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Resumo

A inclusao da comunidade surda no ambiente educacional brasileiro enfrenta barreiras
significativas devido a caréncia de intérpretes e a falta de fluéncia na Lingua Brasileira
de Sinais (Libras) por parte de professores e alunos ouvintes. Este trabalho apresenta o
desenvolvimento de um modelo de reconhecimento de sinais dinamicos da Libras focado
no contexto de sala de aula, utilizando técnicas de aprendizado de maquina. Para isso,
foi construido um conjunto de dados proprio contendo 900 videos de 20 sinais distintos,
executados por nove sinalizadores. A metodologia consistiu na extracao de pontos de
referéncia (keypoints) por meio da ferramenta MediaPipe Holistic, seguida pelo célculo de
caracteristicas geométricas (angulos e distancias) e de movimento. O modelo de classi-
ficacdo baseou-se em redes neurais recorrentes (RNN) do tipo Long Short-Term Memory
(LSTM). Os resultados demonstram que a integragao de caracteristicas de movimento,
juntamente com o emprego de modelos especialistas para distinguir classes ambiguas, pro-
porcionaram uma acurdcia geral do modelo de 88,89%. A abordagem contribui para o
avanco dos estudos na tarefa de reconhecimento de sinais da Libras, oferecendo uma base

para o desenvolvimento de futuras ferramentas de acessibilidade no contexto educacional.

Palavras-chave: Reconhecimento de sinais, aprendizado de méaquina, sinais dinamicos,

contexto educacional, visao computacional.



Abstract

The inclusion of the deaf community in the Brazilian educational environment faces sig-
nificant barriers due to the shortage of interpreters and the lack of fluency in Brazilian
Sign Language (Libras) among hearing teachers and students. This work presents the de-
velopment of a dynamic Libras sign recognition model focused on the classroom context,
using machine learning techniques. For this purpose, a proprietary dataset containing
900 videos of 20 distinct signs, performed by nine signers, was constructed. The metho-
dology consisted of extracting keypoints using the MediaPipe Holistic tool, followed by
the calculation of geometric features (angles and distances) and movement features. The
classification model was based on Long Short-Term Memory (LSTM) recurrent neural
networks (RNN). The results demonstrate the integration of movement features, with the
use of specialist models to distinguish ambiguous classes, provided an overall accuracy of
the model of 88.89%. The approach contributes to the advancement of studies in the task
of Libras sign recognition, providing a basis for the development of future accessibility
tools in the educational context.

Keywords: Sign recognition, machine learning, dynamic signs, educational context, com-

puter vision.
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1 Introducao

A Lingua Brasileira de Sinais (Libras) é a lingua utilizada pela comunidade surda no
Brasil, como meio principal de comunicacao. Entretanto, apesar de a lingua ser essencial
na comunidade e reconhecida oficialmente por lei (BRASIL, 2002), apenas uma pequena
parcela de ouvintes sabe se comunicar por meio dela, o que prejudica a inclusao dos surdos
na sociedade.

A Libras utiliza recursos espaco-visuais na constituicao dos sinais, cujos princi-
pais elementos sao a configuracao da mao, expressoes nao manuais, orientacao da palma
da mao, localizagao do sinal e movimento (ARAUJO; FERREIRA, 2016). Dado que a
lingua é essencialmente visual-motora, o movimento é uma caracteristica muito presente
e determinante na maioria dos sinais.

Considerando essa natureza essencialmente visual e dinamica, a tarefa de reco-
nhecimento de sinais é definida, no contexto da computacao, como o processo de ensinar
um sistema a identificar e classificar um sinal especifico a partir de um video. A ideia geral
é que um algoritmo de inteligéncia artificial seja capaz de analisar um video e determinar
qual sinal foi executado, fornecendo a respectiva traducao em portugues.

Embora existam varios estudos na area de reconhecimento de sinais de outras
linguas, como American Sign Language (ASL) (BUTTAR et al., 2023), Chinese Sign
Language (CSL) (HE et al., 2023), Indian Sign Language (ISL) (DIKSHANT et al.,
2024), os estudos para a Libras possuem espago para muitos avangos e enfrentam diversos
desafios.

