilidade

prática, a estabilidade e o desempenho comparativo entre modelos puramente con-

volucionais e modelos h́ıbridos com mecanismos de atenção.
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1.2 Organização do Trabalho

Além desta introdução, a monografia está estruturada em mais seis caṕıtulos, organizados

da seguinte forma:

O Caṕıtulo 2 estabelece a base teórica necessária para o entendimento dos modelos

de inteligência artificial. Inicia-se com os fundamentos de redes neurais (Perceptron e

MLP) e avança para arquiteturas de Deep Learning, detalhando o funcionamento das

Redes Neurais Convolucionais (CNNs), Redes Recorrentes (LSTMs) e os mecanismos de

atenção (Transformers). Também são apresentados os conceitos de Redes Residuais,

funções de perda ponderadas e as métricas de avaliação de desempenho utilizadas.

O Caṕıtulo 3 apresenta os trabalhos relacionados, oferecendo um panorama da

evolução das arquiteturas aplicadas ao ECG. O caṕıtulo descreve a transição histórica das

abordagens, dividindo-as em gerações: desde as primeiras adaptações de CNNs, passando

pela consolidação da U-Net e modelos residuais, até a emergência recente dos Transformers

e arquiteturas h́ıbridas.

O Caṕıtulo 4 descreve a Revisão Sistemática da Literatura. Nele, são definidas as

questões de pesquisa norteadoras e detalhada a metodologia de revisão (fontes de dados

e critérios de seleção). Além disso, apresenta-se a discussão dos resultados da revisão,

sintetizando as arquiteturas de Deep Learning predominantes no estado da arte.

O Caṕıtulo 5 dedica-se ao delineamento experimental e à implementação das

arquiteturas. Esta seção define o fluxo do experimento, os protocolos de avaliação e a

fundamentação matemática da implementação. São detalhados os dois estudos de caso

realizados: a replicação da Residual U-Net (abordagem convolucional) e do modelo SE-

ResUTer (abordagem h́ıbrida).

O Caṕıtulo 6 expõe os resultados experimentais e a discussão. São analisados

os dados obtidos em cada estudo de caso e realizada uma análise comparativa entre os

modelos, avaliando a viabilidade de replicação e o desempenho de segmentação.

Por fim, o Caṕıtulo 7 apresenta as conclusões do trabalho, integrando os achados

teóricos com as evidências práticas. O caṕıtulo oferece uma śıntese das respostas às

questões de pesquisa, discute as limitações do estudo e aponta direções para trabalhos

futuros.
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2 Fundamentação Teórica

Este caṕıtulo estabelece as bases necessárias para a compreensão dos modelos desenvolvi-

dos neste trabalho. A discussão parte das unidades fundamentais de processamento (Per-

ceptrons) e avança cronologicamente para arquiteturas de aprendizado profundo, abor-

dando as Redes Neurais Convolucionais (CNNs), Redes Recorrentes (LSTMs) e arqui-

teturas de segmentação semântica (U-Net e Transformers). Além disso, são definidos os

conceitos matemáticos subjacentes, como transformações lineares e funções de otimização,

essenciais para o entendimento do treinamento end-to-end (ponta a ponta) aplicado ao

processamento de sinais de ECG.

2.1 Perceptron

O perceptron foi proposto originalmente por Rosenblatt (1958) como um modelo proba-

biĺıstico e representa um dos primeiros esforços formais para modelar computacionalmente

o comportamento de um neurônio biológico. Trata-se do modelo mais elementar das redes

neuronais artificiais, capaz de realizar classificação supervisionada.

Matematicamente, o funcionamento do perceptron baseia-se em uma transformação

linear dos dados de entrada, cuja resultante é submetida a uma não-linearidade.Uma

transformação linear é uma operação que mapeia vetores de um espaço para outro pre-

servando a aditividade e a homogeneidade, a sáıda final y é expressa pela aplicação da

função de ativação (φ) sobre a soma ponderada das entradas (x) pelos pesos sinápticos

(w) adicionada a um viés (b):

y = φ

(
n∑

i=1

wi · xi + b

)
= φ(wTx+ b) (2.1)

A função de ativação (φ) é responsável por determinar a sáıda. Embora em

redes profundas se utilizem funções não-lineares complexas, o conceito mais simples seria

a função identidade (f(x) = x), que transmitiria o sinal sem alteração, preservando a
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linearidade do sistema. Contudo, para tarefas de classificação, utiliza-se geralmente uma

função degrau ou sigmoide.

A estrutura completa pode ser visualizada na Figura 2.1. Nesse esquema, as

entradas xn são ponderadas pelos pesos wn, somadas ao viés b e submetidas à função de

ativação (originalmente uma função degrau) para gerar a sáıda y.

x1

x2

...

xn

∑
Soma

b
Viés

Função
Degrau

w
1

w2

wn
y (Sáıda)

Figura 2.1: Representação esquemática do Perceptron de Rosenblatt.
Fonte: Baseado em Rosenblatt (1958)

Do ponto de vista conceitual, essa estrutura define o perceptron como um classifi-

cador linear, sendo capaz de separar dados apenas quando estes são linearmente separáveis

no espaço de caracteŕısticas. Conforme discutido por Goodfellow, Bengio e Courville

(2016), essa limitação estrutural restringe sua aplicabilidade a problemas do mundo real,

nos quais os padrões de interesse apresentam relações não lineares complexas.

No contexto de sinais biomédicos, como o eletrocardiograma, essa limitação torna-

se ainda mais evidente, uma vez que a morfologia das ondas P, QRS e T é influenciada

por múltiplos fatores fisiológicos e patológicos que não podem ser adequadamente mode-

lados por fronteiras de decisão lineares (SHARMA; JOSHI, 2025; CHOU et al., 2024).

Por exemplo, a distinção entre uma onda T normal e uma onda P sobreposta a rúıdo

frequentemente requer a análise de dependências temporais e não lineares, algo inviável

para um perceptron simples.

Apesar de suas limitações práticas, o perceptron possui relevância histórica e con-

ceitual fundamental, pois estabelece os prinćıpios básicos do aprendizado supervisionado,

do ajuste iterativo de pesos a partir do erro e da construção de modelos neurais, servindo

de base para o desenvolvimento de arquiteturas mais avançadas, como os perceptrons

multicamadas e as redes neurais profundas.
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2.2 Redes Neuronais Multicamadas (MLP)

Com o objetivo de superar as restrições impostas pelo perceptron simples, surgiram as

redes neuronais multicamadas, comumente denominadas Multilayer Perceptrons (MLP)

(RUMELHART; HINTON; WILLIAMS, 1986; HAYKIN, 2009). Essas arquiteturas es-

tendem o modelo original ao introduzir uma ou mais camadas ocultas entre a camada de

entrada e a camada de sáıda, permitindo a composição de múltiplas transformações não

lineares sucessivas. A estrutura geral de uma MLP e o detalhamento do funcionamento

de um de seus neurônios ocultos podem ser visualizados na Figura 2.2.

Entrada Oculta Sáıda

x1 h1 y1

x2 h2 y2

x3 h3

h4

Camada deEntrada

CamadaOculta

Camada deSáıda

∑
Soma

Ponderada

b (Viés)

Função de
Ativação f(·)

w21
x1

w22
x2

w23
x3

Sáıda h2

Figura 2.2: Estrutura de uma Rede Neural Multicamadas (MLP). À direita, o detalha-
mento de um neurônio oculto, evidenciando o viés (b) e o processamento interno de soma
e ativação.

Fonte: Baseado em Haykin (2009)

A principal inovação das MLPs reside na capacidade de modelar relações não

lineares complexas por meio da utilização de funções de ativação não lineares nas camadas

ocultas, como ReLU, sigmoide ou tangente hiperbólica. Esse avanço teórico está associado

ao conhecido Teorema da Aproximação Universal, segundo o qual uma rede neural com ao

menos uma camada oculta e número suficiente de neurônios é capaz de aproximar qualquer

função cont́ınua em domı́nios compactos, sob condições apropriadas (GOODFELLOW;

BENGIO; COURVILLE, 2016).

O treinamento dessas redes é viabilizado pelo algoritmo de retropropagação do
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erro (backpropagation), que permite o ajuste eficiente dos pesos por meio de métodos

baseados em gradiente (RUMELHART; HINTON; WILLIAMS, 1986). Embora as MLPs

apresentem maior poder de representação quando comparadas ao perceptron simples,

elas ainda enfrentam limitações relevantes ao processar dados estruturados no tempo

ou no espaço. No caso de sinais de ECG, as MLPs tendem a processar a entrada de

forma global, sem a hierarquia local inerente às convoluções. Consequentemente, essas

redes são menos eficazes em explorar a correlação local entre amostras vizinhas ou em

garantir a invariância à translação, ou seja, a capacidade de reconhecer um mesmo padrão

morfológico (como uma onda QRS) independentemente de sua posição temporal dentro

da janela analisada (SHARMA; JOSHI, 2025). Essa caracteŕıstica limita o desempenho

em tarefas de segmentação precisa, onde a forma e a posição relativa das ondas são mais

determinantes que seus valores absolutos de amplitude.

2.3 Deep Learning

Machine Learning Tradicional

Entrada
(Sinal Bruto)

Extração Manual
de Caracteŕısticas

(Engenharia)

Classificador
(SVM, RF, etc.)

Sáıda
(Predição)

Especialista Humano

Deep Learning (End-to-End)

Entrada
(Sinal Bruto)

Rede Neural Profunda

Extração de
Features

Classificação

Sáıda
(Predição)

Figura 2.3: Comparação do fluxo de trabalho. Em cima, a abordagem tradicional exige
intervenção humana na engenharia de caracteŕısticas. Em baixo, o Deep Learning unifica
extração e classificação em uma única estrutura treinável (end-to-end).

Fonte: Baseado em Goodfellow Goodfellow, Bengio e Courville (2016).

O termo Deep Learning refere-se a um subconjunto do aprendizado de máquina

baseado em redes neurais artificiais profundas, caracterizadas pela presença de múltiplas

camadas ocultas hierarquicamente organizadas. Nesse paradigma, as redes são capazes de



2.3 Deep Learning 18

aprender representações distribúıdas em diferentes ńıveis de abstração, nas quais camadas

mais próximas da entrada capturam padrões simples, enquanto camadas mais profun-

das modelam estruturas progressivamente mais complexas (GOODFELLOW; BENGIO;

COURVILLE, 2016). Embora arquiteturas profundas possam ser vistas como uma gene-

ralização das MLPs tradicionais, elas incorporam mecanismos estruturais espećıficos que

favorecem a aprendizagem eficiente de padrões complexos em grandes volumes de dados.

Essa abordagem representa uma mudança significativa em relação aos métodos

clássicos de análise de sinais, que dependiam fortemente da extração manual de carac-

teŕısticas. No contexto do ECG, abordagens tradicionais baseavam-se em regras heuŕısticas

e descritores projetados por especialistas, como intervalos temporais, amplitudes e relações

morfológicas pré-definidas (PAN; TOMPKINS, 1985; MARTÍNEZ et al., 2004). Em con-

traste, modelos de deep learning reduzem a necessidade de engenharia manual de carac-

teŕısticas, aprendendo representações discriminativas diretamente a partir do sinal bruto.

Entretanto, em cenários supervisionados, como o presente trabalho, esse processo depende

de anotações especializadas previamente definidas, as quais incorporam conhecimento fi-

siológico fundamental para o treinamento e a avaliação dos modelos. A Figura 2.3 ilustra

essa mudança de paradigma, comparando o fluxo de trabalho clássico, dependente de

engenharia manual, com a abordagem end-to-end do Deep Learning.

