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Resumo

O eletrocardiograma (ECG) é essencial para o diagndstico cardiovascular, mas sua inter-
pretacao manual é demorada e sujeita a variabilidade. Embora técnicas de aprendizado
profundo (deep learning) prometam automatizar a segmentacao de ondas, persistem de-
safios relacionados a escassez de dados anotados e a reprodutibilidade de arquiteturas
complexas.

Este trabalho combina uma revisao sistematica da literatura (2015-2025) com
um estudo experimental de replicacao. A revisdo, composta por 42 estudos, mapeou a
transicao tecnologica de CNNs simples para modelos profundos e hibridos com mecanismos
de atengao. A anélise tedrica identificou a predominancia de bases publicas (QTDB,
LUDB) e evidenciou que o Data Augmentation consolidou-se como um componente critico
— e nao apenas acessorio — para mitigar o severo desbalanceamento de classes em cendrios
de bases pequenas.

Complementarmente, o estudo pratico avaliou a reprodutibilidade de duas arqui-
teturas representativas utilizando a base LUDB com validacao estatistica robusta. Os
resultados demonstraram a superioridade da abordagem puramente convolucional (Resi-
dual U-Net), que atingiu um F1-Score de 0,9544 (£ 0,002), superando o modelo hibrido
SEResUTer (F1-Score: 0,8373 + 0,007), mesmo quando este tltimo foi otimizado com au-
mento de dados. Conclui-se que, embora Transformers representem a tendéncia tedrica,
modelos convolucionais robustos permanecem como a escolha mais eficiente e estavel para

aplicacoes clinicas com restricao de dados rotulados.

Palavras-chave: Eletrocardiograma (ECG), aprendizado profundo, segmentagao semantica,

redes neurais convolucionais, reprodutibilidade.



Resumo

The electrocardiogram (ECQG) is essential for cardiovascular diagnosis, but its manual
interpretation is time-consuming and subject to inter-observer variability. Although deep
learning techniques promise to automate wave segmentation, challenges persist regarding
the scarcity of annotated data and the reproducibility of complex architectures.

This work combines a systematic literature review (2015-2025) with an experi-
mental replication study. The review, comprising 42 studies, mapped the technological
transition from simple 1D CNNs to deep and hybrid models with attention mechanisms.
Theoretical analysis identified the predominance of public databases (QTDB, LUDB)
and highlighted that Data Augmentation has consolidated itself as a critical compo-
nent—rather than just an accessory—to mitigate severe class imbalance in Small Data
scenarios.

Complementarily, the practical study evaluated the reproducibility of two repre-
sentative architectures using the LUDB database with robust statistical validation. Re-
sults demonstrated the superiority of the purely convolutional approach (Residual U-Net),
which achieved an F1-Score of 0.9544 (£ 0.002), outperforming the hybrid SEResUTer
model (F1-Score: 0.8373 & 0.007), even when the latter was optimized with data augmen-
tation. It is concluded that, while Transformers represent the theoretical trend, robust
convolutional models remain the most efficient and stable choice for clinical applications

with limited labeled data.

Keywords: Electrocardiogram (ECG), deep learning, semantic segmentation, convoluti-

onal neural networks, reproducibility.
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1 Introducao

As doengas cardiovasculares (DCV) representam, atualmente, o maior desafio para a satde
publica global. Dados recentes do estudo Global Burden of Disease (GBD)(Instituto de
Métrica e Avaliagao em Satude (IHME), 2025) de 2023 indicam que a doenca isquémica
do coragao permanece como a principal causa de morte no mundo, seguida pelo Acidente
Vascular Cerebral (AVC), que ocupa a terceira posigao no ranking global de mortalidade.
O estudo destaca ainda que, embora haja avancos, a mortalidade por doencas nao trans-
missiveis continua persistentemente elevada, evidenciando desigualdades criticas no acesso
a diagnostico e tratamento, especialmente em regioes com menores recursos. Esse cendrio
global reflete-se diretamente na realidade brasileira: segundo o Ministério da Satide, cerca
de 400 mil pessoas faleceram no pais em 2022 em decorréncia de problemas cardiovascu-
lares (Brasil. Ministério da Saude, 2022).

Diante desse cenario critico, a rapidez e a precisao no diagndstico tornam-se fato-
res determinantes para a sobrevivéncia do paciente. Nesse contexto, o eletrocardiograma
(ECG) consolida-se como a ferramenta padrao-ouro para a avalia¢do inicial da atividade
cardiaca, por ser um exame nao invasivo, de baixo custo e alta disponibilidade clinica
(HALL; GUYTON, 2017).

A interpretacao do exame baseia-se na analise de padroes morfolégicos especificos
que refletem o ciclo cardiaco. O tracado eletrocardiografico é composto por trés deflexoes
principais, cada uma correspondendo a um evento fisiolégico distinto, como pode ser
visto na Figura 1.1. Segundo Hall e Guyton (2017), a primeira onda, denominada Onda
P, representa a despolarizagao atrial, momento em que o impulso elétrico se propaga
pelos atrios gerando sua contracao. Na sequéncia, identifica-se o Complexo QRS, uma
estrutura de maior amplitude que sinaliza a despolarizacao ventricular. Devido a grande
massa muscular dos ventriculos responsavel por bombear sangue para todo o corpo, este
evento elétrico é o mais proeminente do registro (DUBIN, 2000). O ciclo encerra-se com a
Onda T, que indica a repolarizagao ventricular, fase critica em que o miocardio recupera

seu potencial elétrico preparando-se para o batimento seguinte.
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Figura 1.1: Representacao esquematica das ondas do ECG e sua correlacao com o ciclo
cardiaco.

Fonte: Adaptado de Manuais MSD (2024).

Tradicionalmente, a identificagao dessas ondas e de seus intervalos é realizada por
especialistas de forma manual, um processo trabalhoso, demorado e sujeito a variabilidade
inter e intraobservador (ALAM; AGUIRRE; STULTZ, 2024). Essa tarefa torna-se ainda
mais desafiadora na presenca de patologias, como ilustrado na Figura 1.2, onde arrit-
mias ou isquemias alteram drasticamente a morfologia padrao, dificultando a delimitacao
precisa das ondas. Essa limitacao é especialmente critica em cenarios de alta demanda,
como unidades de terapia intensiva e monitoramento continuo, nos quais a velocidade e a
precisao do diagnostico sao cruciais. A automatizacao dessa andlise, por meio de algorit-
mos e técnicas de aprendizado de maquina, surge como uma alternativa promissora para
mitigar tais dificuldades (GOOVAERTS et al., 2018).

Nos tltimos anos, o avango das técnicas de aprendizado profundo (deep learning)
transformou a analise de ECG. Diferentemente dos métodos tradicionais, que dependiam
de extracao manual de caracteristicas, as redes neurais profundas sao capazes de aprender
representagoes complexas diretamente a partir do sinal bruto (FAUST et al., 2018). Essa
evolucao viabilizou modelos capazes de realizar a segmentacao automatica das ondas

P, QRS e T, ampliando o potencial para aplicacoes clinicas em tempo real e para o
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rwendd). Eibrilacao Atrial (Arritmia)

(Linha de base tremida)

(b) Infartq Agudo (Supra de ST

Elevagao do Segmento ST
(Fusdo com a Onda T)

,,,,,,,, Linka de Base

Figura 1.2: Exemplos de patologias que dificultam a segmentagao automatica. Em (a),

a Fibrilagdo Atrial elimina a Onda P e insere ruido na linha de base. Em (b), o Infarto

eleva o segmento ST, alterando drasticamente a morfologia da repolarizacao ventricular.
Fonte: Elaborada pelo autor (2025).

desenvolvimento de sistemas de apoio a decisao médica.

Apesar desses avancos, a transicao desses modelos para a pratica clinica enfrenta
barreiras significativas. A principal delas reside na generalizacao: modelos treinados
em ambientes controlados frequentemente falham ao processar sinais do mundo real. Isso
ocorre, em grande parte, porque o desenvolvimento de algoritmos modernos ainda depende
substancialmente de bases de dados ‘classicas’, adquiridas com tecnologias de décadas
passadas. Exemplos notdveis sao a Massachusetts Institute of Technology - Beth Israel
Hospital (MIT-BIH) Arrhythmia Database, lancada em 1980 (MOODY; MARK, 2001),
e a QT Database, de 1997 (LAGUNA et al., 1997). Embora pioneiras, essas colegoes
apresentam limitacoes frente as demandas atuais de Deep Learning: possuem um ntimero
reduzido de pacientes e sinais que nao refletem integralmente a diversidade demografica
nem os artefatos dos dispositivos modernos (HONG et al., 2020). Somado a isso, ha
uma notavel escassez de anotacoes detalhadas validadas por multiplos especialistas, o que
restringe o treinamento supervisionado, além do fato de muitos modelos operarem como

“caixas-pretas”, dificultando a interpretabilidade clinica.



1.1 Objetivos 12
1.1 Objetivos

O objetivo principal deste trabalho é investigar o estado da arte em delimitacao tempo-
ral de inicio e fim de ondas do eletrocardiograma (ECG) com técnicas de deep learning,
aliando uma revisao sistematica da literatura recente (2015-2025) a uma andlise experi-
mental. Dessa forma, o estudo engloba simultaneamente uma perspectiva tedérica e uma
perspectiva pratica, visando oferecer uma sintese critica da literatura e avaliar a reprodu-
tibilidade e o desempenho de arquiteturas representativas.

Para cumprir esse propésito geral, o trabalho foi estruturado em dois eixos com-

plementares:

e (i) Revisao Sistemdtica: mapeamento das arquiteturas de deep learning predo-
minantes na literatura, das bases publicas utilizadas e das métricas de avaliacao

aplicadas a segmentacao das ondas P, QRS e T.

e (ii) Replicacao Experimental: implementagao e andlise comparativa de duas
arquiteturas distintas, sendo uma convolucional e outra hibrida com mecanismos de
atencao, com o objetivo de avaliar sua viabilidade pratica, estabilidade e desempe-

nho em condigoes reais de treinamento.

Para operacionalizar esses eixos, foram definidos os seguintes objetivos especificos:

e Identificar e categorizar as arquiteturas de deep learning mais recorrentes na

literatura recente para a segmentacao de ondas do ECG;

e Mapear as bases de dados publicas predominantes e as estratégias de Data

Augmentation empregadas para mitigar a escassez de dados anotados;

e Levantar as métricas de avaliagao padronizadas utilizadas para aferir o desem-

penho dos modelos de segmentacao;

e Realizar um estudo experimental de replicagao para avaliar a viabilidade
pratica, a estabilidade e o desempenho comparativo entre modelos puramente con-

volucionais e modelos hibridos com mecanismos de atencao.
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1.2 Organizacao do Trabalho

Além desta introducao, a monografia estd estruturada em mais seis capitulos, organizados
da seguinte forma:

O Capitulo 2 estabelece a base tedrica necessaria para o entendimento dos modelos
de inteligéncia artificial. Inicia-se com os fundamentos de redes neurais (Perceptron e
MLP) e avanga para arquiteturas de Deep Learning, detalhando o funcionamento das
Redes Neurais Convolucionais (CNNs), Redes Recorrentes (LSTMs) e os mecanismos de
atencao (Transformers). Também sdo apresentados os conceitos de Redes Residuais,
funcoes de perda ponderadas e as métricas de avaliagao de desempenho utilizadas.

O Capitulo 3 apresenta os trabalhos relacionados, oferecendo um panorama da
evolucao das arquiteturas aplicadas ao ECG. O capitulo descreve a transicao historica das
abordagens, dividindo-as em geragoes: desde as primeiras adaptacoes de CNNs, passando
pela consolidacao da U-Net e modelos residuais, até a emergéncia recente dos Transformers
e arquiteturas hibridas.

O Capitulo 4 descreve a Revisao Sistematica da Literatura. Nele, sao definidas as
questoes de pesquisa norteadoras e detalhada a metodologia de revisao (fontes de dados
e critérios de selecao). Além disso, apresenta-se a discussdo dos resultados da revisao,
sintetizando as arquiteturas de Deep Learning predominantes no estado da arte.

O Capitulo 5 dedica-se ao delineamento experimental e a implementacao das
arquiteturas. Esta se¢ao define o fluxo do experimento, os protocolos de avaliacao e a
fundamentacdo matematica da implementacao. Sao detalhados os dois estudos de caso
realizados: a replicagdo da Residual U-Net (abordagem convolucional) e do modelo SE-
ResUTer (abordagem hibrida).

O Capitulo 6 expoe os resultados experimentais e a discussao. Sao analisados
os dados obtidos em cada estudo de caso e realizada uma andlise comparativa entre os
modelos, avaliando a viabilidade de replicacao e o desempenho de segmentacao.