Um dos principais desafios é a escassez de bases de dados de sinais publicas, uma
vez que as bases existentes possuem uma gama razoavel de sinais, porém com poucas
amostras de sinalizadores para cada sinal. Essa caracteristica dificulta consideravelmente
o treinamento de modelos que realizam as tarefas de reconhecimento. Dessa forma, grande
parte das pesquisas na area busca construir suas préprias bases de dados aplicadas em
contextos especificos, combinando técnicas de aumento de dados (data augmentation)

visando obter resultados melhores nos treinamentos.
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Além disso, algumas pesquisas abordam a tarefa de reconhecimento de sinais com
recursos auxiliares para aprimorar a deteccao dos movimentos, como é o caso de sensores,
luvas ou cameras de profundidade. Apesar de haver um ganho no desempenho do modelo,
essas técnicas restringem o contexto de utilizagao de uma ferramenta de reconhecimento
de sinais, de modo a sempre depender desses recursos auxiliares. Em contrapartida, os
estudos que realizam o reconhecimento utilizando apenas uma camera também apresentam
bons resultados e sao mais flexiveis e acessiveis para uma implementac¢ao em um contexto
pratico na sociedade.

Diante do amplo espectro de desafios de inclusao da comunidade surda, o contexto
educacional destaca-se como uma area consideravelmente critica. A dificuldade de acesso
a intérpretes em tempo integral nas salas de aula e a falta de fluéncia de professores e
alunos na Libras conferem uma barreira a comunicacao. Visto que o ambiente educacional
de uma sala de aula é um espaco fundamental para o desenvolvimento e inclusao social,
é necessaria uma intervencao para que essas dificuldades sejam superadas. Logo, o foco
deste trabalho consiste justamente no reconhecimento de sinais comumente utilizados em
salas de aula.

Dessa forma, este estudo justifica-se pela necessidade de contribuir para o avango
na tarefa de reconhecimento de sinais da Libras com movimento, uma vez que a comu-
nicacao e a inclusao dos surdos na sociedade enfrentam intimeras barreiras que precisam
ser quebradas. Acredita-se que, com a contribuicao proposta, mais um passo sera dado

para tornar a comunicacao mais acessivel.

1.1 Objetivos

O objetivo geral do trabalho é desenvolver e treinar um modelo capaz de reconhecer sinais
da Libras com movimento no contexto educacional e no contexto da computacao.

Os objetivos especificos consistem em:

e Construir uma base de dados de videos de sinais no contexto educacional e no

contexto da computacao;

e Desenvolver e treinar um modelo de aprendizado de maquina para a tarefa de reco-
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nhecimento de sinais da Libras com movimento;

e Explorar a utilizacao da base de dados construida no treinamento do modelo e

avaliar o desempenho.
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2 Fundamentacao Teodrica

Este capitulo descreve os fundamentos tedricos necessarios para a construcao do trabalho.
Ele é dividido em duas secoes, sendo elas a Secao 2.1 que trata sobre a Lingua Brasileira
de Sinais (Libras) e a Se¢ao 2.2 que discorre sobre o tipo de rede neural Long Short-Term

Memory (LSTM).

2.1 Lingua Brasileira de Sinais (Libras)

A Libras é a lingua oficial da comunidade surda no Brasil, reconhecida pela lei n®
10.436,/2002 (BRASIL, 2002). E 0 meio de comunicacio pelo qual os surdos conseguem
expressar-se livremente com recursos espaco-visuais. Entretanto, mesmo apdés mais de
duas décadas do reconhecimento oficial, poucas pessoas ouvintes sabem se comunicar por
meio dela, e os recursos de acessibilidade seguem insuficientes para incluir os surdos na
sociedade de forma plena.

Embora seja a lingua de sinais predominante no Brasil, a Libras nao é a tnica
existente. Existem intimeras linguas de sinais por todo o mundo, com diferentes variacoes
linguisticas, como regionalismos e sotaques. Cada lingua possui sua propria estrutura
léxica e gramatical, que pode diferir completamente de outras. Alguns exemplos de outras
linguas conhecidas internacionalmente sao: Lingua de Sinais Americana (ASL), Lingua
de Sinais Francesa (LSF), Lingua de Sinais Britanica (BSL), Lingua de Sinais Chinesa
(CSL) e Lingua de Sinais Indiana (ISL). Dentro do Brasil, apenas a Libras ¢é oficialmente
reconhecida por lei como a lingua da comunidade surda. No entanto, existem muitas
outras linguas de sinais indigenas independentes da Libras, como a Lingua de Sinais
Kaapor (LSK) e a Lingua Terena de Sinais (LTS).