A eficácia do deep learning em aplicações biomédicas está intimamente relacio-

nada à sua habilidade de lidar com sinais ruidosos, variabilidade interpaciente e padrões

sutis associados a condições patológicas (MEHRI et al., 2023; PEIMANKAR; PUTHUS-

SERYPADY, 2021). Essas caracteŕısticas tornam as redes profundas particularmente

adequadas para tarefas de segmentação de sinais fisiológicos, como a identificação precisa

dos instantes de ińıcio e fim das ondas P, QRS e T (PEIMANKAR; PUTHUSSERYPADY,

2021). No entanto, a adoção bem-sucedida dessas técnicas depende do uso de arquiteturas

especializadas capazes de explorar adequadamente a estrutura local e temporal dos da-

dos, o que motiva o emprego de redes convolucionais, redes recorrentes e modelos h́ıbridos

(NURMAINI et al., 2021), discutidos nas seções subsequentes.
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2.3.1 Redes Neurais Convolucionais (CNN)

As Redes Neurais Convolucionais (CNNs) constituem uma das principais classes de ar-

quiteturas profundas utilizadas na análise de sinais biomédicos. Elas representam um

avanço significativo sobre as redes densas tradicionais (MLP) por serem capazes de ex-

trair caracteŕısticas hierárquicas diretamente dos dados brutos. Essa capacidade viabiliza

o aprendizado end-to-end (de ponta a ponta), um paradigma onde todo o processo,

desde a extração de atributos até a classificação final, é realizado por uma única rede neu-

ral otimizada conjuntamente, dispensando a engenharia manual de caracteŕısticas (feature

engineering) necessária em métodos clássicos (LECUN; BENGIO; HINTON, 2015).

Embora tenham sido originalmente desenvolvidas para o processamento de ima-

gens, as CNNs podem ser adaptadas para sinais unidimensionais por meio da convolução

1D, tornando-se particularmente adequadas para o tratamento de séries temporais como

o eletrocardiograma (GOODFELLOW; BENGIO; COURVILLE, 2016). Diferentemente

das CNNs 2D, que deslocam filtros em dois eixos espaciais (altura e largura), as CNNs

1D deslocam seus kernels1 apenas ao longo do eixo temporal. Isso reduz a complexidade

computacional e adequa-se à natureza sequencial do vetor de ECG (KIRANYAZ; INCE;

GABBOUJ, 2016).

A Figura 2.4 demonstra visualmente essa diferença estrutural: enquanto a CNN

2D exige varredura espacial, a CNN 1D opera exclusivamente ao longo do tempo, captu-

rando padrões morfológicos locais da onda card́ıaca.

Para evidenciar a eficiência computacional, convém comparar as operações. Na

CNN 2D, utilizada em imagens, o valor de cada pixel de sáıda depende de um somatório

duplo (varredura em altura e largura):

y[i, j] =
∑
m

∑
n

x[i+m, j + n] · w[m,n] (2.2)

Onde:

• y[i, j] representa o valor do pixel de sáıda na posição espacial (i, j);

• x é a matriz de entrada (imagem 2D);

1No contexto de redes neurais, um kernel (ou filtro) é uma matriz de pesos treináveis que desliza sobre
os dados de entrada para extrair caracteŕısticas relevantes, como bordas ou padrões espećıficos.
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• w é a matriz do kernel (filtro) com dimensões m× n;

• Os somatórios percorrem as duas dimensões do filtro (altura e largura).

Já na CNN 1D, a operação é simplificada para um somatório simples ao longo do

eixo temporal:

y[t] =
∑
k

x[t+ k] · w[k] (2.3)

Onde:

• y[t] representa o valor de sáıda na posição temporal t;

• x é o vetor de entrada (sinal de ECG);

• w é o kernel (filtro) de tamanho k;

• A operação de soma percorre o tamanho do filtro, multiplicando os pesos pelos

valores do sinal localmente.

Essa redução de dimensionalidade (de O(N2) para O(N) no contexto do filtro)

justifica por que as CNNs 1D são mais rápidas e exigem menos memória, permitindo o pro-

cessamento de longos registros de ECG em tempo real (KIRANYAZ; INCE; GABBOUJ,

2016).

No contexto da análise de ECG, os filtros convolucionais atuam como detectores

de caracteŕısticas morfológicas locais, sendo capazes de identificar padrões associados às

ondas P, QRS e T diretamente a partir do sinal bruto. A operação de convolução permite

que a mesma estrutura de filtro seja aplicada ao longo de todo o sinal, conferindo à rede

um grau de invariância a pequenas variações temporais, comuns em registros reais devido

a rúıdos, variações fisiológicas e diferenças interpaciente (KIRANYAZ; INCE; GABBOUJ,

2016).

Além disso, a hierarquização das camadas convolucionais possibilita o aprendi-

zado progressivo de representações, nas quais camadas iniciais capturam padrões simples,

como inclinações e picos, enquanto camadas mais profundas modelam estruturas mais

complexas do traçado eletrocardiográfico. Essa caracteŕıstica torna as CNNs especial-

mente eficazes em tarefas de segmentação, nas quais é necessário identificar com precisão
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(a) Convolução 2D (Imagens)

Kernel 3× 3

Eixo y

Eixo x

Deslocamento em
duas dimensões
(Altura e Largura)

(b) Convolução 1D (Sinais)
Kernel 1× 3

Eixo t

Deslocamento apenas
no eixo temporal
(Menor Custo)

Figura 2.4: Diferença estrutural entre a Convolução 2D e 1D. Em (a), o filtro varre a ima-
gem em dois eixos. Em (b), o filtro desloca-se apenas no tempo, reduzindo drasticamente
a complexidade computacional.

Fonte: Baseado em Kiranyaz, Ince e Gabbouj (2016).

os limites temporais das ondas card́ıacas. Diversos estudos demonstram o sucesso de

arquiteturas convolucionais na segmentação automática de ECG, consolidando-as como

uma abordagem de referência na área (ACHARYA et al., 2017; DURAJ et al., 2022).

2.3.2 Redes Neurais Recorrentes (RNN) e Long Short-Term

Memory (LSTM)

Embora as CNNs sejam eficazes na captura de padrões locais, elas apresentam limitações

na modelagem expĺıcita de dependências temporais de longo alcance. Para lidar com essa

caracteŕıstica intŕınseca dos sinais fisiológicos, foram propostas as redes neurais recorrentes

(Recurrent Neural Networks – RNN), que incorporam conexões ćıclicas capazes de manter

informações de estados anteriores ao longo da sequência (GOODFELLOW; BENGIO;

COURVILLE, 2016).

Entretanto, as RNNs tradicionais sofrem com o problema do desvanecimento

do gradiente2. Como solução, foram introduzidas as redes Long Short-Term Memory

(LSTM), que utilizam mecanismos de portas (gates) para controlar o fluxo de informações

2O desvanecimento do gradiente (Vanishing Gradient) ocorre quando os gradientes utilizados para
atualizar os pesos da rede tornam-se extremamente pequenos durante a retropropagação. Isso impede
que as camadas iniciais de redes profundas aprendam corretamente, pois seus pesos param de ser ajustados
significativamente.
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relevantes ao longo do tempo, permitindo a preservação de dependências de maior duração

(HOCHREITER; SCHMIDHUBER, 1997). Conforme detalhado na Figura 2.5, essas por-

tas (esquecimento, entrada e sáıda) regulam matematicamente o que deve ser preservado

ou descartado em cada passo da sequência.

Ct−1

(Estado Célula)

ht−1

(Estado Oculto)

xt (Entrada)

Ct

(Novo Estado)

ht
(Nova Sáıda)

σ

×

σ tanh

×

+

σ

tanh

×

Porta de Esquecimento Porta de Entrada Porta de Sáıda

Figura 2.5: Estrutura interna de uma célula LSTM. Os retângulos representam as
funções de ativação (sigmoide e tangente hiperbólica) que atuam como portões de con-
trole. Os ćırculos indicam as operações pontuais (multiplicação e adição) que atualizam
o estado da célula, permitindo o fluxo seletivo de informação.

Fonte: Baseado em Hochreiter e Schmidhuber (1997) e Olah (2015).

Na análise de ECG, as LSTM têm sido empregadas para capturar relações tem-

porais entre diferentes batimentos e para modelar a dinâmica global do sinal. Contudo,

o custo computacional elevado e a dificuldade de paralelização limitam sua aplicação

isolada em tarefas de segmentação densa. Por essa razão, abordagens h́ıbridas que combi-

nam CNNs para extração local de caracteŕısticas e LSTM para modelagem temporal têm

sido amplamente exploradas, apresentando ganhos de desempenho em cenários espećıficos

(YILDIRIM, 2018).

2.4 Redes Neurais Residuais (ResNet)

Em teoria, adicionar mais camadas a uma rede neural deveria aumentar sua capacidade de

modelar funções complexas. No entanto, na prática, observa-se que o aumento excessivo

da profundidade leva a um problema cŕıtico conhecido como desvanecimento do gradiente

(vanishing gradient). Durante o treinamento via retropropagação (backpropagation), o si-

nal de erro é multiplicado sucessivamente pelas derivadas das camadas conforme retorna
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da sáıda para a entrada. Em redes muito profundas, essas multiplicações sucessivas de va-

lores pequenos fazem com que o gradiente tenda a zero nas primeiras camadas, impedindo

que elas aprendam ou atualizem seus pesos (HE et al., 2016).

Para solucionar esse problema de fluxo do gradiente e permitir o treinamento de

redes com centenas de camadas, He et al. (2016) introduziram as Redes Neurais Residuais

(ResNets). A inovação central é a introdução de conexões de salto (skip connections ou

shortcut connections).

2.4.1 O Bloco Residual e o Fluxo do Gradiente

Diferente das redes tradicionais, as ResNets utilizam “blocos residuais”onde a entrada x

é somada diretamente à sáıda das camadas de processamento. A operação realizada por

um bloco residual é descrita matematicamente pela Equação 2.4, e sua estrutura gráfica

pode ser visualizada na Figura 2.6.

y = F(x, {Wi}) + x (2.4)

Onde:

• x é o vetor de entrada;

• F(x) é a função residual aprendida pelas camadas (convoluções);

• O termo +x é a conexão de identidade que preserva a informação original.

A intuição por trás dessa abordagem é que é mais fácil para a rede aprender que

a função residual deve ser zero (ou seja, F(x) ≈ 0, resultando em y ≈ x) do que aprender

uma função identidade complexa do zero usando várias camadas não-lineares.

No contexto da análise de eletrocardiogramas, essa propriedade é particularmente

valiosa. Como a morfologia do sinal card́ıaco possui uma estrutura base bem definida e

repetitiva (a sequência P-QRS-T), a conexão de identidade permite que a rede preserve

essa integridade estrutural ao longo das camadas profundas. Em vez de tentar reconstruir

as caracteŕısticas da onda do zero a cada convolução, o que poderia degradar detalhes

finos como entalhes no QRS ou a baixa amplitude da onda P, a rede aprende apenas os
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x

Pesos
(Convolução)

ReLU

Pesos
(Convolução)

+

ReLU Final

y = F(x) + x

Conexão de Identidade

F(x)

Figura 2.6: Diagrama de um bloco residual. O caminho da esquerda (seta vermelha)
contorna as camadas de peso, permitindo que o gradiente flua livremente durante a re-
tropropagação.