Por fim, o Capitulo 7 apresenta as conclusoes do trabalho, integrando os achados
tedricos com as evidéncias praticas. O capitulo oferece uma sintese das respostas as
questoes de pesquisa, discute as limitacoes do estudo e aponta direcoes para trabalhos

futuros.
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2 Fundamentacao Teodrica

Este capitulo estabelece as bases necessarias para a compreensao dos modelos desenvolvi-
dos neste trabalho. A discussao parte das unidades fundamentais de processamento (Per-
ceptrons) e avanga cronologicamente para arquiteturas de aprendizado profundo, abor-
dando as Redes Neurais Convolucionais (CNNs), Redes Recorrentes (LSTMs) e arqui-
teturas de segmentagao semantica (U-Net e Transformers). Além disso, sdo definidos os
conceitos matematicos subjacentes, como transformacoes lineares e funcoes de otimizacao,
essenciais para o entendimento do treinamento end-to-end (ponta a ponta) aplicado ao

processamento de sinais de ECG.

2.1 Perceptron

O perceptron foi proposto originalmente por Rosenblatt (1958) como um modelo proba-
bilistico e representa um dos primeiros esforcos formais para modelar computacionalmente
o comportamento de um neurdnio biolégico. Trata-se do modelo mais elementar das redes
neuronais artificiais, capaz de realizar classificagdo supervisionada.

Matematicamente, o funcionamento do perceptron baseia-se em uma transformagao
linear dos dados de entrada, cuja resultante é submetida a uma nao-linearidade.Uma
transformacao linear é uma operagao que mapeia vetores de um espago para outro pre-
servando a aditividade e a homogeneidade, a saida final y é expressa pela aplicacao da
fungao de ativagao (¢) sobre a soma ponderada das entradas (z) pelos pesos sindpticos

(w) adicionada a um viés (b):

y=¢ <Zwi-xi+b> = p(wlx +b) (2.1)

i=1
A funcao de ativagado () é responsavel por determinar a saida. Embora em
redes profundas se utilizem fungoes nao-lineares complexas, o conceito mais simples seria

a funcao identidade (f(z) = x), que transmitiria o sinal sem alteragao, preservando a
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linearidade do sistema. Contudo, para tarefas de classificacao, utiliza-se geralmente uma
funcao degrau ou sigmoide.

A estrutura completa pode ser visualizada na Figura 2.1. Nesse esquema, as
entradas x,, sao ponderadas pelos pesos w,, somadas ao viés b e submetidas a funcao de

ativagao (originalmente uma fungao degrau) para gerar a saida y.

y (Saida)

Figura 2.1: Representacao esquematica do Perceptron de Rosenblatt.
Fonte: Baseado em Rosenblatt (1958)

Do ponto de vista conceitual, essa estrutura define o perceptron como um classifi-
cador linear, sendo capaz de separar dados apenas quando estes sao linearmente separaveis
no espago de caracteristicas. Conforme discutido por Goodfellow, Bengio e Courville
(2016), essa limitagao estrutural restringe sua aplicabilidade a problemas do mundo real,
nos quais os padroes de interesse apresentam relagoes nao lineares complexas.

No contexto de sinais biomédicos, como o eletrocardiograma, essa limitacao torna-
se ainda mais evidente, uma vez que a morfologia das ondas P, QRS e T ¢ influenciada
por multiplos fatores fisioldgicos e patolégicos que nao podem ser adequadamente mode-
lados por fronteiras de decis@ao lineares (SHARMA; JOSHI, 2025; CHOU et al., 2024).
Por exemplo, a distincao entre uma onda T normal e uma onda P sobreposta a ruido
frequentemente requer a analise de dependéncias temporais e nao lineares, algo inviavel
para um perceptron simples.

Apesar de suas limitagoes praticas, o perceptron possui relevancia historica e con-
ceitual fundamental, pois estabelece os principios basicos do aprendizado supervisionado,
do ajuste iterativo de pesos a partir do erro e da construcao de modelos neurais, servindo
de base para o desenvolvimento de arquiteturas mais avancadas, como os perceptrons

multicamadas e as redes neurais profundas.
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2.2 Redes Neuronais Multicamadas (MLP)

Com o objetivo de superar as restrigoes impostas pelo perceptron simples, surgiram as
redes neuronais multicamadas, comumente denominadas Multilayer Perceptrons (MLP)
(RUMELHART; HINTON; WILLIAMS, 1986; HAYKIN, 2009). Essas arquiteturas es-
tendem o modelo original ao introduzir uma ou mais camadas ocultas entre a camada de
entrada e a camada de saida, permitindo a composicao de multiplas transformagoes nao
lineares sucessivas. A estrutura geral de uma MLP e o detalhamento do funcionamento

de um de seus neuronios ocultos podem ser visualizados na Figura 2.2.

Entrada Oculta Saida b (Viés)

%C

Funcgao de
Ativacao f(+)

Saida ho

@ wa
o

Camada deSaida - - _ . w23 Ponderada

olole
olofolo
T

Camada deEntrada

CamadaOculta

Figura 2.2: Estrutura de uma Rede Neural Multicamadas (MLP). A direita, o detalha-
mento de um neurénio oculto, evidenciando o viés (b) e o processamento interno de soma
e ativagao.

Fonte: Baseado em Haykin (2009)

A principal inovagao das MLPs reside na capacidade de modelar relagoes nao
lineares complexas por meio da utilizacao de fungoes de ativacao nao lineares nas camadas
ocultas, como ReLU, sigmoide ou tangente hiperbodlica. Esse avanco tedrico estd associado
ao conhecido Teorema da Aproximacao Universal, segundo o qual uma rede neural com ao
menos uma camada oculta e niimero suficiente de neuronios é capaz de aproximar qualquer
fungao continua em dominios compactos, sob condi¢oes apropriadas (GOODFELLOW;

BENGIO; COURVILLE, 2016).

O treinamento dessas redes ¢é viabilizado pelo algoritmo de retropropagacao do
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erro (backpropagation), que permite o ajuste eficiente dos pesos por meio de métodos
baseados em gradiente (RUMELHART; HINTON; WILLIAMS, 1986). Embora as MLPs
apresentem maior poder de representacao quando comparadas ao perceptron simples,
elas ainda enfrentam limitagoes relevantes ao processar dados estruturados no tempo
ou no espago. No caso de sinais de ECG, as MLPs tendem a processar a entrada de
forma global, sem a hierarquia local inerente as convolugoes. Consequentemente, essas
redes sao menos eficazes em explorar a correlacao local entre amostras vizinhas ou em
garantir a invariancia a translacao, ou seja, a capacidade de reconhecer um mesmo padrao
morfolégico (como uma onda QRS) independentemente de sua posi¢ao temporal dentro
da janela analisada (SHARMA; JOSHI, 2025). Essa caracteristica limita o desempenho
em tarefas de segmentacao precisa, onde a forma e a posicao relativa das ondas sao mais

determinantes que seus valores absolutos de amplitude.

2.3 Deep Learning

Machine Learning Tradicional

Extracao M 1 ) ,
Entrada dexézf:(?terfz‘?ilé; { Classificador } Saida
inal B M, RF . Predica
(Sinal Bruto) (Engenharia) (SVM, RF, etc.) (Predicao)
Especialista Humano
Deep Learning (End-to-End) -
:/ Rede Neural Profunda ‘:
Entrada l 5 = 5 } Saida
(Sinal Bruto) 1 - l (Predigao)
: Extragao de Classificagao !
| Features :

Figura 2.3: Comparacao do fluxo de trabalho. Em cima, a abordagem tradicional exige
intervencao humana na engenharia de caracteristicas. Em baixo, o Deep Learning unifica
extracao e classificacdo em uma unica estrutura treindvel (end-to-end).

Fonte: Baseado em Goodfellow Goodfellow, Bengio e Courville (2016).

O termo Deep Learning refere-se a um subconjunto do aprendizado de maquina
baseado em redes neurais artificiais profundas, caracterizadas pela presenca de multiplas

camadas ocultas hierarquicamente organizadas. Nesse paradigma, as redes sao capazes de
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aprender representacoes distribuidas em diferentes niveis de abstracao, nas quais camadas
mais proximas da entrada capturam padroes simples, enquanto camadas mais profun-
das modelam estruturas progressivamente mais complexas (GOODFELLOW; BENGIO;
COURVILLE, 2016). Embora arquiteturas profundas possam ser vistas como uma gene-
ralizacao das MLPs tradicionais, elas incorporam mecanismos estruturais especificos que
favorecem a aprendizagem eficiente de padroes complexos em grandes volumes de dados.

Essa abordagem representa uma mudanca significativa em relacao aos métodos
classicos de analise de sinais, que dependiam fortemente da extracao manual de carac-
teristicas. No contexto do ECG, abordagens tradicionais baseavam-se em regras heuristicas
e descritores projetados por especialistas, como intervalos temporais, amplitudes e relagoes
morfoldgicas pré-definidas (PAN; TOMPKINS, 1985; MARTINEZ et al., 2004). Em con-
traste, modelos de deep learning reduzem a necessidade de engenharia manual de carac-
teristicas, aprendendo representacoes discriminativas diretamente a partir do sinal bruto.
Entretanto, em cenarios supervisionados, como o presente trabalho, esse processo depende
de anotacoes especializadas previamente definidas, as quais incorporam conhecimento fi-
siolégico fundamental para o treinamento e a avaliacao dos modelos. A Figura 2.3 ilustra
essa mudanca de paradigma, comparando o fluxo de trabalho classico, dependente de
engenharia manual, com a abordagem end-to-end do Deep Learning.

A eficacia do deep learning em aplicagoes biomédicas estd intimamente relacio-
nada a sua habilidade de lidar com sinais ruidosos, variabilidade interpaciente e padroes
sutis associados a condigoes patologicas (MEHRI et al., 2023; PEIMANKAR,; PUTHUS-
SERYPADY, 2021). Essas caracteristicas tornam as redes profundas particularmente
adequadas para tarefas de segmentacao de sinais fisiolégicos, como a identificagao precisa
dos instantes de inicio e fim das ondas P, QRS e T (PEIMANKAR; PUTHUSSERYPADY,
2021). No entanto, a adogao bem-sucedida dessas técnicas depende do uso de arquiteturas
especializadas capazes de explorar adequadamente a estrutura local e temporal dos da-
dos, o que motiva o emprego de redes convolucionais, redes recorrentes e modelos hibridos

(NURMAINT et al., 2021), discutidos nas segoes subsequentes.



2.3 Deep Learning 19
2.3.1 Redes Neurais Convolucionais (CNN)

As Redes Neurais Convolucionais (CNNs) constituem uma das principais classes de ar-
quiteturas profundas utilizadas na andlise de sinais biomédicos. Elas representam um
avango significativo sobre as redes densas tradicionais (MLP) por serem capazes de ex-
trair caracteristicas hierarquicas diretamente dos dados brutos. Essa capacidade viabiliza
o aprendizado end-to-end (de ponta a ponta), um paradigma onde todo o processo,
desde a extragao de atributos até a classificagao final, é realizado por uma tinica rede neu-
ral otimizada conjuntamente, dispensando a engenharia manual de caracteristicas (feature
engineering) necessaria em métodos classicos (LECUN; BENGIO; HINTON;, 2015).

Embora tenham sido originalmente desenvolvidas para o processamento de ima-
gens, as CNNs podem ser adaptadas para sinais unidimensionais por meio da convolugao
1D, tornando-se particularmente adequadas para o tratamento de séries temporais como
o eletrocardiograma (GOODFELLOW; BENGIO; COURVILLE, 2016). Diferentemente
das CNNs 2D, que deslocam filtros em dois eixos espaciais (altura e largura), as CNNs
1D deslocam seus kernels! apenas ao longo do eixo temporal. Isso reduz a complexidade
computacional e adequa-se a natureza sequencial do vetor de ECG (KIRANYAZ; INCE;
GABBOUJ, 2016).

A Figura 2.4 demonstra visualmente essa diferenca estrutural: enquanto a CNN
2D exige varredura espacial, a CNN 1D opera exclusivamente ao longo do tempo, captu-
rando padroes morfoldgicos locais da onda cardiaca.

Para evidenciar a eficiéncia computacional, convém comparar as operacgoes. Na
CNN 2D, utilizada em imagens, o valor de cada pixel de saida depende de um somatério

duplo (varredura em altura e largura):

yli, 5] =YY ali+m,j+n]-wim,n] (2:2)
Onde:
e y[i, j] representa o valor do pixel de saida na posigao espacial (i, j);

e r ¢ a matriz de entrada (imagem 2D);

No contexto de redes neurais, um kernel (ou filtro) é uma matriz de pesos treinaveis que desliza sobre
os dados de entrada para extrair caracteristicas relevantes, como bordas ou padroes especificos.
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e w é a matriz do kernel (filtro) com dimensoes m X n;

e Os somatorios percorrem as duas dimensoes do filtro (altura e largura).

Ja na CNN 1D, a operacao é simplificada para um somatério simples ao longo do

eixo temporal:

ylt] = > alt+ k] - wlk] (2.3)
Onde:

e y[t] representa o valor de saida na posi¢ao temporal ¢;
e 1 6 o vetor de entrada (sinal de ECG);
e w ¢é o kernel (filtro) de tamanho k;

e A operacao de soma percorre o tamanho do filtro, multiplicando os pesos pelos

valores do sinal localmente.