Durante muitos anos, a lingua de sinais sofreu grande resisténcia e preconceito
na sociedade. A técnica do oralismo era a tnica forma permitida de comunicacao entre os
surdos, devido ao Congresso de Milao, que ocorreu em 1880. Somente a partir de 1960 as

linguas de sinais voltaram a ser aceitas na sociedade, gragas aos estudos de Stokoe (1960).



2.2 Long Short-Term Memory (LSTM) 12

Ele concluiu que as linguas de sinais possuem estruturas léxicas e sintaticas completas,
capazes de produzir infinitas frases e expressar ideias como qualquer outra lingua. Dessa
forma, entende-se que a Libras nao é portugués gesticulado, uma vez que possui sintaxe,
semantica e pragmatica proprias, totalmente independentes da lingua oral. Ela é completa
em si mesma e carrega recursos suficientes para expressar qualquer ideia.

Segundo Aratjo e Ferreira (2016), o sinal em Libras é formado por um conjunto

de cinco parametros:

e Configuracao da mao: Formas que as maos assumem na realizacao do sinal,

podendo ser em formas de letras, niimeros ou outras;
e Ponto de articulagao: Espaco em frente ao corpo onde os sinais sao articulados;
e Movimento: Deslocamento da mao no espaco;

e Orientagao: Orientacao da palma da mao durante a realizacao do sinal, que pode

ser para cima, para baixo, para dentro, para fora ou para o lado;

e Expressoes nao manuais: A expressao facial que é usada para definir ou intensi-

ficar os significados dos sinais.

A grande maioria dos sinais da Libras possui bastante movimento, porém nem
todos se configuram dessa forma. Ha também alguns sinais estaticos, como a datilologia,
ou alfabeto manual, que é a representacao das letras do alfabeto da lingua portuguesa
por meio de configuragoes de mao na Libras.

As Figuras 2.1a e 2.1b exemplificam dois sinais da Libras “Pesquisar” e “Pergun-

tar” que se distinguem majoritariamente pelo movimento.

2.2 Long Short-Term Memory (LSTM)

As Redes Neurais Recorrentes (RNNs) s@o uma classe de arquiteturas de aprendizado
profundo projetadas especificamente para o processamento de dados sequenciais, como
séries temporais, audio ou video. Diferente das redes neurais convencionais, as RNNs

possuem conexoes ciclicas que permitem que a informagao persista, funcionando como uma
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(a) Sinal “Pesquisar” (b) Sinal “Perguntar”

Figura 2.1: Sinais de “Pesquisar” e “Perguntar” (QUADROS, R., 2023).

memoria interna que retém conhecimentos de entradas anteriores para influenciar a saida.
Entretanto, as RNNs tradicionais apresentam limitacoes ao lidar com sequéncias longas,
por conta do problema do desaparecimento ou explosao do gradiente, o que as impede
de aprender dependéncias de longo prazo de maneira eficaz (LIPTON; BERKOWITZ;
ELKAN, 2015).

Para mitigar esses problemas, Hochreiter e Schmidhuber (1997) introduziram a
arquitetura de Memoéria de Longo e Curto Prazo (Long Short-Term Memory - LSTM).
O diferencial da LSTM consiste em uma estrutura de célula de memoria, que regula o
fluxo de informagoes por meio de portas (gates). Essas portas utilizam pesos para decidir
quais dados devem ser armazenados, descartados ou carregados para o préximo estado.

A unidade LSTM é composta por:

e Porta de Esquecimento (Forget Gate): Responsédvel por identificar quais in-
formacoes do estado anterior da célula nao sao mais relevantes e devem ser descar-

tadas.

e Porta de Entrada (Input Gate): Decide quais novas informagoes da entrada

atual serdo atualizadas e armazenadas no estado da célula.

e Porta de Saida (Output Gate): Determina qual parte do estado atual da célula

serd enviada como saida para a proxima etapa da sequéncia.