Fonte: Adaptado de He et al. (2016).

“reśıduos”necessários para refinar a segmentação. Isso significa que o modelo foca seus

recursos computacionais em aprender as variações sutis e as bordas exatas das ondas,

mantendo o fluxo do sinal original preservado através do atalho, estratégia que tem se

mostrado eficaz na detecção de padrões complexos em séries temporais biomédicas (HAN-

NUN et al., 2019).

Além disso, essa estrutura resolve o problema do fluxo do gradiente. Durante

a retropropagação, o gradiente do erro em relação à entrada x passa a ter um termo

aditivo constante de 1 proveniente da conexão de identidade ( ∂y
∂x

= ∂F
∂x

+ 1). Esse termo

“1”atua como uma “rodovia”(highway) para o gradiente, garantindo que o sinal de erro

flua diretamente para as camadas iniciais sem desaparecer, mesmo que os pesos F sejam

muito pequenos (HE et al., 2016). Isso viabilizou o treinamento das arquiteturas U-Net

profundas e dos modelos h́ıbridos utilizados neste trabalho.

Essa caracteŕıstica foi determinante para viabilizar o uso de arquiteturas profun-

das na segmentação de ECGs. Modelos mais profundos conseguem capturar dependências

temporais de longo alcance e contextos globais do batimento sem sofrer com a degradação
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da precisão na localização das ondas. Esse avanço permitiu a construção de arquiteturas

h́ıbridas robustas, como as baseadas em Residual U-Net, fundamentais para o desempe-

nho superior relatado em estudos recentes da literatura (DURAJ et al., 2022; ZHANG;

LIU; WANG, 2018).

2.4.2 Blocos Squeeze-and-Excitation (SE)

Enquanto as convoluções tradicionais operam misturando informações espaciais e de ca-

nais simultaneamente, os blocos Squeeze-and-Excitation (SE), propostos por Hu, Shen e

Sun (2018), visam recalibrar explicitamente a interdependência entre os canais da rede.

O funcionamento do bloco ocorre em duas etapas principais:

1. Squeeze (Compressão): realiza-se uma operação de Global Average Pooling para

agregar a informação espacial de cada canal em um único descritor numérico global;

2. Excitation (Excitação): utiliza-se uma rede neural fully connected leve para

aprender pesos de importância para cada canal (entre 0 e 1).

O resultado é uma multiplicação elemento a elemento que enfatiza caracteŕısticas

informativas e suprime as irrelevantes, permitindo que a rede foque nos mapas de carac-

teŕısticas mais importantes para a segmentação do ECG.

A Figura 2.7 ilustra esse fluxo de informação, destacando como o vetor de pesos

recalibra os canais de entrada.

Entrada
(H × C)

Vetor
(1× C)

Global Pool

Squeeze

Pesos
(σ)

FC Layers

Excitation

× Sáıda
Recalibrada

Figura 2.7: Diagrama esquemático do bloco Squeeze-and-Excitation (SE). O mecanismo
comprime a informação espacial (Squeeze) para calcular a importância de cada canal
(Excitation), utilizando esses pesos para recalibrar a entrada original.

Fonte: Adaptado de Hu, Shen e Sun (2018).
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2.4.3 Residual U-Net: A Integração de Conexões Residuais na

Segmentação

A arquitetura U-Net, base para este trabalho, é estruturalmente derivada dos Autoen-

coders . Conforme definido por Goodfellow, Bengio e Courville (2016), um autoencoder

é uma rede neural composta por duas etapas simétricas: um codificador (encoder), que

comprime progressivamente a entrada para extrair apenas as caracteŕısticas mais relevan-

tes (representação latente), e um decodificador (decoder), que tenta reconstruir o sinal

original a partir dessa versão comprimida.

Embora eficazes para redução de rúıdo, os autoencoders tradicionais sofrem com

a perda de detalhes espaciais durante o processo de compressão, o que é cŕıtico em seg-

mentação médica, contexto no qual a localização temporal precisa dos eventos é deter-

minante. A U-Net resolve esse problema introduzindo as conexões de salto (skip con-

nections), visualizadas pelas setas tracejadas na Figura 2.8. Essas conexões transferem

as caracteŕısticas de alta resolução diretamente do encoder para o decoder, permitindo

uma reconstrução precisa das fronteiras das ondas (RONNEBERGER; FISCHER; BROX,

2015).

Apesar da eficiência da U-Net clássica, o aumento de sua profundidade para

capturar padrões de ECG muito complexos pode levar a dificuldades de convergência no

treinamento. Para superar essa barreira, a literatura propôs a Residual U-Net (ResUNet),

uma arquitetura h́ıbrida que integra os blocos residuais (discutidos na Seção 2.4) direta-

mente na estrutura da U-Net, facilitando o fluxo do gradiente e permitindo o treinamento

de redes mais profundas sem degradação do desempenho (??DURAJ et al., 2022).

Conforme ilustrado na Equação 2.5, a sáıda y de um bloco residual não é apenas

o resultado das convoluções F(x), mas a soma deste resultado com a entrada original x:

ybloco = Fconv(x) + x (2.5)

Essa alteração arquitetural traz duas vantagens cruciais para a segmentação de

ECG:

1. Fluxo de Informação Facilitado: O atalho residual (+x) funciona como uma via
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expressa para os gradientes, permitindo que a rede aprenda funções de identidade

e evitando a degradação do desempenho em redes profundas (GOODFELLOW;

BENGIO; COURVILLE, 2016);

2. Preservação de Caracteŕısticas: A conexão residual ajuda a preservar as in-

formações originais do sinal dentro do bloco, vital para não perder detalhes de

baixa amplitude, como a onda P.

No trabalho de (DURAJ et al., 2022), replicado nesta pesquisa, essa estrutura é

aprimorada com a inserção de blocos Squeeze-and-Excitation (SE) dentro das unidades

residuais. Essa adição permite que a rede facilite o treinamento (via reśıduos) e também

aprenda a ponderar a importância de cada canal de filtragem (via SE), sem utilizar me-

canismos de atenção global complexos, mantendo um custo computacional eficiente para

processamento de ECG.

Conv 1D

Conv 1D

Conv 1D

Pooling

Pooling

Conv 1D

Conv 1D

Conv 1D

Bottleneck

Upsampling

Skip Connection
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Figura 2.8: Arquitetura U-Net 1D. O caminho de contração (esquerda) extrai o contexto,
enquanto o caminho de expansão (direita) recupera a localização precisa. As setas trace-
jadas (skip Connections) transferem detalhes de alta resolução do encoder para o decoder,
essenciais para a segmentação precisa das ondas.

Fonte: Baseado em Ronneberger, Fischer e Brox (2015) e Duraj et al. (2022).

2.4.4 Mecanismos de Atenção e a Arquitetura Transformer

Para superar as limitações de memória das redes recorrentes e o campo receptivo local das

convoluções, Bahdanau, Cho e Bengio (2014) introduziram o conceito de Mecanismo de

Atenção. Originalmente desenhado para tradução automática, esse mecanismo permite

que a rede “foque” dinamicamente em diferentes partes da sequência de entrada a cada
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passo do processamento, superando o gargalo de tentar comprimir toda a informação em

um único vetor de contexto.

Evoluindo esse conceito, Vaswani et al. (2017) propuseram o Transformer, uma

arquitetura que abandona totalmente a recorrência sequencial em favor do processamento

paralelo global. O núcleo dessa arquitetura é a Autoatenção (Self-Attention), que rela-

ciona diferentes posições de uma única sequência para computar uma representação mais

rica da mesma, capturando dependências de longo alcance instantaneamente.

Matematicamente, a autoatenção opera sobre três vetores projetados a partir da

entrada: Query (Q), Key (K) e Value (V ). A sáıda é uma soma ponderada dos valores,

onde os pesos são calculados através da similaridade entre Q e K, conforme a Equação

2.6:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (2.6)

onde
√
dk é um fator de escala para estabilizar os gradientes. No contexto do eletrocardi-

ograma, essa operação permite que o modelo aprenda que a morfologia de um complexo

QRS atual (Q) deve ser interpretada à luz de batimentos anteriores (K), recuperando

informações contextuais (V ) essenciais para distinguir ritmos normais de arritmias com-

plexas, mesmo que distantes temporalmente.

2.4.5 Transformers e Modelos Hı́bridos no ECG

A literatura sobre a análise automática de ECG tem evolúıdo progressivamente de arquite-

turas puramente convolucionais para modelos capazes de capturar dependências temporais

de longo alcance. Enquanto abordagens baseadas em CNNs, como a Residual U-Net discu-

tida anteriormente (DURAJ et al., 2022), aprimoram a segmentação por meio de conexões

residuais e mecanismos de recalibração local (SE), elas permanecem fundamentalmente

limitadas pelo campo receptivo das convoluções.

Nesse contexto, os Transformers emergem como uma alternativa promissora. A

sua capacidade de modelar relações globais torna-os particularmente adequados para a

análise de ECG, onde arritmias e padrões patológicos podem depender de correlações

temporais distantes, que escapam à visão local de uma CNN.
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A Figura 2.9 ilustra essa distinção fundamental: enquanto a convolução observa

apenas uma vizinhança restrita de pontos vizinhos, o mecanismo de atenção (base do

Transformer) conecta cada ponto do sinal a todos os outros pontos da sequência, permi-

tindo uma compreensão abrangente do contexto ŕıtmico global.

(a) CNN: Contexto Local

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x6x5 x7

Campo Receptivo
Limitado

(b) Transformer: Contexto Global

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10x6

Mecanismo de Autoatenção:
Conexão direta com toda a sequência

Figura 2.9: Comparação do mecanismo de captura de contexto. Em (a), a CNN observa
apenas uma vizinhança local. Em (b), o mecanismo de atenção conecta x6 a todos os
pontos da sequência (dependências de longo alcance).

Fonte: Baseado em Vaswani et al. (2017).

O modelo SEResUTer, proposto por Li et al. (2023) e também explorado neste

trabalho, representa essa evolução h́ıbrida. Diferentemente da abordagem puramente

convolucional de Duraj et al. (2022), o SEResUTer introduz um módulo Transformer

especificamente no gargalo (bottleneck) da rede. Sua composição integra:

1. A estrutura U-Net para a localização precisa;

2. Blocos Residuais e Squeeze-and-Excitation (similares aos de Duraj) no encoder/decoder

para extração de features locais;

3. Mecanismos de Atenção (Transformer) na camada mais profunda para capturar o

contexto global da série temporal, conforme detalhado na Figura 2.10.

Essa abordagem h́ıbrida visa unir o melhor dos dois mundos: a eficiência local

das CNNs (validada por Duraj et al. (2022)) com a capacidade de modelagem global dos

Transformers (proposta por Li et al. (2023)).
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Q K V

Query Key Value

MatMul (Q×KT )

Scale & Softmax

× Ponderação

Sáıda (Contexto Global)

Figura 2.10: Representação esquemática do mecanismo de Atenção (Scaled Dot-Product).
O modelo utiliza a similaridade entre Q e K para calcular pesos que filtram a informação
relevante vinda de V .

Fonte: Adaptado de Vaswani et al. (2017).

2.5 Funções de Perda Ponderadas

Para o treinamento de classificação multiclasse, utiliza-se comumente a Entropia Cruzada

Categórica (Categorical Cross-Entropy). Conforme discutido por Goodfellow, Bengio e

Courville (2016), essa função mede a divergência entre a distribuição de probabilidade

predita e a real.