Essa redugao de dimensionalidade (de O(N?) para O(N) no contexto do filtro)
justifica por que as CNNs 1D sao mais rapidas e exigem menos memoria, permitindo o pro-
cessamento de longos registros de ECG em tempo real (KIRANYAZ; INCE; GABBOUJ,
2016).

No contexto da andlise de ECQG, os filtros convolucionais atuam como detectores
de caracteristicas morfolégicas locais, sendo capazes de identificar padroes associados as
ondas P, QRS e T diretamente a partir do sinal bruto. A operacao de convolucao permite
que a mesma estrutura de filtro seja aplicada ao longo de todo o sinal, conferindo a rede
um grau de invariancia a pequenas variagoes temporais, comuns em registros reais devido
a ruidos, variagoes fisiolégicas e diferengas interpaciente (KIRANYAZ; INCE; GABBOUJ,
2016).

Além disso, a hierarquizacao das camadas convolucionais possibilita o aprendi-
zado progressivo de representagoes, nas quais camadas iniciais capturam padroes simples,
como inclinacoes e picos, enquanto camadas mais profundas modelam estruturas mais
complexas do tragado eletrocardiografico. Essa caracteristica torna as CNNs especial-

mente eficazes em tarefas de segmentagao, nas quais é necessario identificar com precisao
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Figura 2.4: Diferenca estrutural entre a Convolugao 2D e 1D. Em (a), o filtro varre a ima-
gem em dois eixos. Em (b), o filtro desloca-se apenas no tempo, reduzindo drasticamente
a complexidade computacional.

Fonte: Baseado em Kiranyaz, Ince e Gabbouj (2016).
os limites temporais das ondas cardiacas. Diversos estudos demonstram o sucesso de

arquiteturas convolucionais na segmentacao automatica de ECG, consolidando-as como

uma abordagem de referéncia na drea (ACHARYA et al., 2017, DURAJ et al., 2022).

2.3.2 Redes Neurais Recorrentes (RNN) e Long Short-Term

Memory (LSTM)

Embora as CNNs sejam eficazes na captura de padroes locais, elas apresentam limitacoes
na modelagem explicita de dependéncias temporais de longo alcance. Para lidar com essa
caracteristica intrinseca dos sinais fisiologicos, foram propostas as redes neurais recorrentes
(Recurrent Neural Networks — RNN), que incorporam conexdes ciclicas capazes de manter
informagoes de estados anteriores ao longo da sequéncia (GOODFELLOW; BENGIO;
COURVILLE, 2016).

Entretanto, as RNNs tradicionais sofrem com o problema do desvanecimento
do gradiente?. Como solucao, foram introduzidas as redes Long Short-Term Memory

(LSTM), que utilizam mecanismos de portas (gates) para controlar o fluxo de informagoes

20 desvanecimento do gradiente (Vanishing Gradient) ocorre quando os gradientes utilizados para
atualizar os pesos da rede tornam-se extremamente pequenos durante a retropropagacgao. Isso impede
que as camadas iniciais de redes profundas aprendam corretamente, pois seus pesos param de ser ajustados
significativamente.
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relevantes ao longo do tempo, permitindo a preservacao de dependéncias de maior duracao
(HOCHREITER,; SCHMIDHUBER, 1997). Conforme detalhado na Figura 2.5, essas por-
tas (esquecimento, entrada e saida) regulam matematicamente o que deve ser preservado

ou descartado em cada passo da sequéncia.

Porta de Esquecimento Porta de Entrada Porta de Saida

Cia ) ) C,

(Estado Célula) \_/ (Novo Estado)
° tanh

hi—i==, ) o hy
(Estado Ocultoy - -/ (Nova Saida)

x¢ (Entrada)

Figura 2.5: Estrutura interna de uma célula LSTM. Os retangulos representam as
fungoes de ativagao (sigmoide e tangente hiperbdlica) que atuam como portdes de con-
trole. Os circulos indicam as operagdes pontuais (multiplicagao e adi¢ao) que atualizam
o estado da célula, permitindo o fluxo seletivo de informacao.

Fonte: Baseado em Hochreiter e Schmidhuber (1997) e Olah (2015).

Na analise de ECG, as LSTM tém sido empregadas para capturar relacoes tem-
porais entre diferentes batimentos e para modelar a dinamica global do sinal. Contudo,
o custo computacional elevado e a dificuldade de paralelizagao limitam sua aplicacao
isolada em tarefas de segmentacao densa. Por essa razao, abordagens hibridas que combi-
nam CNNs para extragao local de caracteristicas e LSTM para modelagem temporal tém

sido amplamente exploradas, apresentando ganhos de desempenho em cenarios especificos

(YILDIRIM, 2018).

2.4 Redes Neurais Residuais (ResNet)

Em teoria, adicionar mais camadas a uma rede neural deveria aumentar sua capacidade de
modelar fungoes complexas. No entanto, na pratica, observa-se que o aumento excessivo
da profundidade leva a um problema critico conhecido como desvanecimento do gradiente
(vanishing gradient). Durante o treinamento via retropropagacao (backpropagation), o si-

nal de erro é multiplicado sucessivamente pelas derivadas das camadas conforme retorna
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da saida para a entrada. Em redes muito profundas, essas multiplicagoes sucessivas de va-
lores pequenos fazem com que o gradiente tenda a zero nas primeiras camadas, impedindo
que elas aprendam ou atualizem seus pesos (HE et al., 2016).

Para solucionar esse problema de fluxo do gradiente e permitir o treinamento de
redes com centenas de camadas, He et al. (2016) introduziram as Redes Neurais Residuais
(ResNets). A inovagao central é a introducao de conexdes de salto (skip connections ou

shortcut connections).

2.4.1 O Bloco Residual e o Fluxo do Gradiente

Diferente das redes tradicionais, as ResNets utilizam “blocos residuais”onde a entrada x
é somada diretamente a saida das camadas de processamento. A operacao realizada por
um bloco residual é descrita matematicamente pela Equacao 2.4, e sua estrutura grafica

pode ser visualizada na Figura 2.6.

y=F(z,{W;})+z (2.4)
Onde:
e 1 ¢é o vetor de entrada;
e F(z) é a fungao residual aprendida pelas camadas (convolugoes);
e O termo +x é a conexao de identidade que preserva a informagao original.

A intuicao por tras dessa abordagem é que é mais facil para a rede aprender que
a fungao residual deve ser zero (ou seja, F(x) ~ 0, resultando em y ~ x) do que aprender
uma func¢ao identidade complexa do zero usando vérias camadas nao-lineares.

No contexto da analise de eletrocardiogramas, essa propriedade é particularmente
valiosa. Como a morfologia do sinal cardiaco possui uma estrutura base bem definida e
repetitiva (a sequéncia P-QRS-T), a conexao de identidade permite que a rede preserve
essa integridade estrutural ao longo das camadas profundas. Em vez de tentar reconstruir
as caracteristicas da onda do zero a cada convolugao, o que poderia degradar detalhes

finos como entalhes no QRS ou a baixa amplitude da onda P, a rede aprende apenas os
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Figura 2.6: Diagrama de um bloco residual. O caminho da esquerda (seta vermelha)
contorna as camadas de peso, permitindo que o gradiente flua livremente durante a re-
tropropagacao.
Fonte: Adaptado de He et al. (2016).

“residuos” necessarios para refinar a segmentacao. Isso significa que o modelo foca seus
recursos computacionais em aprender as variacoes sutis e as bordas exatas das ondas,
mantendo o fluxo do sinal original preservado através do atalho, estratégia que tem se
mostrado eficaz na detecgao de padroes complexos em séries temporais biomédicas (HAN-
NUN et al., 2019).

Além disso, essa estrutura resolve o problema do fluxo do gradiente. Durante

a retropropagacao, o gradiente do erro em relacao a entrada x passa a ter um termo

Oy
ox

aditivo constante de 1 proveniente da conexao de identidade (3% = g—i + 1). Esse termo
“1”atua como uma “rodovia” (highway) para o gradiente, garantindo que o sinal de erro
flua diretamente para as camadas iniciais sem desaparecer, mesmo que os pesos F sejam
muito pequenos (HE et al., 2016). Isso viabilizou o treinamento das arquiteturas U-Net
profundas e dos modelos hibridos utilizados neste trabalho.

Essa caracteristica foi determinante para viabilizar o uso de arquiteturas profun-

das na segmentacao de ECGs. Modelos mais profundos conseguem capturar dependéncias

temporais de longo alcance e contextos globais do batimento sem sofrer com a degradacao
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da precisao na localizacao das ondas. Esse avanco permitiu a construcao de arquiteturas
hibridas robustas, como as baseadas em Residual U-Net, fundamentais para o desempe-
nho superior relatado em estudos recentes da literatura (DURAJ et al., 2022; ZHANG;
LIU; WANG, 2018).

2.4.2 Blocos Squeeze-and-Excitation (SE)

Enquanto as convolugoes tradicionais operam misturando informacoes espaciais e de ca-
nais simultaneamente, os blocos Squeeze-and-FEzxcitation (SE), propostos por Hu, Shen e
Sun (2018), visam recalibrar explicitamente a interdependéncia entre os canais da rede.

O funcionamento do bloco ocorre em duas etapas principais:

1. Squeeze (Compressao): realiza-se uma operacao de Global Average Pooling para

agregar a informacao espacial de cada canal em um tinico descritor numérico global;

2. Excitation (Excitacao): utiliza-se uma rede neural fully connected leve para

aprender pesos de importancia para cada canal (entre 0 e 1).

O resultado é uma multiplicacao elemento a elemento que enfatiza caracteristicas
informativas e suprime as irrelevantes, permitindo que a rede foque nos mapas de carac-
teristicas mais importantes para a segmentagao do ECG.

A Figura 2.7 ilustra esse fluxo de informacao, destacando como o vetor de pesos

recalibra os canais de entrada.

Entrada | Global Pool| Vetor FC L‘We"i Pesos o (Y Saida
(HxQC) 1x0) " (o) - Recalibrada

Squeeze Excitation

Figura 2.7: Diagrama esquemadtico do bloco Squeeze-and-Excitation (SE). O mecanismo
comprime a informacao espacial (Squeeze) para calcular a importancia de cada canal
(Excitation), utilizando esses pesos para recalibrar a entrada original.

Fonte: Adaptado de Hu, Shen e Sun (2018).
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2.4.3 Residual U-Net: A Integracao de Conexoes Residuais na
Segmentacao

A arquitetura U-Net, base para este trabalho, é estruturalmente derivada dos Autoen-
coders. Conforme definido por Goodfellow, Bengio e Courville (2016), um autoencoder
é uma rede neural composta por duas etapas simétricas: um codificador (encoder), que
comprime progressivamente a entrada para extrair apenas as caracteristicas mais relevan-
tes (representacao latente), e um decodificador (decoder), que tenta reconstruir o sinal
original a partir dessa versao comprimida.

Embora eficazes para reducao de ruido, os autoencoders tradicionais sofrem com
a perda de detalhes espaciais durante o processo de compressao, o que é critico em seg-
mentacao médica, contexto no qual a localizacao temporal precisa dos eventos é deter-
minante. A U-Net resolve esse problema introduzindo as conexoes de salto (skip con-
nections), visualizadas pelas setas tracejadas na Figura 2.8. Essas conexoes transferem
as caracteristicas de alta resolucao diretamente do encoder para o decoder, permitindo
uma reconstrugao precisa das fronteiras das ondas (RONNEBERGER; FISCHER; BROX,
2015).

Apesar da eficiéncia da U-Net classica, o aumento de sua profundidade para
capturar padroes de ECG muito complexos pode levar a dificuldades de convergéncia no
treinamento. Para superar essa barreira, a literatura propos a Residual U-Net (ResUNet),
uma arquitetura hibrida que integra os blocos residuais (discutidos na Secao 2.4) direta-
mente na estrutura da U-Net, facilitando o fluxo do gradiente e permitindo o treinamento
de redes mais profundas sem degradacao do desempenho (??DURAJ et al., 2022).

Conforme ilustrado na Equacao 2.5, a saida y de um bloco residual nao é apenas

o resultado das convolugbes F(z), mas a soma deste resultado com a entrada original x:

Ybloco = :Tcom)(x) + (25)

Essa alteracao arquitetural traz duas vantagens cruciais para a segmentacao de

ECG:

1. Fluxo de Informagao Facilitado: O atalho residual (+z) funciona como uma via
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expressa para os gradientes, permitindo que a rede aprenda funcoes de identidade
e evitando a degradacdo do desempenho em redes profundas (GOODFELLOW,;
BENGIO; COURVILLE, 2016);

2. Preservacao de Caracteristicas: A conexao residual ajuda a preservar as in-
formacoes originais do sinal dentro do bloco, vital para nao perder detalhes de

baixa amplitude, como a onda P.