No dominio do reconhecimento de sinais, a rede LSTM destaca-se pela capacidade
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de processamento temporal, sendo ttil para capturar a dinamica do movimento, que é
determinante para o significado da maioria dos sinais na Libras. Como a execuc¢ao de
um sinal envolve uma trajetoria de movimentos das maos e do corpo, a LSTM consegue
aprender as correlagoes entre os quadros, permitindo uma rastreabilidade do movimento

ao longo do tempo.
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3 Trabalhos Relacionados

Existem intimeras formas de abordar a tarefa de reconhecimento de sinais em visao compu-
tacional, e diferentes métodos sao utilizados de acordo com as caracteristicas do problema.
A categorizacao é definida em relagao a continuidade dos sinais e a presenga ou nao de
movimento. A tarefa de reconhecer sinais individuais, muitas vezes em nivel de letras
ou palavras, é chamada de Isolated Sign Language Recognition (ISLR). J& a tarefa de
interpretar um fluxo continuo de video em uma sequéncia de sinais, sem necessidade de
pausas entre os sinais, ¢ chamada de Continuous Sign Language Recognition (CSLR). Por
outro lado, os sinais também sao categorizados pela presenga de movimento, de modo
que os sinais sem movimento sao chamados de sinais estaticos, enquanto os demais, com
movimento, sao comumente chamados de sinais dinamicos.

Alguns estudos utilizam algoritmos classicos para classificar os sinais, como o
Histograma de Gradientes (Histogram of Oriented Gradients - HOG) (BASTOS, 2015).
Porém esses métodos geralmente ficam limitados a sinais estaticos, pois nao desempenham
bem sozinhos quando se adiciona o movimento. Para reconhecimento de sinais estaticos,
o modelo You Only Look Once (YOLO) também é muito utilizado em diferentes versoes
e apresenta bons resultados (BUTTAR et al., 2023).

Ja para a tarefa de reconhecimento de sinais com movimento, os algoritmos
classicos raramente sao utilizados isoladamente na literatura. As estratégias mais utili-
zadas sao baseadas em algoritmos de aprendizado profundo e existem iniimeras maneiras
de abordar o problema. Assim, frequentemente, encontram-se trabalhos que exploram
diferentes combinagoes de Redes Neurais Convolucionais (Convolutional Neural Network
- CNN) e Redes Neurais Recorrentes (Recurrent Neural Network - RNN) que alcangam
um bom desempenho no reconhecimento. Rajapakshe et al. (2025) aborda a tarefa com-
binando uma CNN treinada para extrair caracteristicas dos videos, com uma rede LSTM
responsavel pelo reconhecimento dos sinais a partir dos dados extraidos.

As CNNs sao redes especializadas em analisar dados com topologia de grade,

como imagens, sendo Otimas para processar os quadros dos videos de sinais. Enquanto
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isso, as RNNs sao projetadas para processar dados sequenciais, como séries temporais,
utilizando uma memoria para reter informacoes de entradas anteriores, o que contribui
na andlise da continuidade dos sinais e rastreabilidade do movimento. Ja a rede LSTM ¢
um tipo de RNN bastante presente na literatura em tarefas de reconhecimento de sinais.

E possivel processar os dados de entrada das redes de maneiras diferentes. A
abordagem mais comum ¢ extrair pontos relevantes dos quadros (keypoints) e utilizé-
los diretamente como entrada da rede. He et al. (2023) faz a extragao dos keypoints
do esqueleto e da mao e os utiliza como entrada em uma rede LSTM para realizar o
reconhecimento da lingua de sinais chinesa. Além disso, uma outra estratégia interessante,
utilizada por Alves, Boldt e Paixao (2024), é codificar os keypoints extraidos dos quadros
em imagens bidimensionais, contendo informacoes espaciais e temporais. Em seguida,
uma rede CNN construida sobre a rede residual profunda de 18 camadas (ResNet18) é
alimentada com os quadros codificados para classificar os sinais da Libras.

Ao invés de alimentar uma rede neural com keypoints, também é possivel fornecer
uma sequéncia de quadros diretamente a uma rede. E o caso do trabalho de Singh (2021),
que organiza os quadros sequencialmente e os envia como entrada para uma rede neural
3D-CNN. Entao, ela processa os quadros e ja devolve a classificacao como saida, sem
precisar de uma extracao prévia de keypoints. Uma vantagem dessa abordagem é que
isso pode contribuir para a deteccao de outros elementos importantes no sinal, além do
movimento, como, por exemplo, a expressao facial.

Estudos mais recentes também fazem uso de modelos mais complexos na tarefa
de reconhecimento de sinais. Damdoo e Kumar (2025) constroem um modelo chamado
SignEdgeLVM, baseado na arquitetura Sign Language Transformer (SLTr). Ele processa
as representacoes de quadros espago-temporais usando camadas de auto-atencao (self-
attention) e feed forward. Por conta do mecanismo de auto-atengao, que ajuda o modelo
a entender o contexto temporal, foi possivel realizar o reconhecimento de sinais continuos
(CSLR). Essa tarefa é consideravelmente mais complexa e exige tanto um modelo mais
profundo quanto um volume bem maior de dados para treinamento, além de um poder
computacional elevado.