Em cenários de segmentação de ECG, onde a classe “fundo” (linha isoelétrica)

é majoritária, o desbalanceamento pode enviesar o modelo. Para corrigir isso, aplica-se

uma ponderação na função de perda (Weighted Cross-Entropy), onde atribui-se um peso

maior (wc) aos erros cometidos nas classes minoritárias (Ondas P, QRS, T), penalizando

mais severamente o modelo quando ele falha em detectar uma onda do que quando ele

classifica incorretamente o fundo.

Matematicamente, a função de perda ponderada (LWCCE) introduz um termo

escalar wc para cada classe c, que multiplica o valor logaŕıtmico da perda. A equação

formal é dada por:

LWCCE = −
C∑
c=1

wc · yc · log(ŷc) (2.7)



2.6 Métricas de Avaliação de Desempenho 31

Onde:

• C é o número de classes (no caso deste trabalho: Fundo, P, QRS, T);

• yc indica se a classe c é a correta (1 ou 0);

• ŷc é a probabilidade predita pelo modelo;

• wc é o peso calculado inversamente à frequência da classe.

Dessa forma, se a classe c for uma onda rara (peso wc alto), o erro resultante será

amplificado, forçando o gradiente a ser mais agressivo na correção dos pesos da rede para

aquela classe espećıfica.

2.6 Métricas de Avaliação de Desempenho

A avaliação quantitativa de modelos de segmentação e classificação de ECG baseia-se na

comparação entre as predições geradas pela rede neural e as anotações manuais realizadas

por especialistas (ground truth). Essas métricas são derivadas da matriz de confusão, que

contabiliza os Verdadeiros Positivos (TP), Verdadeiros Negativos (TN), Falsos Positivos

(FP) e Falsos Negativos (FN), como exemplo na figura Figura 2.11.

Verdadeiro
Positivo (TP)

Acerto: Onda Detectada

Falso
Positivo (FP)
Erro: Alarme Falso
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Figura 2.11: Matriz de confusão para segmentação de ECG.
Fonte: Elaborada pelo autor (2025).
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2.6.1 Métricas baseadas na Matriz de Confusão

A Acurácia mede a proporção global de acertos do modelo. Embora intuitiva, ela pode ser

enganosa em cenários de alto desbalanceamento de classes, como no ECG, onde o fundo

(linha isoelétrica) predomina sobre as ondas (DURAJ et al., 2022). É definida por:

Acurácia =
TP + TN

TP + TN + FP + FN
(2.8)

Para mitigar o viés da acurácia, utilizam-se métricas focadas na classe positiva.

A Sensibilidade (ou Recall) avalia a capacidade do modelo de detectar corretamente os

eventos de interesse (ondas), sendo cŕıtica para evitar falsos negativos em diagnósticos

cĺınicos (DURAJ et al., 2022):

Sensibilidade =
TP

TP + FN
(2.9)

Simultaneamente, a Precisão avalia a confiabilidade das detecções positivas, in-

dicando o quanto o modelo é robusto a falsos alarmes (rúıdo classificado como onda)

(DURAJ et al., 2022):

Precisão =
TP

TP + FP
(2.10)

2.6.2 Métricas de Sobreposição e Similaridade

Para tarefas de segmentação, onde o objetivo é delimitar uma região temporal, utiliza-se

frequentemente o F1-Score (também conhecido como coeficiente Dice). Sendo a média

harmônica entre precisão e sensibilidade, esta métrica penaliza tanto falsos positivos

quanto falsos negativos, sendo mais robusta ao desbalanceamento de classes (DURAJ

et al., 2022):

F1-Score = 2 · Precisão · Sensibilidade
Precisão+ Sensibilidade

(2.11)

Outra métrica comum em segmentação semântica é o ı́ndice de Jaccard, ou In-

tersection over Union (IoU), que mede a razão entre a interseção e a união das máscaras
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preditas e reais. É uma métrica mais ŕıgida que o F1-Score, penalizando severamente

desalinhamentos (DURAJ et al., 2022):

IoU =
TP

TP + FP + FN
(2.12)

2.6.3 Métricas de Erro Temporal

Além das métricas de classificação, a precisão da localização dos pontos fiduciais (ińıcio

e fim das ondas) é avaliada pelo Erro Médio Absoluto (MAD). Medido em milissegundos

(ms), o MAD calcula a média das distâncias absolutas entre o ponto predito pelo modelo

e a anotação do especialista, sendo fundamental para validar a aplicabilidade cĺınica da

segmentação em medições de intervalos como QT e QRS.
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3 Trabalhos Relacionados

A aplicação de aprendizado profundo na análise de eletrocardiogramas (ECG) passou por

uma evolução acelerada na última década. O campo transicionou da simples classificação

de arritmias para tarefas complexas de segmentação semântica, buscando delimitar com

precisão os pontos fiduciais (ondas P, QRS e T). Esta seção apresenta essa evolução cro-

nológica, partindo de revisões sistemáticas que mapeiam o cenário geral até as arquiteturas

h́ıbridas mais recentes que fundamentam a parte prática deste trabalho.

3.1 Panorama da Literatura e Revisões Sistemáticas

Para compreender o estado da arte, revisões recentes oferecem um diagnóstico das tendências

predominantes. Wasimuddin et al. (2020), em um survey abrangente, estruturaram o

pipeline de análise de ECG em etapas de aquisição, pré-processamento e classificação,

destacando a integração incipiente entre técnicas clássicas e deep learning. Mais recente-

mente, Tihak, Konjicija e Boskovic (2022) analisaram 32 artigos focados na detecção de

fibrilação atrial, constatando a hegemonia das Redes Neurais Convolucionais (CNN) e o

surgimento de modelos h́ıbridos (CNN-LSTM).

Contudo, a análise cŕıtica desses trabalhos revela uma lacuna importante: a li-

teratura existente concentra-se majoritariamente na classificação global de arritmias (di-

agnóstico “doente”vs “saudável”), oferecendo pouca profundidade sobre as arquiteturas

espećıficas para a segmentação semântica das ondas morfológicas. Essa constatação, de

que as revisões atuais não respondem integralmente às especificidades da segmentação de

ondas, justifica a condução de uma nova Revisão Sistemática da Literatura neste trabalho.

O protocolo e a execução desta nova revisão, desenhada especificamente para responder

às questões de pesquisa propostas (P1-P3), são detalhados a seguir no Caṕıtulo 4.
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3.2 Evolução das Arquiteturas: De CNNs a Trans-

formers

A evolução dos modelos para segmentação de ECG pode ser dividida cronologicamente

em três gerações principais, conforme detalhado a seguir.

3.2.1 Primeira Geração: Adaptação de CNNs (2015–2019)

Os primeiros esforços significativos concentraram-se na adaptação de Redes Neurais Con-

volucionais (CNNs), originalmente desenvolvidas para imagens bidimensionais, para o

processamento de sinais unidimensionais. Trabalhos pioneiros demonstraram que CNNs

1D eram capazes de extrair caracteŕısticas automaticamente, superando abordagens ba-

seadas em engenharia manual de atributos.

Embora estudos preliminares, como o de Vijaya, Kumar e Verma (1998), já tives-

sem explorado o uso de redes neurais para anotação automática de sinais de ECG, essas

abordagens eram fortemente limitadas pelo reduzido poder computacional dispońıvel à

época e pela escassez de bases de dados extensas e adequadamente anotadas, o que res-

tringiu sua adoção em larga escala.

Foi apenas a partir do final da década de 2010 que os avanços em hardware

e a maior disponibilidade de bases públicas permitiram o treinamento eficaz de redes

convolucionais profundas para esta tarefa. Nesta fase, o foco da maioria dos trabalhos

permaneceu centrado na detecção de picos R e do complexo QRS, com atenção limitada

à segmentação precisa das ondas P e T.

3.2.2 Segunda Geração: U-Net e Modelos Residuais (2020–2022)

A virada de chave para a segmentação completa ocorreu com a adaptação da arquite-

tura U-Net para sinais 1D. Originalmente proposta para imagens biomédicas, a estrutura

encoder-decoder provou-se ideal para gerar máscaras de segmentação temporal. Neste

contexto, Duraj et al. (2022) representam um marco importante ao proporem a 1D Re-

sidual U-Net com mecanismos de Squeeze-and-Excitation (SE). Utilizando a base LUDB

(KALYAKULINA et al., 2020), os autores demonstraram que a inclusão de conexões resi-
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duais e blocos SE permitia à rede focar em canais informativos e ignorar rúıdos, alcançando

alta precisão na delimitação de ondas P e T, historicamente mais dif́ıceis de segmentar

que o complexo QRS. Este trabalho consolidou a U-Net como o baseline robusto para a

área.

3.2.3 Terceira Geração: Transformers e Arquiteturas Hı́bridas

(2023–Presente)

A fase atual é marcada pela introdução de mecanismos de atenção global para superar

as limitações das CNNs em capturar dependências de longo alcance. Li et al. (2023) in-

troduziram o modelo SEResUTer, uma arquitetura h́ıbrida que insere blocos Transformer

no “gargalo”(bottleneck) da U-Net. A premissa é que, enquanto as convoluções tratam

das caracteŕısticas locais (morfologia da onda), o Transformer analisa o contexto global

(ritmo e relação entre batimentos). Esta abordagem reflete a fronteira do conhecimento,

onde a interpretabilidade e a capacidade de generalização para múltiplas bases de dados

tornam-se os novos desafios a serem superados.
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4 Revisão Sistemática da Literatura

Conforme discutido no caṕıtulo 3, embora a literatura apresente revisões abrangentes so-

bre o uso de inteligência artificial em eletrocardiografia, como os trabalhos de Wasimuddin

et al. (2020) e Tihak, Konjicija e Boskovic (2022), observa-se uma lacuna espećıfica. As

revisões existentes concentram-se majoritariamente em tarefas de classificação diagnóstica

ou em panoramas generalistas do processamento de sinais.

Não foi identificada, até o momento, uma revisão sistemática recente dedicada

exclusivamente a mapear e comparar as arquiteturas de Deep Learning voltadas para

a segmentação semântica das ondas P, QRS e T. A distinção é crucial: enquanto a

classificação busca apenas rotular um registro, a segmentação exige a delimitação temporal

precisa de cada componente morfológico, tarefa que demanda arquiteturas e métricas de

avaliação distintas.

Diante dessa necessidade, este caṕıtulo apresenta uma Revisão Sistemática da

Literatura conduzida especificamente para preencher essa lacuna. O estudo segue o pro-

tocolo PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

(PAGE et al., 2021), com o objetivo de responder às questões de pesquisa P1, P2 e P3.

4.1 Questões de Pesquisa Norteadoras

Para guiar ambas as etapas metodológicas, foram formuladas três questões de pesquisa

(P) fundamentais, focadas na compreensão do cenário atual da literatura:

• P1: Quais são as arquiteturas de deep learning mais utilizadas para a segmentação

de ondas do ECG na literatura recente (2015–2025)?

• P2: Quais bases de dados públicas são predominantes no treinamento desses mo-

delos e quais estratégias de enriquecimento de dados (Data Augmentation) são em-

pregadas?

• P3: Quais são as métricas de avaliação mais adotadas para aferir o desempenho
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dos modelos de segmentação de ECG?

A seguir, são detalhados os métodos espećıficos para cada eixo.