No trabalho de (DURAJ et al., 2022), replicado nesta pesquisa, essa estrutura é
aprimorada com a insergao de blocos Squeeze-and-Ezxcitation (SE) dentro das unidades
residuais. Essa adigao permite que a rede facilite o treinamento (via residuos) e também
aprenda a ponderar a importancia de cada canal de filtragem (via SE), sem utilizar me-
canismos de atencao global complexos, mantendo um custo computacional eficiente para
processamento de ECG.

Skip Connection L, ,
Entrada (ECG) —» ———————————————— » Saida (Méscara)

Pooling

---------------- Lomn_

Pooling

Conv 1D % ---------------- > Conv 1D

A
Upsampling

R

Encoder (Contragao)
Decoder (Expansao)

Figura 2.8: Arquitetura U-Net 1D. O caminho de contragao (esquerda) extrai o contexto,
enquanto o caminho de expansao (direita) recupera a localizacdo precisa. As setas trace-
jadas (skip Connections) transferem detalhes de alta resolugao do encoder para o decoder,
essenciais para a segmentacao precisa das ondas.

Fonte: Baseado em Ronneberger, Fischer e Brox (2015) e Duraj et al. (2022).

2.4.4 Mecanismos de Atencao e a Arquitetura Transformer

Para superar as limitagoes de memoria das redes recorrentes e o campo receptivo local das
convolugoes, Bahdanau, Cho e Bengio (2014) introduziram o conceito de Mecanismo de
Atencao. Originalmente desenhado para traducao automaética, esse mecanismo permite

que a rede “foque” dinamicamente em diferentes partes da sequéncia de entrada a cada
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passo do processamento, superando o gargalo de tentar comprimir toda a informacao em
um unico vetor de contexto.

Evoluindo esse conceito, Vaswani et al. (2017) propuseram o Transformer, uma
arquitetura que abandona totalmente a recorréncia sequencial em favor do processamento
paralelo global. O ntcleo dessa arquitetura é a Autoatengao (Self-Attention), que rela-
ciona diferentes posi¢oes de uma tinica sequéncia para computar uma representagao mais
rica da mesma, capturando dependéncias de longo alcance instantaneamente.

Matematicamente, a autoatencao opera sobre trés vetores projetados a partir da
entrada: Query (Q), Key (K) e Value (V). A saida é uma soma ponderada dos valores,
onde os pesos sao calculados através da similaridade entre (Q e K, conforme a Equacao

2.6:

: QKT
Attention(Q, K, V') = softmax 1% (2.6)
Vdy,

onde v/dj, é um fator de escala para estabilizar os gradientes. No contexto do eletrocardi-
ograma, essa operacao permite que o modelo aprenda que a morfologia de um complexo
QRS atual (@) deve ser interpretada a luz de batimentos anteriores (K'), recuperando
informagoes contextuais (V') essenciais para distinguir ritmos normais de arritmias com-

plexas, mesmo que distantes temporalmente.

2.4.5 Transformers e Modelos Hibridos no ECG

A literatura sobre a analise automatica de ECG tem evoluido progressivamente de arquite-
turas puramente convolucionais para modelos capazes de capturar dependéncias temporais
de longo alcance. Enquanto abordagens baseadas em CNNs, como a Residual U-Net discu-
tida anteriormente (DURAJ et al., 2022), aprimoram a segmentagao por meio de conexoes
residuais e mecanismos de recalibracao local (SE), elas permanecem fundamentalmente
limitadas pelo campo receptivo das convolucoes.

Nesse contexto, os Transformers emergem como uma alternativa promissora. A
sua capacidade de modelar relagoes globais torna-os particularmente adequados para a
andlise de ECG, onde arritmias e padroes patolégicos podem depender de correlacoes

temporais distantes, que escapam a visao local de uma CNN.
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A Figura 2.9 ilustra essa distingao fundamental: enquanto a convolugao observa
apenas uma vizinhanga restrita de pontos vizinhos, o mecanismo de atencao (base do
Transformer) conecta cada ponto do sinal a todos os outros pontos da sequéncia, permi-

tindo uma compreensao abrangente do contexto ritmico global.

(a) CNN: Contexto Local

Campo Receptivo
Limitado

(b) Transformer: Contexto Global

Mecanismo de Autoatengao:
Conexao direta com toda a sequéncia

E

Figura 2.9: Comparagao do mecanismo de captura de contexto. Em (a), a CNN observa
apenas uma vizinhanca local. Em (b), o mecanismo de atengao conecta zg a todos os
pontos da sequéncia (dependéncias de longo alcance).

Fonte: Baseado em Vaswani et al. (2017).

O modelo SEResUTer, proposto por Li et al. (2023) e também explorado neste
trabalho, representa essa evolugao hibrida. Diferentemente da abordagem puramente
convolucional de Duraj et al. (2022), o SEResUTer introduz um modulo Transformer

especificamente no gargalo (bottleneck) da rede. Sua composigao integra:
1. A estrutura U-Net para a localizacao precisa;

2. Blocos Residuais e Squeeze-and-Excitation (similares aos de Duraj) no encoder/decoder

para extracao de features locais;

3. Mecanismos de Atencao (Transformer) na camada mais profunda para capturar o

contexto global da série temporal, conforme detalhado na Figura 2.10.

Essa abordagem hibrida visa unir o melhor dos dois mundos: a eficiéncia local
das CNNs (validada por Duraj et al. (2022)) com a capacidade de modelagem global dos

Transformers (proposta por Li et al. (2023)).
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Query Key Value

@ ®

[MatMul (Q x KT)}

[ Scale & Softmax }

Ponderacao

X )< /

[Sal'da (Contexto Global)}

Figura 2.10: Representagao esquemética do mecanismo de Atengao (Scaled Dot-Product).
O modelo utiliza a similaridade entre () e K para calcular pesos que filtram a informacao
relevante vinda de V.

Fonte: Adaptado de Vaswani et al. (2017).

2.5 Funcoes de Perda Ponderadas

Para o treinamento de classificacao multiclasse, utiliza-se comumente a Entropia Cruzada
Categdrica (Categorical Cross-Entropy). Conforme discutido por Goodfellow, Bengio e
Courville (2016), essa fungao mede a divergéncia entre a distribuigao de probabilidade
predita e a real.

Em cendrios de segmentagao de ECG, onde a classe “fundo” (linha isoelétrica)
¢ majoritaria, o desbalanceamento pode enviesar o modelo. Para corrigir isso, aplica-se
uma ponderagao na func¢ao de perda ( Weighted Cross-Entropy), onde atribui-se um peso
maior (w,) aos erros cometidos nas classes minoritérias (Ondas P, QRS, T), penalizando
mais severamente o modelo quando ele falha em detectar uma onda do que quando ele
classifica incorretamente o fundo.

Matematicamente, a fungdo de perda ponderada (Lwccg) introduz um termo
escalar w, para cada classe ¢, que multiplica o valor logaritmico da perda. A equacao

formal é dada por:

C
LWCC’E = - Z We " Ye - log(gc) (27)

c=1
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Onde:
e (' é o numero de classes (no caso deste trabalho: Fundo, P, QRS, T);

e y. indica se a classe ¢ é a correta (1 ou 0);

7. é a probabilidade predita pelo modelo;
e w,. é o peso calculado inversamente a frequéncia da classe.

Dessa forma, se a classe ¢ for uma onda rara (peso w. alto), o erro resultante sera
amplificado, forcando o gradiente a ser mais agressivo na correcao dos pesos da rede para

aquela classe especifica.

2.6 Meétricas de Avaliacao de Desempenho

A avaliagao quantitativa de modelos de segmentagao e classificacao de ECG baseia-se na
comparagao entre as predigoes geradas pela rede neural e as anotacoes manuais realizadas
por especialistas (ground truth). Essas métricas sdo derivadas da matriz de confusao, que
contabiliza os Verdadeiros Positivos (TP), Verdadeiros Negativos (TN), Falsos Positivos

(FP) e Falsos Negativos (FN), como exemplo na figura Figura 2.11.

Classe Real (Especialista)

Positivo Negativo
—_
o
% g Verdadeiro Falso
o = Positivo (TP) Positivo (FP)
E D? Acerto: Onda Detectada Erro: Alarme Falso
1]
=
©
(]
S o .
a 3 Falso Verdadeiro
) 51) Negativo (FN) Negativo (TN)
3 § Erro: Onda Perdida Acerto: Fundo Ignorado
C
O

Figura 2.11: Matriz de confusao para segmentagao de ECG.
Fonte: Elaborada pelo autor (2025).
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2.6.1 Meétricas baseadas na Matriz de Confusao

A Acuracia mede a proporgao global de acertos do modelo. Embora intuitiva, ela pode ser

enganosa em cenarios de alto desbalanceamento de classes, como no ECG, onde o fundo

(linha isoelétrica) predomina sobre as ondas (DURAJ et al., 2022). E definida por:
TP+TN

Acurécia = 2.
curacia TPLTN - FPLFN (2.8)

Para mitigar o viés da acurécia, utilizam-se métricas focadas na classe positiva.
A Sensibilidade (ou Recall) avalia a capacidade do modelo de detectar corretamente os

eventos de interesse (ondas), sendo critica para evitar falsos negativos em diagndsticos

clinicos (DURAJ et al., 2022):

TP
- _ 5
Sensibilidade TP+ FN (2.9)

Simultaneamente, a Precisao avalia a confiabilidade das detecgoes positivas, in-
dicando o quanto o modelo é robusto a falsos alarmes (ruido classificado como onda)
(DURAUJ et al., 2022):

TP

Precisao = —— 2.1
recisao = s (2.10)

2.6.2 Meétricas de Sobreposicao e Similaridade

Para tarefas de segmentagao, onde o objetivo é delimitar uma regiao temporal, utiliza-se
frequentemente o F1-Score (também conhecido como coeficiente Dice). Sendo a média
harmonica entre precisao e sensibilidade, esta métrica penaliza tanto falsos positivos
quanto falsos negativos, sendo mais robusta ao desbalanceamento de classes (DURAJ
et al., 2022):

Precisao - Sensibilidade

FLS . 2.11
core Precisao + Sensibilidade 2

Outra métrica comum em segmentacao semantica é o indice de Jaccard, ou In-

tersection over Union (loU), que mede a razao entre a interse¢ao e a uniao das méscaras
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preditas e reais. E uma métrica mais rigida que o F1-Score, penalizando severamente

desalinhamentos (DURAJ et al., 2022):

TP

ToU —
U= TP T FPTFN

(2.12)

2.6.3 Meétricas de Erro Temporal

Além das métricas de classificagao, a precisao da localizagdo dos pontos fiduciais (inicio
e fim das ondas) é avaliada pelo Erro Médio Absoluto (MAD). Medido em milissegundos
(ms), o MAD calcula a média das distancias absolutas entre o ponto predito pelo modelo
e a anotacao do especialista, sendo fundamental para validar a aplicabilidade clinica da

segmentacao em medicoes de intervalos como QT e QRS.
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3 Trabalhos Relacionados

A aplicagao de aprendizado profundo na andlise de eletrocardiogramas (ECG) passou por
uma evolugao acelerada na tltima década. O campo transicionou da simples classificacao
de arritmias para tarefas complexas de segmentacao semantica, buscando delimitar com
precisao os pontos fiduciais (ondas P, QRS e T). Esta se¢@o apresenta essa evolugao cro-
nolégica, partindo de revisoes sistematicas que mapeiam o cendrio geral até as arquiteturas

hibridas mais recentes que fundamentam a parte pratica deste trabalho.

3.1 Panorama da Literatura e Revisoes Sistematicas

Para compreender o estado da arte, revisoes recentes oferecem um diagndstico das tendéncias
predominantes. Wasimuddin et al. (2020), em um survey abrangente, estruturaram o
pipeline de andlise de ECG em etapas de aquisicao, pré-processamento e classificagao,
destacando a integracao incipiente entre técnicas classicas e deep learning. Mais recente-
mente, Tihak, Konjicija e Boskovic (2022) analisaram 32 artigos focados na detecgao de
fibrilacao atrial, constatando a hegemonia das Redes Neurais Convolucionais (CNN) e o
surgimento de modelos hibridos (CNN-LSTM).

Contudo, a andlise critica desses trabalhos revela uma lacuna importante: a li-
teratura existente concentra-se majoritariamente na classificagdo global de arritmias (di-
agndstico “doente”’vs “sauddvel”), oferecendo pouca profundidade sobre as arquiteturas
especificas para a segmentagao semantica das ondas morfoldgicas. Essa constatacao, de
que as revisoes atuais nao respondem integralmente as especificidades da segmentacao de
ondas, justifica a condugao de uma nova Revisao Sistematica da Literatura neste trabalho.
O protocolo e a execucao desta nova revisao, desenhada especificamente para responder

as questoes de pesquisa propostas (P1-P3), sao detalhados a seguir no Capitulo 4.
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3.2 Evolucao das Arquiteturas: De CNNs a Trans-

formers

A evolugao dos modelos para segmentagao de ECG pode ser dividida cronologicamente

em trés geracoes principais, conforme detalhado a seguir.