Algumas técnicas para aprimorar a performance dos modelos também estao pre-



3 Trabalhos Relacionados 17

sentes na literatura, como o fine-tuning em modelos pré-treinados. Dentre os beneficios
de se utilizar modelos pré-treinados, um dos mais perceptiveis e relevantes é obter um me-
lhor desempenho quando ha poucos dados no conjunto do problema a ser resolvido. Uma
vez que os modelos sao pré-treinados em conjuntos de dados consideravelmente maiores,
as redes aprendem caracteristicas de alto nivel que servem como fundamentos para ex-
trair novos aprendizados a partir de conhecimentos ja consolidados. Além disso, o tempo
de treinamento e o sobreajuste (overfitting) podem ser reduzidos com a aplicagao dessa
técnica.

A arquitetura TCNet do estudo proposto por Lu, Salah e Poppe (2024) utiliza
uma rede SpyNet pré-treinada para estimar movimento e alcancou resultados do estado
da arte na tarefa de reconhecimento de sinais. Outro exemplo é o estudo de Liu et al.
(2021), que utiliza a arquitetura VGG16 pré-treinada como base. Os autores utilizaram
as primeiras quatro camadas da VGG16 e adicionaram mais cinco camadas de convolucao
dilatada no modelo, atingindo uma taxa de reconhecimento de 93,5% no conjunto de
dados publico Sahand.

Modelos pré-treinados também sao utilizados para realizar tarefas de extracao de
caracteristicas, como no estudo de Bansal e Jain (2023), em que a ResNet50 pré-treinada
¢ aplicada nos videos do conjunto de dados para servir de entrada para uma rede RNN
posteriormente. Uma ideia semelhante se aplica ao estudo de Zuo e Mak (2022), que
utiliza a arquitetura VGGI11 para extrair caracteristicas visuais dos quadros dos videos
de entrada.

Além disso, outra técnica muito presente é o aumento de dados. Essa abordagem
é comumente utilizada quando nao ha muitos dados no conjunto, de forma a tentar reduzir
o overfitting e alcancar uma melhor generalizacao do modelo durante o treinamento. Al-
guns aumentos podem ser aplicados, como transformacgoes em imagens (rotagao, inversao,
translagao, brilho, contraste, ruido, zoom), transformagoes em videos (deformacgao tem-
poral eldstica, recorte) e outras que contribuam para a generalizacao dos dados.

Os autores Oropesa, Felicen e Guzman (2024) realizaram um aumento de 10 vezes
dos dados, partindo de um conjunto de 97 videos por sinal, para um novo conjunto de 970

videos por sinal. Com o melhor modelo e o conjunto de dados aumentado, foram obtidas
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acurdcias de 98% no treinamento e 86% nos testes em ambiente real, o que sugere um
bom aproveitamento dessa abordagem.

Existe também a possibilidade de extrair caracteristicas personalizadas, resultan-
tes da combinagao de outras caracteristicas. Sarmento (2023) treinou um modelo utili-
zando um vetor de 90 caracteristicas aglomeradas, provenientes da extragao dos angulos
entre as conexoes dos keypoints de cada mao e da extragao da distancia entre os keypoints
da pose. Para os angulos ou distancias que nao estavam presentes, foi atribuido o valor 0
como forma de preenchimento (padding). Comparada as outras abordagens testadas pela
autora, esta obteve os melhores resultados de acuracia, além de facilitar o treinamento do
modelo.

Este presente trabalho se propoe em utilizar uma abordagem muito semelhante
a de Sarmento (2023), com a mesma arquitetura do modelo e extragao de caracteristicas
personalizadas. Entretanto, como contribuicao deste trabalho, sao implementados mo-
delos especialistas para sinais ambiguos e elaboradas outras caracteristicas geométricas e
de movimento. Além disso, sao realizados experimentos variando o tamanho da rede e

quantidade de quadros selecionados.
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4 Conjunto de dados

Quando se trata de treinar um modelo de aprendizado profundo para uma tarefa de reco-
nhecimento, é necessario ter um conjunto de dados representativo. Atualmente, existem
alguns conjuntos conhecidos na literatura que apresentam uma gama razoavel de sinais.
Porém o maior desafio de utilizar esses conjuntos no modelo é a pequena quantidade de
videos por sinal. Como mostra a Tabela 4.1, existem, no maximo, 7 videos por classe em
um unico conjunto de dados. Além disso, o tamanho dos videos, a resolucao e o plano de
fundo nao sao padronizados, exigindo um trabalho de pré-processamento para fornecer
os dados ao modelo. Existem também os conjuntos de dados MINDS - Libras! e Libras
- UFOP? que sdo mais abrangentes, porém também nao focam em sinais do contexto
educacional.