4.2 Metodologia da Revisão

Nesta seção são apresentados os procedimentos adotados para a condução da revisão sis-

temática, com o objetivo espećıfico de responder às perguntas P1, P2 e P3. O protocolo

seguiu as recomendações do PRISMA 2020 (Preferred Reporting Items for Systematic

Reviews and Meta-Analyses) (PAGE et al., 2021). A aplicação das diretrizes PRISMA

contribui para garantir transparência, reprodutibilidade e rigor metodológico, orientando

desde a busca até a seleção dos estudos.

4.2.1 Fonte de dados e estratégia de busca

As buscas foram conduzidas em três bases de dados reconhecidas internacionalmente pela

relevância na área de ciência e engenharia biomédica: IEEEXplore (IEEE, 2025), PubMed

(National Center for Biotechnology Information, 2025) e Web of Science (CLARIVATE,

2025). A estratégia de busca foi elaborada com o uso de operadores booleanos, expressões

truncadas e termos espećıficos relacionados ao objetivo da revisão. A seguinte expressão

foi utilizada:

(“ ECG ”OR “ electrocardiogram ”) AND (“ wave delineation ”OR “ P wave

detect ”OR “ T wave detect ”OR “ QRS detect* ”OR “ QRS complex* ”OR

“ automated annotation ”) AND (“ deep learning ”OR “ neural network* ”)

AND (“ semantic segmentation ”OR “ time-series segmentation ”OR “ signal

processing ”)

As buscas foram realizadas no mês de junho de 2025, considerando o intervalo

de publicação entre 2015 e 2025. Foram inclúıdos apenas artigos publicados em inglês ou

português brasileiro, dispońıveis em texto completo e que abordassem a identificação das

ondas do ECG por meio de redes neurais profundas.
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Para organização, triagem e seleção dos registros, foi utilizado o software Rayyan.ai

(OUZZANI et al., 2016), uma plataforma gratuita para revisões sistemáticas. A ferra-

menta permitiu:

• Importar os resultados das buscas diretamente das bases;

• Eliminar automaticamente artigos duplicados;

• Facilitar a triagem por meio da leitura rápida de t́ıtulos e resumos;

• Aplicar etiquetas de inclusão/exclusão com base nos critérios definidos;

• Adicionar anotações colaborativas durante a avaliação dos estudos.

4.2.2 Critérios de elegibilidade e exclusão

Os critérios de inclusão e exclusão foram definidos previamente à leitura dos artigos, com

base no escopo da revisão:

Critérios de Inclusão

• Estudos que utilizaram redes neurais profundas (ex.: CNN, LSTM, U-Net, Transfor-

mers) para detecção, predição ou delineamento de ondas ou pontos-chave do ECG

(P, QRS, T, R-peak, etc.);

• Trabalhos com aplicação prática ou validação em bases públicas de ECG, como

Lobachevsky University Database (LUDB) (KALYAKULINA et al., 2020), MIT-

BIH (MOODY; MARK, 2001) e QT Database (QTDB) (LAGUNA et al., 1997);

• Artigos revisados por pares;

• Publicados entre 2015 e 2025.

Critérios de Exclusão

• Artigos de revisão, editoriais, caṕıtulos de livro ou anais de evento sem acesso ao

texto completo;
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• Estudos que não utilizam deep learning para detecção, predição ou delineamento de

ondas/pontos do ECG;

• Trabalhos que têm como objetivo exclusivamente a classificação de arritmias ou

doenças, sem qualquer foco na detecção de ondas/pontos do ECG (mesmo que

usem deep learning);

• Trabalhos que não apresentavam detalhes suficientes sobre a arquitetura do modelo,

dados utilizados ou métricas de avaliação.

4.2.3 Seleção de estudos

A seleção dos artigos seguiu as três etapas recomendadas para revisões sistemáticas:

1. Identificação e remoção de duplicatas: utilizando a função automática do Rayyan;

2. Triagem por t́ıtulos e resumos: eliminação de registros irrelevantes ou fora dos

critérios definidos;

3. Leitura completa dos artigos selecionados: análise criteriosa para verificação final

de elegibilidade.

A busca inicial resultou em 175 registros. Após a identificação de 62 duplicatas e

a resolução de conflitos, foram exclúıdos 33 trabalhos nesta fase inicial. Assim, 142 artigos

permaneceram para a triagem por t́ıtulo e resumo. Desses, 47 estudos foram selecionados

para leitura na ı́ntegra. Com base na análise completa, 42 artigos atenderam aos critérios

e foram inclúıdos na análise final. O processo completo de seleção está representado na

Figura 4.1.

4.2.4 Extração de dados

Para cada um dos estudos inclúıdos, foi realizada a extração de dados por meio de uma

planilha padronizada. Os itens extráıdos foram selecionados estrategicamente para res-

ponder às perguntas de pesquisa (Ps) norteadoras deste trabalho:



4.2 Metodologia da Revisão 41

Id
e
n
ti
fi
c
a
ç
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conflitos iniciais

(n = 33)
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ri
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Registros triados
(T́ıtulos e Resumos)

(n = 142)

Registros exclúıdos
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copo/Critérios)
(n = 95)
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Artigos avaliados
para elegibilidade
(Texto Completo)

(n = 47)

Artigos exclúıdos
com justificativa:
Revisões, foco ex-
clusivo em arritmia,
sem detalhes técnicos

(n = 5)

In
c
lu
sã

o

Estudos inclúıdos na
revisão sistemática

(n = 42)

Figura 4.1: Fluxograma PRISMA 2020 detalhando o processo de seleção dos estudos. Dos
175 registros iniciais, 42 atenderam a todos os critérios de inclusão e compõem o corpus
desta revisão.

Fonte: Elaborada pelo autor (2025).
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• Para responder à P1 (Arquiteturas): Foram extráıdos dados sobre a arqui-

tetura de rede neural aplicada (ex.: CNN, LSTM, U-Net, Transformers) e suas

configurações espećıficas;

• Para responder à P2 (Bases de Dados): Levantou-se a base de dados de

ECG utilizada (pública ou privada), bem como as técnicas de pré-processamento

e estratégias para lidar com limitações (como data augmentation, filtragem e seg-

mentação por janelas);

• Para responder à P3 (Métricas): Foram registradas as métricas de avaliação

de desempenho utilizadas (ex.: F1-score, IoU, acurácia, erro médio de tempo) para

aferir a qualidade da segmentação;

• Informações Complementares: Principais contribuições relatadas e limitações

metodológicas mencionadas pelos autores.

A avaliação da qualidade metodológica dos estudos foi feita de maneira quali-

tativa, considerando a clareza na descrição dos métodos, a completude dos resultados

apresentados e a solidez da validação dos modelos. Foram valorizados estudos com va-

lidação cruzada, comparação com métodos clássicos e uso de múltiplas bases de dados.

Os procedimentos descritos nesta seção forneceram a base metodológica necessária para

a análise dos resultados apresentada a seguir.

4.3 Resultados e Discussão da Revisão

Com base nos 42 estudos selecionados através do protocolo descrito acima, apresenta-se

a seguir a análise detalhada para responder às questões norteadoras.

4.3.1 Arquiteturas de Deep Learning (P1)

A análise cronológica dos 42 trabalhos revisados permite compreender a evolução do uso de

redes neurais profundas (Deep Learning) na segmentação e classificação de sinais de ECG.

Observou-se uma transição clara entre três fases distintas: ińıcio (2018-2019), consolidação

(2020-2021) e sofisticação e integração de técnicas avançadas (2022 em diante).
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Na fase inicial (2018-2019), os trabalhos concentram-se em arquiteturas convolu-

cionais básicas (CNN 1D) e Fully Convolutional Networks (FCNs), com foco em tarefas

fundamentais, como a detecção de picos R e complexos QRS. Embora algumas aborda-

gens tenham explorado redes recorrentes (LSTMs e BLSTMs) para capturar dependências

temporais, a aplicação em tempo real era limitada. Métricas como Sensibilidade (Se), Va-

lor Preditivo Positivo (PPV) e F1-score já alcançavam valores próximos a 99% em bases

clássicas como MIT-BIH, indicando o potencial dessas redes para análises de alta precisão.

Com a maturação das pesquisas (2020-2021), verifica-se a popularização da U-Net

e suas variantes 1D, adaptadas para a segmentação de ondas P, QRS e T. Modelos h́ıbridos

CNN-LSTM ou CNN-BiLSTM tornam-se frequentes, combinando a extração espacial de

caracteŕısticas das CNNs com a memória temporal das redes recorrentes. O desempenho

reportado nesse peŕıodo é consistentemente elevado, com F1-scores acima de 97% em

delineação completa e acurácia próxima de 99% para detecção de QRS, como observado

em métodos baseados em U-Net e arquiteturas dilatadas (DCNN-LSTM). Este avanço

indica o ińıcio da consolidação de soluções capazes de lidar com maior variabilidade de

sinais.

A partir de 2022, observa-se um movimento em direção à sofisticação arquitetu-

ral e à integração de mecanismos de atenção e Transformers. Modelos como SEResU-

Ter e ECG DEEPNet ilustram essa tendência, incorporando blocos residuais (ResNet),

Squeeze-and-Excitation, autoatenção e codificadores Transformer a estruturas U-Net ou

redes h́ıbridas. Estas abordagens buscam maior robustez a rúıdos generalização para

múltiplas derivações e até mesmo capacidade de análise de ECG em dispositivos vest́ıveis.

Resultados recentes indicam F1-scores superiores a 99% para detecção de QRS e desem-

penho consistente na identificação de ondas P e T, ainda que estas últimas permaneçam

mais desafiadoras devido a menor amplitude e à variabilidade morfológica.

Como pode ser observado na Figura 4.2, o levantamento realizado evidencia um

amadurecimento das técnicas de Deep Learning em ECG, que passaram de soluções ba-

seadas em CNNs simples para modelos h́ıbridos e de múltiplos componentes, capazes de

oferecer alt́ıssima precisão e maior potencial de aplicação cĺınica. Ainda assim, desafios

persistem, como a generalização para dados externos, a interpretabilidade dos modelos
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e a escassez de bases anotadas com alta qualidade, que continuam a motivar pesquisas

recentes.

Figura 4.2: Evolução das arquiteturas de deep learning aplicadas ao ECG (2018–2025).
Fonte: Elaborada pelo autor(a).

Em śıntese, a evolução arquitetural observada nos últimos anos acompanha a cres-

cente necessidade de modelos capazes de lidar com variações morfológicas, rúıdos e requi-

sitos de aplicabilidade cĺınica. Embora CNNs continuem sendo referência em desempenho,

arquiteturas h́ıbridas vêm ganhando destaque, apesar de maior custo computacional.

4.3.2 Bases de Dados e Data Augmentation (P2)

A análise dos 42 estudos revisados evidencia uma clara transição no uso de bases de

dados públicas e privadas ao longo do peŕıodo de 2018 a 2024, refletindo mudanças tanto

na complexidade dos modelos quanto nas exigências de generalização cĺınica.