3.2.1 Primeira Geragao: Adaptacao de CNNs (2015-2019)

Os primeiros esforcos significativos concentraram-se na adaptacao de Redes Neurais Con-
volucionais (CNNs), originalmente desenvolvidas para imagens bidimensionais, para o
processamento de sinais unidimensionais. Trabalhos pioneiros demonstraram que CNNs
1D eram capazes de extrair caracteristicas automaticamente, superando abordagens ba-
seadas em engenharia manual de atributos.

Embora estudos preliminares, como o de Vijaya, Kumar e Verma (1998), ja tives-
sem explorado o uso de redes neurais para anotacao automatica de sinais de ECG, essas
abordagens eram fortemente limitadas pelo reduzido poder computacional disponivel a
época e pela escassez de bases de dados extensas e adequadamente anotadas, o que res-
tringiu sua adocao em larga escala.

Foi apenas a partir do final da década de 2010 que os avancos em hardware
e a maior disponibilidade de bases publicas permitiram o treinamento eficaz de redes
convolucionais profundas para esta tarefa. Nesta fase, o foco da maioria dos trabalhos
permaneceu centrado na deteccao de picos R e do complexo QRS, com atencao limitada

a segmentacao precisa das ondas P e T.

3.2.2 Segunda Geracao: U-Net e Modelos Residuais (2020-2022)

A virada de chave para a segmentacao completa ocorreu com a adaptacao da arquite-
tura U-Net para sinais 1D. Originalmente proposta para imagens biomédicas, a estrutura
encoder-decoder provou-se ideal para gerar mascaras de segmentacao temporal. Neste
contexto, Duraj et al. (2022) representam um marco importante ao proporem a 1D Re-
sidual U-Net com mecanismos de Squeeze-and-Excitation (SE). Utilizando a base LUDB

(KALYAKULINA et al., 2020), os autores demonstraram que a inclusdo de conexoes resi-
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duais e blocos SE permitia a rede focar em canais informativos e ignorar ruidos, alcangando
alta precisao na delimitacao de ondas P e T, historicamente mais dificeis de segmentar
que o complexo QRS. Este trabalho consolidou a U-Net como o baseline robusto para a

area.

3.2.3 Terceira Geracao: Transformers e Arquiteturas Hibridas

(2023—Presente)

A fase atual é marcada pela introducao de mecanismos de atencao global para superar
as limitagoes das CNNs em capturar dependéncias de longo alcance. Li et al. (2023) in-
troduziram o modelo SEResUTer, uma arquitetura hibrida que insere blocos Transformer
no “gargalo” (bottleneck) da U-Net. A premissa é que, enquanto as convolugbes tratam
das caracteristicas locais (morfologia da onda), o Transformer analisa o contexto global
(ritmo e relagao entre batimentos). Esta abordagem reflete a fronteira do conhecimento,
onde a interpretabilidade e a capacidade de generalizacao para multiplas bases de dados

tornam-se os novos desafios a serem superados.
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4 Revisao Sistematica da Literatura

Conforme discutido no capitulo 3, embora a literatura apresente revisoes abrangentes so-
bre o uso de inteligéncia artificial em eletrocardiografia, como os trabalhos de Wasimuddin
et al. (2020) e Tihak, Konjicija e Boskovic (2022), observa-se uma lacuna especifica. As
revisoes existentes concentram-se majoritariamente em tarefas de classificacao diagnéstica
ou em panoramas generalistas do processamento de sinais.

Nao foi identificada, até o momento, uma revisao sistematica recente dedicada
exclusivamente a mapear e comparar as arquiteturas de Deep Learning voltadas para
a segmentagao semantica das ondas P, QRS e T. A distingao é crucial: enquanto a
classificacao busca apenas rotular um registro, a segmentacao exige a delimitagao temporal
precisa de cada componente morfologico, tarefa que demanda arquiteturas e métricas de
avaliagao distintas.

Diante dessa necessidade, este capitulo apresenta uma Revisao Sistematica da
Literatura conduzida especificamente para preencher essa lacuna. O estudo segue o pro-
tocolo PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)

(PAGE et al., 2021), com o objetivo de responder as questoes de pesquisa P1, P2 e P3.

4.1 Questoes de Pesquisa Norteadoras

Para guiar ambas as etapas metodoldgicas, foram formuladas trés questoes de pesquisa

(P) fundamentais, focadas na compreensao do cendrio atual da literatura:

e P1: Quais sao as arquiteturas de deep learning mais utilizadas para a segmentagao

de ondas do ECG na literatura recente (2015-2025)?

e P2: Quais bases de dados publicas sao predominantes no treinamento desses mo-
delos e quais estratégias de enriquecimento de dados (Data Augmentation) sao em-

pregadas?

e P3: Quais sao as métricas de avaliacao mais adotadas para aferir o desempenho
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dos modelos de segmentacao de ECG?

A seguir, sao detalhados os métodos especificos para cada eixo.

4.2 Metodologia da Revisao

Nesta se¢ao sao apresentados os procedimentos adotados para a conducao da revisao sis-
tematica, com o objetivo especifico de responder as perguntas P1, P2 e P3. O protocolo
seguiu as recomendagoes do PRISMA 2020 (Preferred Reporting Items for Systematic
Reviews and Meta-Analyses) (PAGE et al., 2021). A aplicacao das diretrizes PRISMA
contribui para garantir transparéncia, reprodutibilidade e rigor metodoldgico, orientando

desde a busca até a selecao dos estudos.

4.2.1 Fonte de dados e estratégia de busca

As buscas foram conduzidas em trés bases de dados reconhecidas internacionalmente pela
relevancia na drea de ciéncia e engenharia biomédica: IEEEXplore (IEEE, 2025), PubMed
(National Center for Biotechnology Information, 2025) e Web of Science (CLARIVATE,
2025). A estratégia de busca foi elaborada com o uso de operadores booleanos, expressoes
truncadas e termos especificos relacionados ao objetivo da revisao. A seguinte expressao

foi utilizada:

(“ ECG "OR * electrocardiogram ”) AND (“ wave delineation ”OR “ P wave
detect "OR “ T wave detect "OR “ QRS detect® "OR “ QRS complex™ ”OR
“ automated annotation ”) AND (* deep learning "OR “ neural network™* ”)
AND (“ semantic segmentation "OR “ time-series segmentation ”OR “ signal

processing )

As buscas foram realizadas no més de junho de 2025, considerando o intervalo
de publicacao entre 2015 e 2025. Foram incluidos apenas artigos publicados em inglés ou
portugueés brasileiro, disponiveis em texto completo e que abordassem a identificacao das

ondas do ECG por meio de redes neurais profundas.
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Para organizacao, triagem e selecao dos registros, foi utilizado o software Rayyan.ai
(OUZZANTI et al., 2016), uma plataforma gratuita para revisoes sistematicas. A ferra-

menta permitiu:

Importar os resultados das buscas diretamente das bases;

Eliminar automaticamente artigos duplicados;

Facilitar a triagem por meio da leitura réapida de titulos e resumos;

Aplicar etiquetas de inclus@o/exclusdo com base nos critérios definidos;

Adicionar anotagoes colaborativas durante a avaliacao dos estudos.

4.2.2 Critérios de elegibilidade e exclusao

Os critérios de inclusao e exclusao foram definidos previamente a leitura dos artigos, com
base no escopo da revisao:

Critérios de Inclusao

e Estudos que utilizaram redes neurais profundas (ex.: CNN, LSTM, U-Net, Transfor-
mers) para detecgao, predicao ou delineamento de ondas ou pontos-chave do ECG

(P, QRS, T, R-peak, etc.);

e Trabalhos com aplicacao pratica ou validacdo em bases publicas de ECG, como
Lobachevsky University Database (LUDB) (KALYAKULINA et al., 2020), MIT-
BIH (MOODY; MARK, 2001) e QT Database (QTDB) (LAGUNA et al., 1997);

e Artigos revisados por pares;

e Publicados entre 2015 e 2025.

Critérios de Exclusao

e Artigos de revisao, editoriais, capitulos de livro ou anais de evento sem acesso ao

texto completo;
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e Estudos que nao utilizam deep learning para deteccao, predicao ou delineamento de

ondas/pontos do ECG;

e Trabalhos que tém como objetivo exclusivamente a classificacao de arritmias ou
doencas, sem qualquer foco na detecgao de ondas/pontos do ECG (mesmo que

usem deep learning);

e Trabalhos que nao apresentavam detalhes suficientes sobre a arquitetura do modelo,

dados utilizados ou métricas de avaliacao.

4.2.3 Selecao de estudos

A selecao dos artigos seguiu as trés etapas recomendadas para revisoes sistematicas:

1. Identificacao e remocao de duplicatas: utilizando a funcao automatica do Rayyan;

2. Triagem por titulos e resumos: eliminacao de registros irrelevantes ou fora dos

critérios definidos;

3. Leitura completa dos artigos selecionados: andlise criteriosa para verificacao final

de elegibilidade.

A busca inicial resultou em 175 registros. Apos a identificagao de 62 duplicatas e
a resolucgao de conflitos, foram excluidos 33 trabalhos nesta fase inicial. Assim, 142 artigos
permaneceram para a triagem por titulo e resumo. Desses, 47 estudos foram selecionados
para leitura na integra. Com base na anélise completa, 42 artigos atenderam aos critérios
e foram incluidos na analise final. O processo completo de selecao esté representado na

Figura 4.1.

4.2.4 Extracao de dados

Para cada um dos estudos incluidos, foi realizada a extragao de dados por meio de uma
planilha padronizada. Os itens extraidos foram selecionados estrategicamente para res-

ponder as perguntas de pesquisa (Ps) norteadoras deste trabalho:
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Triagem Identificagao

Elegibilidade

Inclusao

Registros identificados
nas bases de dados:
IEEE Xplore, Pub-
Med, Web of Science
(n = 175)

Registros removidos:

Duplicatas ou
conflitos iniciais

(n = 33)

Registros triados
(Titulos e Resumos)
(n = 142)

Registros excluidos
(Fora do es-
copo/Critérios)

(n = 95)

Artigos avaliados
para elegibilidade
(Texto Completo)
(n = 47)

Artigos excluidos
com justificativa:
Revisoes, foco ex-
clusivo em arritmia,
sem detalhes técnicos
(n = 5)

Estudos incluidos na
revisao sistematica
(n = 42)

Figura 4.1: Fluxograma PRISMA 2020 detalhando o processo de sele¢ao dos estudos. Dos
175 registros iniciais, 42 atenderam a todos os critérios de inclusao e compoem o corpus

desta revisao.

Fonte: Elaborada pelo autor (2025).
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e Para responder a P1 (Arquiteturas): Foram extraidos dados sobre a arqui-
tetura de rede neural aplicada (ex.: CNN, LSTM, U-Net, Transformers) e suas

configuragoes especificas;

e Para responder & P2 (Bases de Dados): Levantou-se a base de dados de
ECG utilizada (publica ou privada), bem como as técnicas de pré-processamento
e estratégias para lidar com limitagoes (como data augmentation, filtragem e seg-

mentagao por janelas);

e Para responder a P3 (Métricas): Foram registradas as métricas de avaliagao
de desempenho utilizadas (ex.: Fl-score, IoU, acuricia, erro médio de tempo) para

aferir a qualidade da segmentacao;

e Informacoes Complementares: Principais contribuicoes relatadas e limitagoes

metodoldgicas mencionadas pelos autores.

A avaliacao da qualidade metodolégica dos estudos foi feita de maneira quali-
tativa, considerando a clareza na descricao dos métodos, a completude dos resultados
apresentados e a solidez da validacao dos modelos. Foram valorizados estudos com va-
lidacao cruzada, comparacao com métodos classicos e uso de multiplas bases de dados.
Os procedimentos descritos nesta segao forneceram a base metodoldgica necessaria para

a analise dos resultados apresentada a seguir.

4.3 Resultados e Discussao da Revisao

Com base nos 42 estudos selecionados através do protocolo descrito acima, apresenta-se

a seguir a analise detalhada para responder as questoes norteadoras.

4.3.1 Arquiteturas de Deep Learning (P1)

A analise cronolégica dos 42 trabalhos revisados permite compreender a evolucao do uso de
redes neurais profundas (Deep Learning) na segmentacao e classificagao de sinais de ECG.
Observou-se uma transigao clara entre trés fases distintas: inicio (2018-2019), consolidagao

(2020-2021) e sofisticagao e integracao de técnicas avancadas (2022 em diante).



4.3 Resultados e Discussao da Revisao 43

Na fase inicial (2018-2019), os trabalhos concentram-se em arquiteturas convolu-
cionais basicas (CNN 1D) e Fully Convolutional Networks (FCNs), com foco em tarefas
fundamentais, como a detecgao de picos R e complexos QRS. Embora algumas aborda-
gens tenham explorado redes recorrentes (LSTMs e BLSTMs) para capturar dependéncias
temporais, a aplicacao em tempo real era limitada. Métricas como Sensibilidade (Se), Va-
lor Preditivo Positivo (PPV) e F1-score ja alcangavam valores préximos a 99% em bases
classicas como MIT-BIH, indicando o potencial dessas redes para analises de alta precisao.