Tabela 4.1: Quantidade de classes, sinalizadores e videos por classe nas diferentes fontes

de dados.

N@ classes | \.0 . 1 N? videos | N? total
Fonte . L. N9 sinalizadores !

distintas por classe | de videos
UFPE? 1396 4| Dela7 4221
UFV*4 1004 3| Delad 1029
INES® 237 1| Dela?2 282
SignBank® 485 111 485

Fonte: Sarmento (2023).

Dessa forma, a maioria dos autores na literatura escolhe construir um conjunto
de dados proprio. Dado que o objetivo deste trabalho é reconhecer sinais do contexto
educacional e, considerando os fatores citados, também optou-se por construir um con-
junto de dados especifico para essa tarefa. Ao todo, foram escolhidos 20 sinais diferentes
para constituir o conjunto de dados, de forma que todos apresentem movimento e se en-

quadrem no contexto de sinais utilizados em uma sala de aula. Mais especificamente,

Thttps:/ /www.kaggle.com/datasets/j0aopsantos/minds-libras
https://www.kaggle.com /datasets/andersonls/libras-ufop-dataset
3https://libras.cin.ufpe.br/

4https:/ /sistemas.cead.ufv.br/capes/dicionario/
Shttps://www.ines.gov.br/dicionario-de-libras/
Shttps://signbank.libras.ufsc.br/pt
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oito sinais estao ligados a area da computacao e podem ser utilizados em uma sala de
aula, enquanto doze sinais sao mais genéricos no contexto educacional. Os sinais esco-
lhidos foram: “Professor”, “Estudar”, “Aluno”, “Divida”’, “Perguntar”, “Responder”,
“Entender”, “Pesquisar”®, “Aprender”?, “Quadro”, “Prova”, “Trabalho escolar”, “Com-

710 “Internet” !, “Tecnologia”, “Algoritmo”, “Inteligéncia artificial”, “Software”,

putador
“Cédigo fonte” e “Compilador”. Os doze primeiros sao os sinais genéricos de sala de aula,

enquanto os oito ultimos sao os sinais especificos da computacao.

4.1 Captura dos videos

Os videos dos sinais foram gravados por alunos e professores da faculdade de Letras da
Universidade Federal de Juiz de Fora (UFJF) em dois dias diferentes. A primeira gravagao
foi feita no dia 28 de julho de 2025, com quatro pessoas sinalizando. J4 a segunda gravacao
foi realizada no dia 30 de julho de 2025, com cinco pessoas sinalizando. Dos sinalizadores
presentes, oito deles sao ouvintes e um é surdo. Cada pessoa gravou 5 repeticoes de todos
os 20 sinais, totalizando 45 repeticoes por sinal. Além disso, é importante ressaltar que
todos os participantes possuem conhecimento em Libras.

Todos os videos foram gravados no mesmo local, em uma sala preparada para a
captura de videos de sinais na faculdade de Letras, mantendo a mesma configuracao de
iluminacao, plano de fundo e camera em toda a coleta. Pode haver pequenas divergéncias
quanto a distancia dos elementos dos videos gravados no primeiro dia, comparados aos
videos do segundo dia, porém nao houve impacto significativo no resultado obtido.

O plano de fundo foi um tecido chromakey verde, que cobre toda a area de
gravacao dos videos. O uso do chromakey é til para possibilitar edi¢oes do plano de
fundo dos videos, porém para este presente trabalho, nenhuma edicao do plano de fundo
foi realizada. Para a iluminagao, contou-se com quatro fontes de luz: uma lampada de
teto localizada no centro da sala e trés holofotes posicionados sobre um tripé, localizados

a esquerda, a direita e a frente do sinalizador e direcionados a ele durante todas as

Thttps://libras.cin.ufpe.br/sign /460
8https://libras.cin.ufpe.br/sign/1080
9https://libras.cin.ufpe.br/sign /848
Ohttps://libras.cin.ufpe.br/sign/354
Uhttps://libras.cin.ufpe.br /sign /378



4.2 Preparacao dos videos 21

capturas. O sinalizador se posicionava a aproximadamente 50 centimetros a frente do
chromakey e mantinha-se no mesmo local em todos os videos. A area gravada dos videos
sempre capturava o sinalizador a partir de alguns centimetros acima da cabeca até alguns
centimetros abaixo da regiao da cintura e sempre posicionado ao centro horizontalmente.