Peŕıodo Inicial (2018–2019): Predominância de Bases Clássicas. Nos anos inici-

ais, observou-se forte concentração no uso de bases tradicionais, especialmente o MIT-BIH

Arrhythmia Database (MITDB), utilizado por 75% dos estudos (ex: (SODMANN et al.,

2018); Camps et al., 2018). Esse domı́nio deve-se à sua ampla disponibilidade, anotação

manual confiável e foco em arritmias. Paralelamente, a QT Database (QTDB) foi empre-

gada em 50% dos trabalhos. A respeito de sua acessibilidade, essas bases apresentavam

limitações quanto à diversidade patológica e representatividade de cenários reais, como

ambientes ambulatoriais ou sinais com rúıdo originário de dispositivos vestivéis.
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Transição (2020–2021): Expansão para Bases Especializadas e Ambulatoriais. A

partir de 2020, identificou-se uma expansão para bases mais especializadas. A LUDB (Lo-

bachevsky University Database) passou a representar 37,5% da amostra (ex: (XU et al.,

2023)), oferecendo dados multiderivação (12 derivações) com anotações detalhadas para

tarefas de segmentação semântica. Simultaneamente, conjuntos como a CPSC 2019/2021

e a Noise Stress Test Database (NSTDB) introduziram registros mais ruidosos e realistas,

refletindo condições cĺınicas mais desafiadoras. Aproximadamente 68,75% dos estudos

nessa fase passaram a adotar múltiplas bases em combinação, sinalizando uma busca por

maior robustez na validação cruzada dos modelos.

Consolidação (2022–2024): Diversidade e Personalização. Entre 2022 e 2024,

consolidou-se uma tendência de uso de bases mais diversificadas e h́ıbridas, tanto públicas

quanto privadas. O PTB-XL, atualmente o maior banco público com ECGs de 12 de-

rivações e metadados cĺınicos, foi destaque em estudos recentes (ex: (SILVA et al., 2024)).

Simultaneamente, a incorporação de bases privadas, como a do Chang Gung Memorial

Hospital (2023) e CardioCloud Medical (2023), passou a representar uma estratégia de per-

sonalização para contextos cĺınicos espećıficos, embora isso levante questões sobre repro-

dutibilidade e acesso (Zhu et al., 2024). Houve ainda a adoção inicial de bases sintéticas,

especialmente em estudos com modelos de difusão, sinalizando uma nova fronteira para

treinamento de redes profundas com dados simulados.

A análise temporal entre 2018 e 2024 revela um crescimento expressivo no número

de estudos que adotam múltiplas bases de dados para validação de modelos de ECG. En-

tre 2018 e 2019, apenas 31,25% dos trabalhos inclúıam duas ou mais bases, com foco

majoritário em conjuntos tradicionais como a MITDB. A partir de 2020, essa proporção

salta para 68,75%, acompanhando o surgimento de modelos mais complexos e a neces-

sidade de validar desempenho em cenários cĺınicos variados. Já no triênio 2022–2024,

aproximadamente 75% dos estudos passaram a combinar três ou mais bases, incluindo

públicas, privadas e sintéticas.

O aumento na média de bases por estudo, de 1,3 em 2018 para 3,2 em 2024,

marca uma mudança de paradigma na pesquisa com ECG baseada em deep learning, con-

forme ilustrado na Figura 4.3. A integração de múltiplas fontes tornou-se uma exigência
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metodológica para garantir desempenho cĺınico confiável.

68.8%

31.2%

2018–2019

Média: 1.3

Ex: MITDB

31.2%

68.8%

2020–2021

Média: 2.1

20.0%

80.0%

2022–2024

Média: 3.2

Ex: Hı́bridas

Base Única Múltiplas Bases (≥2)

Tendência: Generalização

Figura 4.3: Evolução temporal da estratégia de validação (2018–2024). O gráfico evidencia
a inversão do paradigma: o uso de bases únicas (cinza) cede lugar à integração de múltiplas
bases (azul), impulsionada pela necessidade de generalização dos modelos.

Fonte: Elaborada pelo autor (2025).

Como parte da análise sobre as estratégias utilizadas para mitigar as limitações

das bases de dados (P2), investigaram-se também as técnicas de data augmentation rela-

tadas nos estudos. Verificou-se que aproximadamente 37% empregaram tais técnicas com

o objetivo de mitigar limitações recorrentes, como número reduzido de amostras e desba-

lanceamento. A Figura 4.4 apresenta a distribuição das categorias de data augmentation

entre os estudos analisados.

As estratégias mais comuns (Tabela 4.1) inclúıram janelamento com sobreposição,

transformações do sinal (inversão, escalonamento) e injeção de rúıdo realista. De forma

geral, os trabalhos que aplicaram data augmentation apresentaram modelos com maior

capacidade de generalização e tolerância a sinais de baixa qualidade.

4.3.3 Métricas de Avaliação (P3)

A terceira pergunta de pesquisa (P3) buscou identificar as métricas mais adotadas na

literatura para aferir o desempenho dos modelos. A análise revelou que a escolha das

métricas reflete a natureza h́ıbrida do problema de segmentação de ECG, exigindo tanto
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Figura 4.4: Distribuição das categorias de data augmentation utilizadas nos estudos de
ECG analisados.

Fonte: Elaborada pelo autor(a).

Tabela 4.1: Resumo das estratégias de data augmentation empregadas nos estudos sele-
cionados.
Estudo Base de Dados Estratégias de Data Augmentation

Camps et al. (2018) QTDB Janelamento com 99% de sobreposição; adição de constantes.

Sodmann et al. (2018) QTDB + NSTDB Rúıdo gaussiano, baseline wander, deslocamento.

Zahid et al. (2021) MIT-BIH + NSTDB Injeção de baseline wander e rúıdo sintético.

Habib et al. (2022) MIT-BIH Replicação de batimentos minoritários, deslocamentos.

Li et al. (2023) LUDB + CPSC 2020 Translação temporal, escalonamento, inversão.

Wang et al. (2023) LUDB Blindagem de derivações (random shielding), cut-out.

Bioengineering (2023) LUDB Janelas de 4 s com sobreposição de 75%.

NSTDB: Noise Stress Test Database; CPSC: China Physiological Signal Challenge.

a classificação correta da morfologia quanto a precisão temporal.

Identificou-se uma predominância absoluta de métricas que ponderam o equiĺıbrio

entre a detecção de eventos e a confiabilidade da predição. Conforme detalhado na Tabela

4.2, as métricas mais recorrentes foram:

• F1-Score (ou Coeficiente de Dice): Identificada como a métrica padrão-ouro

para comparação de desempenho (> 90% dos estudos).

• Sensibilidade e Precisão: A maioria dos autores opta por reportar esse par

de métricas em conjunto, visando fornecer um diagnóstico cĺınico de segurança e

eficiência.

• IoU (Jaccard): Sua presença foi notada especialmente em trabalhos que utilizam

arquiteturas de visão computacional (U-Nets) para validar a qualidade geométrica.
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• Erro Temporal (MAD): Estudos focados na aplicabilidade médica tendem a

incluir métricas de erro temporal para validar a precisão dos limites (onsets/offsets).

Tabela 4.2: Principais métricas de avaliação identificadas na revisão sistemática.

Métrica Aplicação Principal Identificada Frequência Es-
timada

F1-Score / DSC Avaliação global de desempenho em dados
desbalanceados.

Alta (> 90%)

Sensibilidade
(Se)

Avaliação de segurança cĺınica (não perder
eventos).

Alta (> 90%)

Precisão (PPV) Avaliação de robustez a rúıdo (não gerar fal-
sos alarmes).

Alta (> 85%)

Acurácia (Acc) Visão geral, mas frequentemente citada com
ressalvas sobre viés.

Média (∼ 60%)

IoU (Jaccard) Avaliação geométrica da sobreposição de seg-
mentos.

Média (∼ 50%)

MAD (ms) Precisão temporal fina para delimitação de
onsets/offsets.

Média-Baixa (∼
40%)

4.4 Śıntese da Revisão

A revisão sistemática permitiu mapear o estado da arte e identificar que a área de seg-

mentação de ECG caminha para a consolidação de arquiteturas h́ıbridas (como U-Nets

associadas a Transformers), o uso mandatório de múltiplas bases de dados para garantir

generalização e a aplicação de técnicas robustas de data augmentation. Além disso, o

levantamento das métricas confirmou a necessidade de uma avaliação multidimensional

(classificação + precisão temporal).

Para consolidar os achados teóricos deste caṕıtulo, a Tabela 4.3 sintetiza as res-

postas para as questões de pesquisa fundamentadas na literatura (P1, P2 e P3). Esses

achados embasam diretamente as escolhas metodológicas da etapa experimental (Caṕıtulo

5).
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Tabela 4.3: Śıntese das Questões de Pesquisa e Respostas Obtidas

P1 Quais arquiteturas de deep learning têm sido aplicadas
ao delineamento de ondas P, QRS e T?

A literatura evidencia uma evolução tecnológica clara: par-
tindo de CNNs 1D simples para modelos U-Net 1D, incor-
porando posteriormente conexões residuais e blocos SE para
maior profundidade. O estado da arte atual explora arquitetu-
ras h́ıbridas que fundem a capacidade local das CNNs com o
contexto global dos Transformers (mecanismos de atenção).

P2 Quais bases de dados e estratégias de data augmenta-
tion são mais utilizadas?

QTDB, LUDB e MIT-BIH permanecem sendo as bases mais re-
correntes, embora haja crescimento no uso da PTB-XL. O data
augmentation tornou-se mandatório para lidar com o desbalan-
ceamento de classes e variabilidade morfológica, utilizando es-
tratégias como janelamento com sobreposição, transformações
do sinal e injeção de rúıdo realista.

P3 Quais métricas são mais empregadas para avaliação de
segmentação de ECG?

Predominam F1-score/DSC para avaliação global, complemen-
tadas pelo par Sensibilidade/Precisão para diagnóstico cĺınico
do modelo. O erro temporal (MAD em ms) é essencial para
validar a precisão dos limites de onda (onsets/offsets).
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5 Delineamento Experimental e

Arquiteturas

Após o mapeamento do estado da arte realizado no caṕıtulo 4, esta etapa apresenta uma

análise experimental aplicada. O objetivo é observar, em um cenário prático e contro-

lado, o comportamento das arquiteturas convolucionais e h́ıbridas quando submetidas a

limitações de dados, verificando aspectos de reprodutibilidade e consistência dos resulta-

dos.

5.1 Fluxo do Experimento

Para garantir a comparabilidade entre os dois paradigmas, foi desenhado um fluxo de

trabalho unificado, onde ambos os modelos são submetidos aos mesmos processos de

ingestão de dados e critérios de avaliação, conforme ilustrado na Figura 5.1.

5.2 Definição dos Estudos de Caso

Para testar a viabilidade de replicação, foram selecionadas duas arquiteturas que repre-

sentam paradigmas opostos identificados no estado da arte:

• Caso 1 (Convolucional): Baseado em Duraj et al. (2022), utilizando uma Resi-

dual U-Net. Representa a abordagem clássica, eficiente e focada em caracteŕısticas

locais.

• Caso 2 (Hı́brido): Baseado no modelo SEResUTer de Li et al. (2023), que incor-

pora mecanismos de atenção (Transformers). Representa a tendência moderna de

captura de contexto global.
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Base de Dados
LUDB (200 ECGs)

Pré-processamento
(Normalização, Janelamento,

Data Augmentation*)

Estudo de Caso 1
Residual U-Net + SE

(Convolucional)

Estudo de Caso 2
SEResUTer

(Hı́brido: U-Net + Transformer)

Treinamento
(Pesos de Classe)

Treinamento
(Adam Optimizer)

Avaliação
Comparativa

Métricas:
F1-Score, IoU, Sensibilidade,

Precisão

*Data Augmentation aplicado especificamente no Estudo de Caso 2.

Figura 5.1: Fluxo metodológico da etapa de replicação experimental. Ambos os modelos
foram submetidos a pipelines similares de pré-processamento e avaliação para garantir a
comparabilidade dos resultados.