Com a maturacao das pesquisas (2020-2021), verifica-se a popularizagao da U-Net
e suas variantes 1D, adaptadas para a segmentacao de ondas P, QRS e T. Modelos hibridos
CNN-LSTM ou CNN-BiLSTM tornam-se frequentes, combinando a extracao espacial de
caracteristicas das CNNs com a memoria temporal das redes recorrentes. O desempenho
reportado nesse periodo é consistentemente elevado, com Fl-scores acima de 97% em
delineacao completa e acuracia proxima de 99% para deteccao de QRS, como observado
em métodos baseados em U-Net e arquiteturas dilatadas (DCNN-LSTM). Este avango
indica o inicio da consolidagao de solucoes capazes de lidar com maior variabilidade de
sinais.

A partir de 2022, observa-se um movimento em direcao a sofisticacao arquitetu-
ral e a integracao de mecanismos de atengao e Transformers. Modelos como SEResU-
Ter e ECG_DEEPNet ilustram essa tendéncia, incorporando blocos residuais (ResNet),
Squeeze-and-FExcitation, autoatencao e codificadores Transformer a estruturas U-Net ou
redes hibridas. Estas abordagens buscam maior robustez a ruidos generalizacao para
multiplas derivagoes e até mesmo capacidade de andlise de ECG em dispositivos vestiveis.
Resultados recentes indicam F1l-scores superiores a 99% para deteccao de QRS e desem-
penho consistente na identificacao de ondas P e T, ainda que estas ultimas permanecam
mais desafiadoras devido a menor amplitude e a variabilidade morfolégica.

Como pode ser observado na Figura 4.2, o levantamento realizado evidencia um
amadurecimento das técnicas de Deep Learning em ECG, que passaram de solucoes ba-
seadas em CNNs simples para modelos hibridos e de multiplos componentes, capazes de
oferecer altissima precisao e maior potencial de aplicacao clinica. Ainda assim, desafios

persistem, como a generalizacao para dados externos, a interpretabilidade dos modelos
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e a escassez de bases anotadas com alta qualidade, que continuam a motivar pesquisas

recentes.

Evolugao de Arquiteturas de Deep Learning em ECG (2018-2025)

Arquitetura
N CNN 1D
BN CNN-LSTM
w U-Net 1D
BN U-Net Hibrida

- I I I !

Figura 4.2: Evolucao das arquiteturas de deep learning aplicadas ao ECG (2018-2025).
Fonte: Elaborada pelo autor(a).

10 1

Numero de Estudos
(=] =]

S
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o

Em sintese, a evolugao arquitetural observada nos ultimos anos acompanha a cres-
cente necessidade de modelos capazes de lidar com variagoes morfologicas, ruidos e requi-
sitos de aplicabilidade clinica. Embora CNNs continuem sendo referéncia em desempenho,

arquiteturas hibridas vém ganhando destaque, apesar de maior custo computacional.

4.3.2 Bases de Dados e Data Augmentation (P2)

A andlise dos 42 estudos revisados evidencia uma clara transicao no uso de bases de
dados ptblicas e privadas ao longo do periodo de 2018 a 2024, refletindo mudangas tanto
na complexidade dos modelos quanto nas exigéncias de generalizacao clinica.

Periodo Inicial (2018-2019): Predominancia de Bases Cldssicas. Nos anos inici-
ais, observou-se forte concentracao no uso de bases tradicionais, especialmente o MIT-BIH
Arrhythmia Database (MITDB), utilizado por 75% dos estudos (ex: (SODMANN et al.,
2018); Camps et al., 2018). Esse dominio deve-se a sua ampla disponibilidade, anotagao
manual confidvel e foco em arritmias. Paralelamente, a QT Database (QTDB) foi empre-
gada em 50% dos trabalhos. A respeito de sua acessibilidade, essas bases apresentavam
limitagoes quanto a diversidade patoldgica e representatividade de cendrios reais, como

ambientes ambulatoriais ou sinais com ruido originario de dispositivos vestivéis.
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Transi¢ao (2020-2021): Expansao para Bases Especializadas e Ambulatoriais. A
partir de 2020, identificou-se uma expansao para bases mais especializadas. A LUDB (Lo-
bachevsky University Database) passou a representar 37,5% da amostra (ex: (XU et al.,
2023)), oferecendo dados multiderivacao (12 derivagoes) com anotagdes detalhadas para
tarefas de segmentagao semantica. Simultaneamente, conjuntos como a CPSC 2019/2021
e a Noise Stress Test Database (NSTDB) introduziram registros mais ruidosos e realistas,
refletindo condicgoes clinicas mais desafiadoras. Aproximadamente 68,75% dos estudos
nessa fase passaram a adotar multiplas bases em combinacao, sinalizando uma busca por
maior robustez na validacao cruzada dos modelos.

Consolidagao (2022-2024): Diversidade e Personalizagdo. Entre 2022 e 2024,
consolidou-se uma tendéncia de uso de bases mais diversificadas e hibridas, tanto ptublicas
quanto privadas. O PTB-XL, atualmente o maior banco publico com ECGs de 12 de-
rivagoes e metadados clinicos, foi destaque em estudos recentes (ex: (SILVA et al., 2024)).
Simultaneamente, a incorporacao de bases privadas, como a do Chang Gung Memorial
Hospital (2023) e CardioCloud Medical (2023), passou a representar uma estratégia de per-
sonalizagao para contextos clinicos especificos, embora isso levante questoes sobre repro-
dutibilidade e acesso (Zhu et al., 2024). Houve ainda a adogao inicial de bases sintéticas,
especialmente em estudos com modelos de difusao, sinalizando uma nova fronteira para
treinamento de redes profundas com dados simulados.

A analise temporal entre 2018 e 2024 revela um crescimento expressivo no numero
de estudos que adotam multiplas bases de dados para validacao de modelos de ECG. En-
tre 2018 e 2019, apenas 31,25% dos trabalhos incluiam duas ou mais bases, com foco
majoritario em conjuntos tradicionais como a MITDB. A partir de 2020, essa propor¢ao
salta para 68,75%, acompanhando o surgimento de modelos mais complexos e a neces-
sidade de validar desempenho em cenérios clinicos variados. Ja no triénio 2022-2024,
aproximadamente 75% dos estudos passaram a combinar trés ou mais bases, incluindo
publicas, privadas e sintéticas.

O aumento na média de bases por estudo, de 1,3 em 2018 para 3,2 em 2024,
marca uma mudanca de paradigma na pesquisa com ECG baseada em deep learning, con-

forme ilustrado na Figura 4.3. A integracao de multiplas fontes tornou-se uma exigéncia
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metodoldgica para garantir desempenho clinico confiavel.

Tendéncia: Generalizacao

Média: 1.3 Média: 2.1 Média: 3.2

2018-2019 2020-2021 20222024
FEx: MITDB FEx: Hibridas

. Base Unica . Miuiltiplas Bases (>2)

Figura 4.3: Evolugao temporal da estratégia de validagao (2018-2024). O grafico evidencia
a inversao do paradigma: o uso de bases tinicas (cinza) cede lugar a integracao de multiplas
bases (azul), impulsionada pela necessidade de generalizacao dos modelos.

Fonte: Elaborada pelo autor (2025).

Como parte da analise sobre as estratégias utilizadas para mitigar as limitagoes
das bases de dados (P2), investigaram-se também as técnicas de data augmentation rela-
tadas nos estudos. Verificou-se que aproximadamente 37% empregaram tais técnicas com
0 objetivo de mitigar limitacoes recorrentes, como numero reduzido de amostras e desba-
lanceamento. A Figura 4.4 apresenta a distribuicao das categorias de data augmentation
entre os estudos analisados.

As estratégias mais comuns (Tabela 4.1) incluiram janelamento com sobreposi¢ao,
transformagoes do sinal (inversao, escalonamento) e inje¢ao de ruido realista. De forma
geral, os trabalhos que aplicaram data augmentation apresentaram modelos com maior

capacidade de generalizagao e tolerancia a sinais de baixa qualidade.

4.3.3 Meétricas de Avaliagao (P3)

A terceira pergunta de pesquisa (P3) buscou identificar as métricas mais adotadas na
literatura para aferir o desempenho dos modelos. A analise revelou que a escolha das

métricas reflete a natureza hibrida do problema de segmentagao de ECG, exigindo tanto
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Distribuicdo de Técnicas de Data Augmentation em Estudos de ECG

Estratégias Hibridas

Injegdo de Ruido

Transformacdes do Sinal

Categoria de Data Augmentation

Janelamento/Overlapping

T
] 1 2 3 4 5 6 7 8
Numero de Estudos

Figura 4.4: Distribuicao das categorias de data augmentation utilizadas nos estudos de
ECG analisados.
Fonte: Elaborada pelo autor(a).

Tabela 4.1: Resumo das estratégias de data augmentation empregadas nos estudos sele-
cionados.

Estudo Base de Dados Estratégias de Data Augmentation

Camps et al. (2018) QTDB Janelamento com 99% de sobreposicao; adi¢ao de constantes.
Sodmann et al. (2018) QTDB 4+ NSTDB Ruido gaussiano, baseline wander, deslocamento.

Zahid et al. (2021) MIT-BIH + NSTDB  Injegao de baseline wander e ruido sintético.

Habib et al. (2022) MIT-BIH Replicagao de batimentos minoritarios, deslocamentos.

Li et al. (2023) LUDB + CPSC 2020 Translagao temporal, escalonamento, inversao.

Wang et al. (2023) LUDB Blindagem de derivagdes (random shielding), cut-out.
Bioengineering (2023) LUDB Janelas de 4 s com sobreposigao de 75%.

NSTDB: Noise Stress Test Database; CPSC: China Physiological Signal Challenge.

a classificagao correta da morfologia quanto a precisao temporal.
Identificou-se uma predominancia absoluta de métricas que ponderam o equilibrio
entre a deteccao de eventos e a confiabilidade da predi¢ao. Conforme detalhado na Tabela

4.2, as métricas mais recorrentes foram:

e F1-Score (ou Coeficiente de Dice): Identificada como a métrica padrao-ouro

para comparacao de desempenho (> 90% dos estudos).

e Sensibilidade e Precisao: A maioria dos autores opta por reportar esse par
de métricas em conjunto, visando fornecer um diagnéstico clinico de seguranga e

eficiéncia.

e IoU (Jaccard): Sua presenca foi notada especialmente em trabalhos que utilizam

arquiteturas de visdo computacional (U-Nets) para validar a qualidade geométrica.
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e Erro Temporal (MAD): Estudos focados na aplicabilidade médica tendem a

incluir métricas de erro temporal para validar a precisao dos limites (onsets/offsets).

Tabela 4.2: Principais métricas de avaliacao identificadas na revisao sistematica.

Meétrica

Aplicagao Principal Identificada

Frequéncia Es-
timada

F1-Score / DSC
Sensibilidade
(Se)

Precisao (PPV)
Acurécia (Acc)

IoU (Jaccard)

MAD (ms)

Avaliagao global de desempenho em dados
desbalanceados.

Avaliagao de seguranca clinica (ndo perder
eventos).

Avaliagao de robustez a ruido (nao gerar fal-
sos alarmes).

Visao geral, mas frequentemente citada com
ressalvas sobre viés.

Avaliacao geométrica da sobreposicao de seg-
mentos.

Precisao temporal fina para delimitacao de
onsets/offsets.

Alta (> 90%)
Alta (> 90%)
Alta (> 85%)
Média (~ 60%)
Média (~ 50%)

Média-Baixa (~
40%)

4.4 Sintese da Revisao

A revisao sistematica permitiu mapear o estado da arte e identificar que a area de seg-

mentacao de ECG caminha para a consolidagao de arquiteturas hibridas (como U-Nets

associadas a Transformers), o uso mandatério de multiplas bases de dados para garantir

generalizagao e a aplicagao de técnicas robustas de data augmentation. Além disso, o

levantamento das métricas confirmou a necessidade de uma avaliacao multidimensional

(classificagao + precisdo temporal).

Para consolidar os achados tedricos deste capitulo, a Tabela 4.3 sintetiza as res-

postas para as questoes de pesquisa fundamentadas na literatura (P1, P2 e P3). Esses

achados embasam diretamente as escolhas metodoldgicas da etapa experimental (Capitulo

5).
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Tabela 4.3: Sintese das Questoes de Pesquisa e Respostas Obtidas

P1

Quais arquiteturas de deep learning tém sido aplicadas
ao delineamento de ondas P, QRS e T?

A literatura evidencia uma evolucao tecnoldgica clara: par-
tindo de CNNs 1D simples para modelos U-Net 1D, incor-
porando posteriormente conexoes residuais e blocos SE para
maior profundidade. O estado da arte atual explora arquitetu-
ras hibridas que fundem a capacidade local das CNNs com o
contexto global dos Transformers (mecanismos de atengao).

P2

Quais bases de dados e estratégias de data augmenta-
tion sao mais utilizadas?