A camera utilizada foi Canon SL3 e os videos foram gravados na resolucao 1920
x 1080 (Full HD), a 60 quadros por segundo. Foi acordado que, para cada sinal, uma
pessoa informaria ao sinalizador qual seria o proximo sinal e o sinalizaria para padronizar
a execucao. Em seguida, a gravagao era iniciada e o sinalizador repetia o mesmo sinal 5
vezes, sempre iniciando e terminando o sinal com a posicao de repouso das maos. Cada

video ficou com uma duragao média de 15 segundos antes de ser processado.

4.2 Preparacao dos videos

Apés todos os 180 videos serem capturados (20 sinais x 9 sinalizadores = 180 videos),
ainda era necessario corta-los para isolar uma repeticao do sinal por video, uma vez que
cada video contemplava 5 repeticoes de um sinal. Os videos foram cortados manualmente,
por conta da dificuldade de estimar com precisao em quais instantes cada video precisaria
ser cortado de forma automatica, uma vez que a duracao da execugao do sinal varia para
cada sinalizador. Dessa forma, utilizou-se o software “Fotos Microsoft”!? para cortar cada
video em cinco novos videos. O motivo de utilizar esse software foi que os videos cortados
resultantes mantinham a resolucao e a taxa de quadros iguais as dos videos originais.

713 porém este reduzia

Testou-se também a utilizacao do software “Microsoft Clipchamp
a resolucao dos videos resultantes na versao gratuita.

A posicao de repouso das maos foi preservada no inicio e no final de cada video
resultante para manter a padronizacao. Além disso, nenhum quadro de um video se repete
em qualquer outro video, pois eles foram cortados um a um, mantendo o quadro inicial de
um video sempre posterior ao quadro final do video anterior. Ao final do processamento,

consolidou-se um conjunto de 900 videos (20 sinais x 9 sinalizadores x 5 repeti¢oes por

sinal = 900 videos), com tempo médio de duragao de 2 segundos por video.

2https:/ /www.microsoft.com /pt-br /windows /tips/photos-app
3https://clipchamp.com/pt-br/
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Cada video foi salvo com o nome “XX-sinalizador-YY-execucao” (Exemplo: 00-
sinalizador-00-execucao), de modo que o primeiro nimero representa o identificador do si-
nalizador, enquanto o segundo representa o identificador da execucao do sinal em questao,
variando de 00 a 04. Agruparam-se os videos por sinais em pastas, logo cada pasta contém
todas as execucoes do sinal, de todos os sinalizadores. As pastas foram padronizadas com
o nome “XX-nomedosinal” (Exemplo: 00-professor), de forma que o nimero representa
o identificador do sinal, variando de 00 a 19. Posteriormente, o identificador do sinal no

nome das pastas é utilizado como rétulo das classes dos sinais fornecidos ao modelo.
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5 Metodologia

Para a execugao da tarefa de reconhecimento de sinais, adotou-se a estratégia de extrair
os keypoints dos quadros dos videos, calcular caracteristicas personalizadas a partir deles
e, em seguida, utiliza-las para treinar uma rede neural com blocos LSTM. Utilizou-se
como ponto de partida a metodologia de melhor resultado proposta por Sarmento (2023).
Todo o processo foi reproduzido e, em seguida, adaptado para melhorar ainda mais o
desempenho do modelo no reconhecimento dos sinais escolhidos. A Secao 5.1 aborda
como o pré-processamento dos dados foi realizado para prepara-los para serem usados
como entrada do modelo. A Secao 5.2 apresenta informagoes a respeito da arquitetura do
modelo e lista todas as configuragoes iniciais dos parametros utilizados. Ja na Sec¢ao 5.3,

discute-se o treinamento do modelo.