Fonte: Elaborada pelo autor (2025).
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5.3 Base de Dados Utilizada (LUDB)

O estudo utilizou integralmente a LUDB. A escolha desta base justifica-se pela sua alta

qualidade de anotação e pela diversidade de morfologias, essenciais para testar a ge-

neralização dos modelos. A Figura 5.2 ilustra a complexidade do sinal e o padrão de

segmentação (ground truth) dispońıvel na base.

Figura 5.2: Exemplo de um ciclo card́ıaco segmentado na base LUDB. As áreas coloridas
representam as anotações de especialistas para Onda P, QRS e Onda T.

Fonte: Elaborada pelo autor (2025).

5.3.1 Caracterização dos Dados

A base é composta por registros de 200 pacientes, totalizando 2400 sinais individuais

(considerando as 12 derivações padrão por paciente: I, II, III, aVR, aVL, aVF, V1, V2,

V3, V4, V5 e V6).

• Perfil Demográfico: A base de dados apresenta distribuição heterogênea em

relação ao sexo e à idade. Observa-se predominância de indiv́ıduos do sexo mas-

culino (57,5%) em relação ao feminino (42,5%). A faixa etária é ampla, variando

aproximadamente dos 10 aos 90 anos, com maior concentração de pacientes entre

50 e 70 anos. Essa variabilidade demográfica contribui para que o modelo seja trei-

nado em sinais provenientes de diferentes perfis biológicos, reduzindo o risco de viés

associado a sexo ou idade espećıficos.
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• Diversidade Cĺınica e Patológica: Um diferencial cŕıtico da base LUDB é que

ela não se restringe a indiv́ıduos saudáveis, incluindo uma variedade representativa

de patologias. A Tabela 5.1 detalha a distribuição dos ritmos card́ıacos presentes

na base.

Embora haja predominância do Ritmo Sinusal (padrão normal), destaca-se a pre-

sença de 15 casos de Fibrilação Atrial (7,5% da base). A inclusão desta patologia é

fundamental para o teste de robustez, pois a Fibrilação Atrial frequentemente su-

prime a Onda P e introduz irregularidades no intervalo R-R, desafiando a capacidade

de generalização das redes neurais em cenários cĺınicos reais.

• Desbalanceamento de Classes: A análise exploratória confirmou um grande des-

balanceamento. Como evidenciado na Figura 5.3, a classe “Fundo” (linha isoelétrica)

representa a vasta maioria dos pontos, enquanto ondas cŕıticas como a Onda P re-

presentam uma fração minoritária. A visualização desta disparidade fundamentou

a adoção da estratégia de Class Weights (detalhada na Seção 5.5.2).

Tabela 5.1: Distribuição dos diagnósticos de ritmo card́ıaco presentes nos registros da
base LUDB.

Diagnóstico / Ritmo Qtd. Pacientes Percentual

Ritmo Sinusal (Normal) 145 72,5%
Bradicardia Sinusal 25 12,5%
Fibrilação Atrial 15 7,5%
Outros (Arritmias Diversas) 11 5,5%
Taquicardia Sinusal 4 2,0%

Total 200 100,0%

Fonte: Elaborada pelo autor (2025).

5.4 Protocolo de Avaliação e Ferramentas

Para garantir a reprodutibilidade e a comparabilidade entre os estudos de caso, estabeleceu-

se o seguinte protocolo experimental:

• Entrada Unificada: Diferentemente dos estudos originais que utilizavam janelas

temporais distintas, neste trabalho ambas as arquiteturas (Convolucional e Hı́brida)
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Figura 5.3: Distribuição percentual das classes na base de treinamento, evidenciando o
predomı́nio da classe Fundo.

Fonte: Elaborada pelo autor (2025).

foram adaptadas para receber o sinal completo de 10 segundos (5000 pontos) a 500

Hz. Isso elimina o viés de pré-processamento, garantindo que qualquer diferença de

desempenho seja atribúıda exclusivamente à capacidade da arquitetura.

• Ambiente de Execução: Os experimentos foram conduzidos em ambiente con-

trolado utilizando GPU NVIDIA RTX 3060, com implementações em Python (Ten-

sorFlow/Keras).

• Divisão Estratificada: O conjunto de dados (2400 sinais) foi dividido seguindo a

proporção 80/20:

– Treino: 1920 sinais (utilizados para ajuste de pesos).

– Teste: 480 sinais (reservados estritamente para a avaliação final das métricas).

• Métricas Estat́ısticas: Os resultados finais são reportados como Média ± Desvio

Padrão (µ± σ) de 5 execuções independentes, permitindo avaliar a estabilidade de

convergência.

• Prevenção de Sobreajuste (Early Stopping): Para evitar a memorização dos

dados (overfitting), monitorou-se a função de perda no conjunto de validação. O

treinamento foi configurado para ser interrompido caso não houvesse melhoria (de-

caimento da Loss) após um número pré-definido de épocas (paciência), restaurando-
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se automaticamente os pesos da melhor época observada. Os valores de paciência

espećıficos para cada modelo constam na Tabela 5.2.

• Critério de Viabilidade: A replicação foi considerada bem-sucedida se o modelo

atingisse convergência estável (baixo desvio padrão entre as rodadas) e demonstrasse

capacidade de generalização na base de teste, validando o comportamento teórico

esperado para cada arquitetura (viés indutivo).

Tabela 5.2: Hiperparâmetros e especificidades das arquiteturas comparadas.

Parâmetro Configuração

Configurações de Treinamento (Comuns)
Otimizador Adam
Taxa de Aprendizado 5× 10−4

Tamanho do Lote (Batch Size) 32
Critério de Parada (Paciência) 12 épocas (Duraj) / 6 épocas (SEResUTer)
Divisão Treino / Validação 80% / 20%

Diferenças nas Arquiteturas
Caso 1: Residual U-Net (Duraj) Kernel = 9 — Sem Atenção
Caso 2: SEResUTer (Hı́brido) Kernel = 5 — Com Transformer

Detalhes da Arquitetura
Filtros Iniciais 32
Taxa de Dropout 0,2 (Convoluções) / 0,1 (Transformer)
Função de Ativação ReLU (Ocultas) / Softmax (Sáıda)
Profundidade (Encoder) 4 Nı́veis (Duraj) / 3 Nı́veis (SEResUTer)

5.5 Fundamentação Matemática da Implementação

Antes de apresentar as especificidades de cada arquitetura, é fundamental detalhar as es-

tratégias matemáticas adotadas para garantir o aprendizado dos modelos, especificamente

a escolha da função de perda e o tratamento do desbalanceamento de classes.

5.5.1 Função de Perda: Entropia Cruzada Categórica

Para o problema de segmentação semântica multiclasse, onde cada amostra temporal do

ECG deve ser classificada como uma de quatro classes exclusivas (Fundo, Onda P, Com-

plexo QRS, Onda T), utilizou-se a Categorical Cross-Entropy (CCE). Matematicamente,
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essa função mede a divergência entre a distribuição real y (vetor one-hot) e a distribuição

predita ŷ:

LCCE = −
C∑
c=1

yi,c · log(ŷi,c) (5.1)

Essa formulação penaliza severamente o modelo quando ele atribui uma probabi-

lidade baixa à classe verdadeira, forçando o ajuste dos pesos para aumentar a confiança

na segmentação correta.

5.5.2 Estratégia de Ponderação de Classes (Class Weights)

Devido ao severo desbalanceamento da base LUDB, onde a linha isoelétrica (fundo) pre-

domina, a rede tende a convergir para um mı́nimo local trivial (classificar tudo como

fundo). Para corrigir isso, aplicou-se a técnica de Ponderação de Classes Suavizada.

Diferentemente da ponderação inversa padrão, optou-se por aplicar uma sua-

vização pela raiz quadrada nos pesos calculados. Essa estratégia evita que as classes

minoritárias recebam pesos excessivamente altos (o que poderia desestabilizar os gradien-

tes), mantendo, contudo, a penalidade para erros nas ondas de interesse:

wc =

√
Ntotal

Nclasses ·Nc

(5.2)

A aplicação desta fórmula sobre o conjunto de treinamento resultou nos seguintes

pesos, incorporados à função de perda: a classe majoritária ‘Fundo’ recebeu peso de ≈

0,60, enquanto as classes cĺınicas foram priorizadas: Onda P (≈ 1,67), Complexo QRS

(≈ 1,30) e Onda T (≈ 1,91). Esses valores garantem que o modelo priorize a detecção

das morfologias card́ıacas sem ignorar completamente a estabilidade da linha de base.

5.6 Arquiteturas Implementadas

5.6.1 Caso 1: Residual U-Net (Abordagem Convolucional)

A primeira arquitetura replicada segue a proposta de (DURAJ et al., 2022). Ela caracteriza-

se pelo uso de blocos residuais e mecanismos de Squeeze-and-Excitation (SE) para recali-
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brar os canais de caracteŕısticas. A estrutura, apresentada na Figura 5.4, utiliza apenas

operações de convolução, o que a torna computacionalmente eficiente e estável durante o

treinamento.

Figura 5.4: Diagrama da arquitetura Residual U-Net com blocos SE utilizada no Estudo
de Caso 1.

Fonte: Duraj et al. (2022).

5.6.2 Caso 2: SEResUTer (Abordagem Hı́brida)

O segundo modelo, proposto por (LI et al., 2023), introduz um módulo Transformer no

gargalo da rede (Figura 5.5). O objetivo é capturar o contexto global da série temporal

através de mecanismos de autoatenção, superando a limitação do campo receptivo local

das convoluções.
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Figura 5.5: Diagrama da arquitetura h́ıbrida SEResUTer, integrando U-Net com Trans-
former Encoder no gargalo.

Fonte: Li et al. (2023).

5.6.3 Estratégias de Estabilização para o Modelo Hı́brido

Durante a implementação do modelo h́ıbrido (Caso 2), foram necessárias adaptações me-

todológicas para viabilizar o treinamento, não exigidas no modelo convolucional puro.

A primeira medida foi o Ajuste Fino da Taxa de Aprendizado. A arquitetura

h́ıbrida revelou instabilidade inicial com as taxas padrão (10−3). Para solucionar isso,

reduziu-se a taxa de aprendizado para 5 × 10−4 no otimizador Adam, permitindo uma

descida de gradiente mais suave e evitando divergências nas primeiras épocas.

Além da estabilização numérica, dada a alta complexidade paramétrica do Trans-

former e o tamanho limitado da base LUDB, implementou-se um pipeline de Data Aug-

mentation para atuar como regularizador. As transformações aplicadas dinamicamente

durante o treino foram:

• Adição de Rúıdo Gaussiano: Simulação de interferências elétricas e artefatos de

aquisição de alta frequência;

• Escalonamento de Amplitude: Multiplicação do sinal por fatores aleatórios

(entre 0.9 e 1.1) para simular variações de ganho do amplificador;

• Desvio de Linha de Base (Baseline Wander): Adição de ondas senoidais

de baixa frequência para simular a oscilação causada pela respiração do paciente,
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forçando a rede a ser robusta a flutuações não-card́ıacas.

Os resultados obtidos a partir destas implementações são detalhados no caṕıtulo

6.
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6 Resultados Experimentais e Discussão

Este caṕıtulo detalha os resultados quantitativos obtidos na execução dos estudos de

caso. Ressalta-se que, para garantir a robustez estat́ıstica, todos os valores apresentados

a seguir representam a média e o desvio padrão consolidados de 5 rodadas independentes

de treinamento e avaliação, conferindo maior confiabilidade à análise de reprodutibilidade.