QTDB, LUDB e MIT-BIH permanecem sendo as bases mais re-
correntes, embora haja crescimento no uso da PTB-XL. O data
augmentation tornou-se mandatorio para lidar com o desbalan-
ceamento de classes e variabilidade morfolégica, utilizando es-
tratégias como janelamento com sobreposicao, transformagoes
do sinal e injecao de ruido realista.

P3

Quais métricas sao mais empregadas para avaliagao de
segmentacao de ECG?

Predominam F1-score/DSC para avaliacao global, complemen-
tadas pelo par Sensibilidade/Precisao para diagndstico clinico
do modelo. O erro temporal (MAD em ms) é essencial para
validar a precisao dos limites de onda (onsets/offsets).
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5 Delineamento Experimental e

Arquiteturas

Apds o mapeamento do estado da arte realizado no capitulo 4, esta etapa apresenta uma
andlise experimental aplicada. O objetivo é observar, em um cenario pratico e contro-
lado, o comportamento das arquiteturas convolucionais e hibridas quando submetidas a
limitagoes de dados, verificando aspectos de reprodutibilidade e consisténcia dos resulta-

dos.

5.1 Fluxo do Experimento

Para garantir a comparabilidade entre os dois paradigmas, foi desenhado um fluxo de
trabalho unificado, onde ambos os modelos sao submetidos aos mesmos processos de

ingestao de dados e critérios de avaliagao, conforme ilustrado na Figura 5.1.

5.2 Definicao dos Estudos de Caso

Para testar a viabilidade de replicacao, foram selecionadas duas arquiteturas que repre-

sentam paradigmas opostos identificados no estado da arte:

e Caso 1 (Convolucional): Baseado em Duraj et al. (2022), utilizando uma Resi-
dual U-Net. Representa a abordagem classica, eficiente e focada em caracteristicas

locais.

e Caso 2 (Hibrido): Baseado no modelo SEResUTer de Li et al. (2023), que incor-
pora mecanismos de atencao (Transformers). Representa a tendéncia moderna de

captura de contexto global.
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Base de Dados
LUDB (200 ECGs)

Pré-processamento
(Normalizagao, Janelamento,
Data Augmentation*)

Estudo de Caso 1 Estudo de Caso 2
Residual U-Net + SE SEResUTer
(Convolucional) (Hibrido: U-Net + Transformer)
Treinamento Treinamento
(Pesos de Classe) (Adam Optimizer)

Avaliacao
Comparativa,

Métricas:
F1-Score, IoU, Sensibilidade,
Precisao

*Data Augmentation aplicado especificamente no Estudo de Caso 2.

Figura 5.1: Fluxo metodoldégico da etapa de replicacao experimental. Ambos os modelos
foram submetidos a pipelines similares de pré-processamento e avaliacao para garantir a
comparabilidade dos resultados.

Fonte: Elaborada pelo autor (2025).
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5.3 Base de Dados Utilizada (LUDB)

O estudo utilizou integralmente a LUDB. A escolha desta base justifica-se pela sua alta
qualidade de anotacao e pela diversidade de morfologias, essenciais para testar a ge-
neralizagdo dos modelos. A Figura 5.2 ilustra a complexidade do sinal e o padrao de

segmentacao (ground truth) disponivel na base.

Exemplo de Segmentagdo Ground Truth (Paciente 1)

—— Sinal ECG (Lead )
081 Onda P

Complexo QRS
[0 OndaT

0.6

0.4 1

Amplitude (mV)

L 7,

2.0 2.5 3.0 35 4.0 4.5 5.0
Tempo (s)

Figura 5.2: Exemplo de um ciclo cardiaco segmentado na base LUDB. As areas coloridas
representam as anotacgoes de especialistas para Onda P, QRS e Onda T.
Fonte: Elaborada pelo autor (2025).

5.3.1 Caracterizagao dos Dados

A base é composta por registros de 200 pacientes, totalizando 2400 sinais individuais
(considerando as 12 derivagoes padrao por paciente: I, II, III, aVR, aVL, aVF, V1, V2,
V3, V4, V5 e V6).

e Perfil Demografico: A base de dados apresenta distribuicao heterogénea em
relacao ao sexo e a idade. Observa-se predominancia de individuos do sexo mas-
culino (57,5%) em relacao ao feminino (42,5%). A faixa etdria é ampla, variando
aproximadamente dos 10 aos 90 anos, com maior concentragao de pacientes entre
50 e 70 anos. Essa variabilidade demografica contribui para que o modelo seja trei-
nado em sinais provenientes de diferentes perfis biolégicos, reduzindo o risco de viés

associado a sexo ou idade especificos.
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e Diversidade Clinica e Patolégica: Um diferencial critico da base LUDB ¢é que
ela nao se restringe a individuos saudaveis, incluindo uma variedade representativa
de patologias. A Tabela 5.1 detalha a distribuicao dos ritmos cardiacos presentes

na base.

Embora haja predominancia do Ritmo Sinusal (padrao normal), destaca-se a pre-
senca de 15 casos de Fibrilagao Atrial (7,5% da base). A inclusao desta patologia é
fundamental para o teste de robustez, pois a Fibrilacao Atrial frequentemente su-
prime a Onda P e introduz irregularidades no intervalo R-R, desafiando a capacidade

de generalizacao das redes neurais em cendrios clinicos reais.

e Desbalanceamento de Classes: A analise exploratéria confirmou um grande des-
balanceamento. Como evidenciado na Figura 5.3, a classe “Fundo” (linha isoelétrica)
representa a vasta maioria dos pontos, enquanto ondas criticas como a Onda P re-
presentam uma fragao minoritaria. A visualizacao desta disparidade fundamentou

a adogao da estratégia de Class Weights (detalhada na Secao 5.5.2).

Tabela 5.1: Distribuicao dos diagnosticos de ritmo cardiaco presentes nos registros da
base LUDB.

Diagnéstico / Ritmo Qtd. Pacientes Percentual
Ritmo Sinusal (Normal) 145 72,5%
Bradicardia Sinusal 25 12,5%
Fibrilagao Atrial 15 7,5%
Outros (Arritmias Diversas) 11 5,5%
Taquicardia Sinusal 4 2,0%
Total 200 100,0%

Fonte: Elaborada pelo autor (2025).

5.4 Protocolo de Avaliacao e Ferramentas

Para garantir a reprodutibilidade e a comparabilidade entre os estudos de caso, estabeleceu-

se o seguinte protocolo experimental:

e Entrada Unificada: Diferentemente dos estudos originais que utilizavam janelas

temporais distintas, neste trabalho ambas as arquiteturas (Convolucional e Hibrida)



5.4 Protocolo de Avaliacao e Ferramentas 54

100 Distribuicao Desbalanceada das Classes (Base LUDB)

82.5%

80 1

60 1

40 A

Porcentagem do Total (%)

20 4

4.5% 6.5% 6.5%

Fundo (0) onda P (1) QRS (2) onda T (3)
Classes

Figura 5.3: Distribuicao percentual das classes na base de treinamento, evidenciando o
predominio da classe Fundo.

Fonte: Elaborada pelo autor (2025).

foram adaptadas para receber o sinal completo de 10 segundos (5000 pontos) a 500
Hz. Isso elimina o viés de pré-processamento, garantindo que qualquer diferenca de

desempenho seja atribuida exclusivamente a capacidade da arquitetura.

e Ambiente de Execugao: Os experimentos foram conduzidos em ambiente con-
trolado utilizando GPU NVIDIA RTX 3060, com implementagoes em Python (Ten-

sorFlow /Keras).

e Divisao Estratificada: O conjunto de dados (2400 sinais) foi dividido seguindo a

proporc¢ao 80/20:

— Treino: 1920 sinais (utilizados para ajuste de pesos).

— Teste: 480 sinais (reservados estritamente para a avaliagao final das métricas).

e Métricas Estatisticas: Os resultados finais sao reportados como Média 4+ Desvio

Padrao (p £ o) de 5 execugoes independentes, permitindo avaliar a estabilidade de

convergencia.

e Prevencao de Sobreajuste (Early Stopping): Para evitar a memorizagao dos
dados (overfitting), monitorou-se a fungao de perda no conjunto de valida¢ao. O
treinamento foi configurado para ser interrompido caso nao houvesse melhoria (de-

caimento da Loss) apés um nimero pré-definido de épocas (paciéncia), restaurando-



5.5 Fundamentacao Matematica da Implementagao 55

se automaticamente os pesos da melhor época observada. Os valores de paciéncia

especificos para cada modelo constam na Tabela 5.2.

e Critério de Viabilidade: A replicacao foi considerada bem-sucedida se o modelo
atingisse convergéncia estavel (baixo desvio padrao entre as rodadas) e demonstrasse
capacidade de generalizacao na base de teste, validando o comportamento tedrico

esperado para cada arquitetura (viés indutivo).

Tabela 5.2: Hiperparametros e especificidades das arquiteturas comparadas.

Parametro Configuragao

Configuragoes de Treinamento (Comuns)

Otimizador Adam
Taxa de Aprendizado 5x 1074
Tamanho do Lote (Batch Size) 32
Critério de Parada (Paciéncia) 12 épocas (Duraj) / 6 épocas (SEResUTer)
Divisao Treino / Validagao 80% / 20%
Diferencas nas Arquiteturas
Caso 1: Residual U-Net (Duraj) Kernel = 9 — Sem Atengao
Caso 2: SEResUTer (Hibrido) Kernel = 5 — Com Transformer
Detalhes da Arquitetura
Filtros Iniciais 32
Taxa de Dropout 0,2 (Convolugoes) / 0,1 (Transformer)
Funcao de Ativagao ReLU (Ocultas) / Softmax (Saida)
Profundidade (Encoder) 4 Niveis (Duraj) / 3 Niveis (SEResUTer)

5.5 Fundamentacao Matematica da Implementacao

Antes de apresentar as especificidades de cada arquitetura, é fundamental detalhar as es-
tratégias matematicas adotadas para garantir o aprendizado dos modelos, especificamente

a escolha da funcao de perda e o tratamento do desbalanceamento de classes.

5.5.1 Funcao de Perda: Entropia Cruzada Categorica

Para o problema de segmentacao semantica multiclasse, onde cada amostra temporal do
ECG deve ser classificada como uma de quatro classes exclusivas (Fundo, Onda P, Com-

plexo QRS, Onda T), utilizou-se a Categorical Cross-Entropy (CCE). Matematicamente,
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essa fungdo mede a divergéncia entre a distribuigao real y (vetor one-hot) e a distribuicao
predita g:

c
Leor == Y Yie - log(fic) (5.1)

c=1
Essa formulacao penaliza severamente o modelo quando ele atribui uma probabi-
lidade baixa a classe verdadeira, forcando o ajuste dos pesos para aumentar a confianca

na segmentacao correta.

5.5.2 Estratégia de Ponderacao de Classes (Class Weights)

Devido ao severo desbalanceamento da base LUDB, onde a linha isoelétrica (fundo) pre-
domina, a rede tende a convergir para um minimo local trivial (classificar tudo como
fundo). Para corrigir isso, aplicou-se a técnica de Ponderagao de Classes Suavizada.
Diferentemente da ponderacao inversa padrao, optou-se por aplicar uma sua-
vizagao pela raiz quadrada nos pesos calculados. Essa estratégia evita que as classes
minoritdrias recebam pesos excessivamente altos (o que poderia desestabilizar os gradien-

tes), mantendo, contudo, a penalidade para erros nas ondas de interesse:

Ntotal

_— 5.2
Nclasses : Nc ( )

We =

A aplicacao desta férmula sobre o conjunto de treinamento resultou nos seguintes
pesos, incorporados a funcao de perda: a classe majoritaria ‘Fundo’ recebeu peso de =
0,60, enquanto as classes clinicas foram priorizadas: Onda P (=~ 1,67), Complexo QRS
(~ 1,30) e Onda T (= 1,91). Esses valores garantem que o modelo priorize a deteccao

das morfologias cardiacas sem ignorar completamente a estabilidade da linha de base.

5.6 Arquiteturas Implementadas

5.6.1 Caso 1: Residual U-Net (Abordagem Convolucional)

A primeira arquitetura replicada segue a proposta de (DURAJ et al., 2022). Ela caracteriza-

se pelo uso de blocos residuais e mecanismos de Squeeze-and-FEzcitation (SE) para recali-
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brar os canais de caracteristicas. A estrutura, apresentada na Figura 5.4, utiliza apenas
operacoes de convolucao, o que a torna computacionalmente eficiente e estavel durante o

treinamento.

Input data Convolutional unit Residual unit Residual unit Residual unit Residvalunt| |
(Batch Size, 5000.1) index0 index:0 index:1 index:2 index:3 B

!

Residual unit Residual unit Residual unit Residual unit Convolutional unit
index:7 indexd indexc5 index:4 index:1

Average J /
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pool_size:5 /
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Figura 5.4: Diagrama da arquitetura Residual U-Net com blocos SE utilizada no Estudo
de Caso 1.
Fonte: Duraj et al. (2022).