6.1 Resultados do Caso 1: Residual U-Net

O treinamento da arquitetura convolucional (Caso 1) demonstrou alta estabilidade. A

aplicação dos pesos de classe foi decisiva para a detecção correta das ondas.

Uma observação metodológica crucial refere-se à composição da base de dados. O

estudo original de (DURAJ et al., 2022) relata a remoção manual de 23 registros ruidosos.

Nesta replicação, optou-se por manter a base LUDB ı́ntegra (2400 sinais) para evitar viés

de seleção. Mesmo neste cenário mais desafiador, o modelo obteve desempenho robusto e

baixa variância entre as execuções, conforme detalhado na Tabela 6.1.

Tabela 6.1: Desempenho Estat́ıstico do Modelo Convolucional (Média de 5 Rodadas).

Métrica Replicação (µ± σ) Original (DURAJ et al., 2022)

Acurácia 95,44% ± 0,27% 95,00%
Precisão 95,45% ± 0,26% 95,00%
Recall (Sensibilidade) 95,42% ± 0,27% 99,00%
F1-Score 0,9544 ± 0,0027 0,96

Fonte: Elaborada pelo autor com dados de Duraj et al. (2022).

Em relação à diferença observada no Recall (95,42% na replicação contra 99,00%

no estudo original), esta é consequência direta da decisão metodológica de manter os

sinais ruidosos na base de teste. Diferentemente da abordagem original, que removeu

registros de baixa qualidade, esta replicação optou por preservar a integridade do dataset

para evitar viés de seleção. Embora essa escolha impacte a métrica absoluta, ao obrigar

a rede a lidar com artefatos de aquisição, ela reflete um cenário mais realista de aplicação

cĺınica, onde a pré-seleção manual de sinais ideais nem sempre é viável.
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6.2 Resultados do Caso 2: SEResUTer

A replicação do modelo h́ıbrido confirmou os desafios de generalização para arquiteturas

baseadas em Transformers em bases de médio porte. Para isolar o impacto das estratégias

de regularização, o modelo foi avaliado em dois cenários: com e sem Data Augmentation

(DA).

Tabela 6.2: Impacto do Data Augmentation no Modelo Hı́brido (Média de 5 Rodadas).

Métrica Com Data Augmentation Sem Data Augmentation

Acurácia Global 83,77% ± 0,75% 82,84% ± 0,71%
F1-Score 0,8373 0,8278
Recall (Sensibilidade) 83,23% 82,17%
Precisão 84,22% 83,40%

Observa-se que, embora a aplicação de Data Augmentation tenha resultado em

ganho de desempenho, este foi marginal (inferior a 1 ponto percentual). Atribui-se esse

fenômeno à natureza multicanal da base LUDB. Como o treinamento processou as 12

derivações simultaneamente, o modelo foi exposto a 12 perspectivas espaciais distintas

do mesmo evento card́ıaco. Essa variabilidade intŕınseca atua como uma forma de ‘Data

Augmentation natural’, mitigando a necessidade de dados sintéticos e tornando a injeção

artificial de rúıdo menos impactante do que seria em bases de derivação única.

Contudo, nota-se que o desempenho global do modelo h́ıbrido (83,77%) perma-

neceu significativamente inferior ao da abordagem convolucional (95,44%), confirmando

a dificuldade dos Transformers em extrair padrões eficientes sem volumes massivos de

dados.

6.3 Análise Comparativa e Conclusão dos Experimen-

tos

A comparação direta das abordagens (Tabela 6.3) sintetiza os achados desta pesquisa,

destacando o trade-off entre complexidade e eficiência.

Essa discrepância evidencia dois compromissos arquiteturais importantes:

1. Eficiência de Dados (Viés Indutivo): As CNNs beneficiam-se de propriedades
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Tabela 6.3: Comparativo final: Residual U-Net vs. SEResUTer (Melhores Configurações).

Dimensão Residual U-Net (Conv.) SEResUTer (Hı́brida com DA)

Acurácia Média Alto (95,44%) Médio (83,77%)
Estabilidade (σ) Alta (± 0,27%) Média (± 0,75%)
Generalização (LUDB) Excelente Limitada (Data Hunger)

Fonte: Elaborada pelo autor (2025).

arquiteturais intŕınsecas, especificamente a conectividade local e a invariância à

translação temporal. Diferentemente dos modelos baseados em Transformers, que

precisam inferir todas as relações espaciais a partir do zero (o que exige volumes

massivos de dados), as CNNs já possuem essas regras de “como olhar a morfologia

do sinal”embutidas em sua estrutura. Esse viés arquitetural funcionou como um

catalisador no aprendizado, permitindo que o modelo de Duraj (Caso 1) capturasse

padrões robustos de forma eficiente, mesmo diante da escassez de amostras da base

LUDB.

2. Estabilidade de Convergência: O desvio padrão três vezes maior no modelo

h́ıbrido (±0, 75% vs ±0, 27%) indica que Transformers são mais senśıveis à inicia-

lização dos pesos, tornando o treinamento mais impreviśıvel em cenários de bases

menores.

A replicação demonstrou que, para o cenário espećıfico de segmentação de ECG

com a base LUDB, a arquitetura convolucional clássica (Residual U-Net) é a escolha

superior em termos de precisão, estabilidade e simplicidade.
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7 Conclusão e Trabalhos Futuros

Este trabalho apresentou uma abordagem integrada, combinando uma revisão sistemática

da literatura com um estudo experimental de replicação, para investigar o estado da arte

e a viabilidade prática do uso de técnicas de deep learning na identificação automática

das ondas do ECG. A estratégia adotada permitiu mapear tendências na pesquisa recente

e avaliar, em condições reais, os desafios de reprodutibilidade de arquiteturas avançadas.

7.1 Śıntese dos Resultados e Objetivos

O objetivo principal de investigar o estado da arte e avaliar a reprodutibilidade de técnicas

de deep learning foi atingido através da execução dos eixos teóricos e práticos da pesquisa.

No que tange aos objetivos espećıficos de mapeamento teórico (arquiteturas, ba-

ses e métricas), a Revisão Sistemática realizada no Caṕıtulo 4 permitiu identificar uma

clara evolução tecnológica na última década. Observou-se que a literatura partiu de CNNs

simples para modelos profundos (U-Net, ResNets) e, mais recentemente, convergiu para

arquiteturas h́ıbridas com mecanismos de Atenção. O estudo também confirmou a pre-

dominância de bases públicas padronizadas (QTDB, LUDB) e evidenciou que o Data

Augmentation consolidou-se como um componente cŕıtico — e não apenas acessório —

para mitigar o desbalanceamento de classes em cenários de base de dados menores.

Quanto ao objetivo espećıfico experimental, a análise comparativa entre os mode-

los Residual U-Net e SEResUTer forneceu evidências práticas sobre a viabilidade dessas

técnicas. A replicação da arquitetura convolucional comprovou-se altamente viável, atin-

gindo acurácia superior a 95% com alta estabilidade, confirmando que o viés indutivo das

CNNs (conectividade local) é extremamente vantajoso para bases de tamanho moderado.

Por outro lado, a replicação do modelo h́ıbrido evidenciou os desafios práticos de arqui-

teturas baseadas em Transformers, que apresentaram maior instabilidade e desempenho

inferior (83,77%) mesmo após otimização, corroborando a hipótese de que mecanismos de

atenção exigem volumes massivos de dados para justificar sua complexidade.
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Dessa forma, conclui-se que a pesquisa cumpriu seu propósito ao demonstrar

que, embora arquiteturas complexas sejam a tendência teórica, modelos convolucionais

robustos permanecem como a escolha mais pragmática, estável e eficiente para aplicações

cĺınicas com escassez de dados rotulados.

7.2 Limitações do Estudo

Apesar dos avanços alcançados, algumas limitações foram identificadas tanto na literatura

quanto na execução experimental:

• Heterogeneidade dos dados: Bases públicas apresentam diferentes protocolos de

anotação e caracteŕısticas populacionais, dificultando a criação de modelos genera-

lizáveis.

• Reprodutibilidade de arquiteturas complexas: A replicação de modelos ba-

seados em Transformers revelou uma dependência cŕıtica de detalhes de imple-

mentação (como inicialização de pesos e estratégias de otimização) que raramente

são documentados com precisão nos artigos originais.

• Desafios com dados parcialmente anotados: Durante os experimentos prelimi-

nares com bases de anotações incompletas, observou-se a falha das funções de perda

tradicionais. Como esses mecanismos dependem matematicamente da comparação

entre a predição e um rótulo real para calcular a penalidade (erro), a ausência de

anotações em trechos do sinal inviabiliza o cálculo correto do gradiente, levando-o

a zero ou a valores instáveis e impedindo a convergência da rede.

• Interpretabilidade restrita: A natureza “caixa-preta”dos modelos de Deep Lear-

ning permanece uma barreira para a adoção cĺınica, onde a justificativa morfológica

para uma segmentação é tão importante quanto o resultado final.

7.3 Trabalhos Futuros

Com base nas lacunas identificadas e nas dificuldades observadas durante a replicação,

sugerem-se as seguintes direções para pesquisas futuras:
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• Funções de Perda Robustas a Rótulos Parciais: Desenvolver ou adaptar

funções de custo que consigam ignorar (mascarar) regiões não anotadas do sinal

durante o cálculo do erro, permitindo o aproveitamento de bases de dados massivas

que possuem apenas anotações parciais.

• Pré-treinamento Auto-supervisionado: Investigar o uso de grandes volumes

de ECGs sem anotação para pré-treinar os pesos das redes (aprendendo a estrutura

do sinal), realizando o ajuste fino (fine-tuning) apenas com os dados rotulados

dispońıveis, técnica que tem mostrado sucesso em modelos de linguagem.

• Benchmarks de Robustez a Rúıdo: Estabelecer protocolos padronizados de

teste que avaliem não apenas a acurácia em sinais limpos, mas a degradação do

desempenho sob diferentes ńıveis de rúıdo sintético e real, simulando condições de

dispositivos vest́ıveis (wearables).

• Explainable AI (XAI) para ECG: Implementar e avaliar visualmente mapas

de atenção e relevância que indiquem quais partes do complexo P-QRS-T foram

determinantes para a segmentação, aumentando a confiança do especialista médico

na ferramenta.

De modo geral, os resultados emṕıricos sugerem que, embora a tecnologia de seg-

mentação esteja madura, a fronteira da pesquisa deve se deslocar da simples criação de

novas arquiteturas para a melhoria da qualidade dos dados, robustez a rúıdos e interpre-

tabilidade dos modelos existentes.



BIBLIOGRAFIA 66

Bibliografia

ACHARYA, U. R. et al. A deep convolutional neural network model to classify heartbeats.
Computers in Biology and Medicine, v. 89, p. 389–396, 2017.

ALAM, R.; AGUIRRE, A.; STULTZ, C. M. Detecting QT prolongation from a single-lead
ECG with deep learning. PLOS Digital Health, Public Library of Science San Francisco,
CA USA, v. 3, n. 6, p. e0000539, 2024.

BAHDANAU, D.; CHO, K.; BENGIO, Y. Neural machine translation by jointly learning
to align and translate. arXiv preprint arXiv:1409.0473, 2014.
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⟨https://ieeexplore.ieee.org⟩.

Instituto de Métrica e Avaliação em Saúde (IHME). Carga Global de Doenças 2023:
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