5.6.2 Caso 2: SEResUTer (Abordagem Hibrida)

O segundo modelo, proposto por (LI et al., 2023), introduz um médulo Transformer no
gargalo da rede (Figura 5.5). O objetivo é capturar o contexto global da série temporal
através de mecanismos de autoatencgao, superando a limitacao do campo receptivo local

das convolugoes.
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Figura 5.5: Diagrama da arquitetura hibrida SEResUTer, integrando U-Net com Trans-
former Encoder no gargalo.
Fonte: Li et al. (2023).

5.6.3 Estratégias de Estabilizacao para o Modelo Hibrido

Durante a implementagao do modelo hibrido (Caso 2), foram necessérias adaptagoes me-
todoldgicas para viabilizar o treinamento, nao exigidas no modelo convolucional puro.

A primeira medida foi o Ajuste Fino da Taxa de Aprendizado. A arquitetura
hibrida revelou instabilidade inicial com as taxas padrao (1072). Para solucionar isso,
reduziu-se a taxa de aprendizado para 5 x 10™* no otimizador Adam, permitindo uma
descida de gradiente mais suave e evitando divergéencias nas primeiras épocas.

Além da estabilizacao numérica, dada a alta complexidade paramétrica do Trans-
former e o tamanho limitado da base LUDB, implementou-se um pipeline de Data Aug-
mentation para atuar como regularizador. As transformacoes aplicadas dinamicamente

durante o treino foram:

e Adicao de Ruido Gaussiano: Simulacao de interferéncias elétricas e artefatos de

aquisicao de alta frequéncia;

e Escalonamento de Amplitude: Multiplicacao do sinal por fatores aleatérios

(entre 0.9 e 1.1) para simular variagoes de ganho do amplificador;

e Desvio de Linha de Base (Baseline Wander): Adigao de ondas senoidais

de baixa frequéncia para simular a oscilacao causada pela respiracao do paciente,
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forcando a rede a ser robusta a flutuagoes nao-cardiacas.

Os resultados obtidos a partir destas implementacoes sao detalhados no capitulo
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6 Resultados Experimentais e Discussao

Este capitulo detalha os resultados quantitativos obtidos na execucao dos estudos de
caso. Ressalta-se que, para garantir a robustez estatistica, todos os valores apresentados
a seguir representam a média e o desvio padrao consolidados de 5 rodadas independentes

de treinamento e avaliacao, conferindo maior confiabilidade a analise de reprodutibilidade.

6.1 Resultados do Caso 1: Residual U-Net

O treinamento da arquitetura convolucional (Caso 1) demonstrou alta estabilidade. A
aplicacao dos pesos de classe foi decisiva para a deteccao correta das ondas.

Uma observacao metodoldgica crucial refere-se a composicao da base de dados. O
estudo original de (DURAJ et al., 2022) relata a remogao manual de 23 registros ruidosos.
Nesta replicagao, optou-se por manter a base LUDB integra (2400 sinais) para evitar viés
de selecao. Mesmo neste cenario mais desafiador, o modelo obteve desempenho robusto e

baixa variancia entre as execucgoes, conforme detalhado na Tabela 6.1.

Tabela 6.1: Desempenho Estatistico do Modelo Convolucional (Média de 5 Rodadas).

Métrica Replicagao (1 +0) Original (DURAJ et al., 2022)
Acuricia 95,44% + 0,27% 95,00%

Precisao 95,45% + 0,26% 95,00%

Recall (Sensibilidade) 95,42% + 0,27% 99,00%

F1-Score 0,9544 £ 0,0027 0,96

Fonte: Elaborada pelo autor com dados de Duraj et al. (2022).

Em relagao a diferenga observada no Recall (95,42% na replicagao contra 99,00%
no estudo original), esta é consequéncia direta da decisdo metodologica de manter os
sinais ruidosos na base de teste. Diferentemente da abordagem original, que removeu
registros de baixa qualidade, esta replicacao optou por preservar a integridade do dataset
para evitar viés de selecao. Embora essa escolha impacte a métrica absoluta, ao obrigar
a rede a lidar com artefatos de aquisigao, ela reflete um cenario mais realista de aplicacao

clinica, onde a pré-selecao manual de sinais ideais nem sempre € vidvel.
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6.2 Resultados do Caso 2: SEResUTer

A replicagao do modelo hibrido confirmou os desafios de generalizacao para arquiteturas
baseadas em Transformers em bases de médio porte. Para isolar o impacto das estratégias

de regularizacao, o modelo foi avaliado em dois cendrios: com e sem Data Augmentation

(DA).

Tabela 6.2: Impacto do Data Augmentation no Modelo Hibrido (Média de 5 Rodadas).

Meétrica Com Data Augmentation Sem Data Augmentation
Acurécia Global 83,77% + 0,75% 82,84% + 0,71%
F1-Score 0,8373 0,8278

Recall (Sensibilidade) 83,23% 82,17%

Precisao 84,22% 83,40%

Observa-se que, embora a aplicacao de Data Augmentation tenha resultado em
ganho de desempenho, este foi marginal (inferior a 1 ponto percentual). Atribui-se esse
fenomeno a natureza multicanal da base LUDB. Como o treinamento processou as 12
derivagoes simultaneamente, o modelo foi exposto a 12 perspectivas espaciais distintas
do mesmo evento cardiaco. Essa variabilidade intrinseca atua como uma forma de ‘Data
Augmentation natural’, mitigando a necessidade de dados sintéticos e tornando a injecao
artificial de ruido menos impactante do que seria em bases de derivacao unica.

Contudo, nota-se que o desempenho global do modelo hibrido (83,77%) perma-
neceu significativamente inferior ao da abordagem convolucional (95,44%), confirmando

a dificuldade dos Transformers em extrair padroes eficientes sem volumes massivos de

dados.

6.3 Analise Comparativa e Conclusao dos Experimen-
tos

A comparagao direta das abordagens (Tabela 6.3) sintetiza os achados desta pesquisa,
destacando o trade-off entre complexidade e eficiéncia.

Essa discrepancia evidencia dois compromissos arquiteturais importantes:

1. Eficiéncia de Dados (Viés Indutivo): As CNNs beneficiam-se de propriedades
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Tabela 6.3: Comparativo final: Residual U-Net vs. SEResUTer (Melhores Configuragoes).

Dimensao Residual U-Net (Conv.) SEResUTer (Hibrida com DA)
Acurécia Média Alto (95,44%) Médio (83,77%)
Estabilidade (o) Alta (£ 0,27%) Média (+ 0,75%)
Generalizagao (LUDB) Excelente Limitada (Data Hunger)

Fonte: Elaborada pelo autor (2025).

arquiteturais intrinsecas, especificamente a conectividade local e a invariancia a
translacao temporal. Diferentemente dos modelos baseados em Transformers, que
precisam inferir todas as relagoes espaciais a partir do zero (o que exige volumes
massivos de dados), as CNNs ja possuem essas regras de “como olhar a morfologia
do sinal”embutidas em sua estrutura. Esse viés arquitetural funcionou como um
catalisador no aprendizado, permitindo que o modelo de Duraj (Caso 1) capturasse
padroes robustos de forma eficiente, mesmo diante da escassez de amostras da base

LUDB.

2. Estabilidade de Convergéncia: O desvio padrao trés vezes maior no modelo
hibrido (£0, 75% vs £0,27%) indica que Transformers sdo mais sensiveis a inicia-
lizacao dos pesos, tornando o treinamento mais imprevisivel em cenarios de bases

menores.

A replicagdo demonstrou que, para o cendario especifico de segmentacao de ECG
com a base LUDB, a arquitetura convolucional cldssica (Residual U-Net) é a escolha

superior em termos de precisao, estabilidade e simplicidade.
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7 Conclusao e Trabalhos Futuros

Este trabalho apresentou uma abordagem integrada, combinando uma revisao sistematica
da literatura com um estudo experimental de replicagao, para investigar o estado da arte
e a viabilidade pratica do uso de técnicas de deep learning na identificacdo automatica
das ondas do ECG. A estratégia adotada permitiu mapear tendéncias na pesquisa recente

e avaliar, em condicoes reais, os desafios de reprodutibilidade de arquiteturas avancadas.

7.1 Sintese dos Resultados e Objetivos

O objetivo principal de investigar o estado da arte e avaliar a reprodutibilidade de técnicas
de deep learning foi atingido através da execugao dos eixos tedricos e praticos da pesquisa.
No que tange aos objetivos especificos de mapeamento tedrico (arquiteturas, ba-
ses e métricas), a Revisao Sistemética realizada no Capitulo 4 permitiu identificar uma
clara evolucao tecnoldgica na ultima década. Observou-se que a literatura partiu de CNNs
simples para modelos profundos (U-Net, ResNets) e, mais recentemente, convergiu para
arquiteturas hibridas com mecanismos de Atencao. O estudo também confirmou a pre-
dominéncia de bases publicas padronizadas (QTDB, LUDB) e evidenciou que o Data
Augmentation consolidou-se como um componente critico — e nao apenas acessorio —
para mitigar o desbalanceamento de classes em cendrios de base de dados menores.
Quanto ao objetivo especifico experimental, a andlise comparativa entre os mode-
los Residual U-Net e SEResUTer forneceu evidéncias praticas sobre a viabilidade dessas
técnicas. A replicacao da arquitetura convolucional comprovou-se altamente viavel, atin-
gindo acuracia superior a 95% com alta estabilidade, confirmando que o viés indutivo das
CNNs (conectividade local) é extremamente vantajoso para bases de tamanho moderado.
Por outro lado, a replicacao do modelo hibrido evidenciou os desafios praticos de arqui-
teturas baseadas em Transformers, que apresentaram maior instabilidade e desempenho
inferior (83,77%) mesmo apds otimizagao, corroborando a hipétese de que mecanismos de

atencao exigem volumes massivos de dados para justificar sua complexidade.
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Dessa forma, conclui-se que a pesquisa cumpriu seu proposito ao demonstrar
que, embora arquiteturas complexas sejam a tendéncia tedrica, modelos convolucionais
robustos permanecem como a escolha mais pragmatica, estavel e eficiente para aplicacoes

clinicas com escassez de dados rotulados.

7.2 Limitacoes do Estudo

Apesar dos avancos alcancados, algumas limitacoes foram identificadas tanto na literatura

quanto na execucao experimental:

e Heterogeneidade dos dados: Bases ptblicas apresentam diferentes protocolos de
anotacao e caracteristicas populacionais, dificultando a criacao de modelos genera-

liz4veis.

e Reprodutibilidade de arquiteturas complexas: A replicacao de modelos ba-
seados em Transformers revelou uma dependéncia critica de detalhes de imple-
mentagao (como inicializacao de pesos e estratégias de otimizac¢do) que raramente

sao documentados com precisao nos artigos originais.

e Desafios com dados parcialmente anotados: Durante os experimentos prelimi-
nares com bases de anotacoes incompletas, observou-se a falha das funcoes de perda
tradicionais. Como esses mecanismos dependem matematicamente da comparagao
entre a predigdo e um rétulo real para calcular a penalidade (erro), a auséncia de
anotacgoes em trechos do sinal inviabiliza o calculo correto do gradiente, levando-o

a zero ou a valores instaveis e impedindo a convergéncia da rede.

e Interpretabilidade restrita: A natureza “caixa-preta”dos modelos de Deep Lear-
ning permanece uma barreira para a adocao clinica, onde a justificativa morfologica

para uma segmentacao é tao importante quanto o resultado final.

7.3 Trabalhos Futuros

Com base nas lacunas identificadas e nas dificuldades observadas durante a replicacao,

sugerem-se as seguintes dire¢oes para pesquisas futuras:
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e Funcoes de Perda Robustas a Rétulos Parciais: Desenvolver ou adaptar
fungdes de custo que consigam ignorar (mascarar) regides nao anotadas do sinal
durante o calculo do erro, permitindo o aproveitamento de bases de dados massivas

que possuem apenas anotagoes parciais.

e Pré-treinamento Auto-supervisionado: Investigar o uso de grandes volumes
de ECGs sem anotagao para pré-treinar os pesos das redes (aprendendo a estrutura
do sinal), realizando o ajuste fino (fine-tuning) apenas com os dados rotulados

disponiveis, técnica que tem mostrado sucesso em modelos de linguagem.

e Benchmarks de Robustez a Ruido: Estabelecer protocolos padronizados de
teste que avaliem nao apenas a acuracia em sinais limpos, mas a degradacao do
desempenho sob diferentes niveis de ruido sintético e real, simulando condigoes de

dispositivos vestiveis (wearables).

e Explainable AI (XAI) para ECG: Implementar e avaliar visualmente mapas
de atencao e relevancia que indiquem quais partes do complexo P-QRS-T foram
determinantes para a segmentacao, aumentando a confianca do especialista médico

na ferramenta.

De modo geral, os resultados empiricos sugerem que, embora a tecnologia de seg-
mentacao esteja madura, a fronteira da pesquisa deve se deslocar da simples criacao de
novas arquiteturas para a melhoria da qualidade dos dados, robustez a ruidos e interpre-

tabilidade dos modelos existentes.
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