5.1 Pré-processamento dos dados

Antes de treinar o modelo, é necessario preparar os dados da maneira como a rede os
espera. A proposta de Sarmento (2023) que obteve a melhor acurécia consiste em extrair
caracteristicas personalizadas a partir dos keypoints obtidos. Uma amostragem de quadros
também é realizada para selecionar aqueles com maior potencial de fornecer informacgoes
relevantes ao modelo, visando melhorar o reconhecimento. Além disso, os keypoints sao
normalizados, e o conjunto de dados é aumentado de forma a reduzir o overfitting. Todas
essas técnicas foram aplicadas nesta etapa inicial de pré-processamento dos dados dos
videos. O cddigo foi inteiramente desenvolvido na linguagem Python, com o auxilio de
algumas bibliotecas e ferramentas. Um fluxo de execucao é apresentado na Figura 5.1.
Inicialmente, todos os arquivos com a extensao “.mp4” sao buscados nas pastas
de videos, seguindo a ordem dos sinais da classe “00” até a classe “19”. Os videos sao
entao processados na mesma ordem em que estao listados nas pastas. A partir do nome da
pasta e do nome do arquivo do video, obtém-se o identificador da classe e do sinalizador,

respectivamente.
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Figura 5.1: Fluxo de execugao.

A primeira etapa do processamento dos videos é a amostragem de quadros.

Utilizou-se a biblioteca OpenCV!# para fazer a leitura e o processamento de cada video.

E necessario que o video possua pelo menos a quantidade de quadros a ser amostrada

para que ele possa ser utilizado no modelo. Uma técnica de padding poderia ser aplicada

nos casos de videos com menos quadros. Porém, dado que nenhum video do conjunto de

dados construido apresenta essa caracteristica, optou-se por nao aplica-la.

Seguindo a metodologia base de Sarmento (2023), optou-se por amostrar 15 qua-

dros de cada video. Existem diferentes formas de escolher os quadros de um video. Uma

possivel abordagem seria amostrar segundo uma distribuicao uniforme, porém isso nao ga-

rante que os quadros mais relevantes serao selecionados. Utilizar a distribuicao uniforme

“https://opencv.org/
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para amostrar os quadros produziria a mesma chance de selecionar qualquer quadro do
video. No entanto, os quadros do inicio e do final do video contém trechos da posicao
de repouso das maos, que nao correspondem especificamente ao sinal em questao. Dessa
forma, ¢ interessante aplicar uma distribuicao que privilegie os quadros mais relevantes,
que se encontram no meio do video. Tendo isso em vista, a distribuicao escolhida para
a amostragem foi a distribuicao normal, que tende a selecionar mais quadros do meio do
video e menos quadros iniciais e finais.

De modo a melhorar a generalizacao do modelo e reduzir o overfitting, aplicou-se
a técnica de aumento de dados. Ela consiste em criar copias modificadas dos dados do
conjunto, visando aumentar a diversidade sem a necessidade de coletar novos dados reais.
Para isso, algumas transformacoes foram combinadas aleatoriamente, de forma que os
dados aumentados fossem diferentes. O conjunto de dados foi aumentado em 20 vezes,
variando aleatoriamente os parametros das transformagoes em cada video. E importante
ressaltar que as transformacoes sao aplicadas diretamente nos quadros selecionados e, a
cada aumento de um video, novos quadros sao amostrados pela distribuicao normal. Com
isso, aumenta-se ainda mais a diversidade, pois diferentes quadros podem estar presentes
no conjunto de dados aumentado. Além disso, o mesmo conjunto de transformacoes
aplicado a um quadro deve ser aplicado a todos os outros da amostra de aumento em
questao, logo os mesmos parametros sao mantidos para cada sequéncia de quadros.

As seguintes transformacoes foram aplicadas:

e Espelhamento horizontal: Escolhe-se aleatoriamente se o video sera espelhado
horizontalmente ou nao. Essa transformacao é especialmente 1til para simular a

execucao dos sinais utilizando a mao dominante inversa;
e Rotacgao: Rotaciona-se de -5 a 5 graus, simulando diferentes orientagoes;

e Translagao: Translada-se horizontalmente e/ou verticalmente de -20 a 20 pizels
(até 20 pizels para a esquerda ou para a direita e/ou até 20 pizels para cima ou

para baixo);

e Corte centralizado: Corta-se até 10% das bordas dos quadros, mantendo-os sem-

pre centralizados;
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e Contraste: Alteracao no contraste de 70% até 130% do contraste original (100%);
e Brilho: Alteracao do brilho de -20 até 20 niveis de intensidade de pizel.

Cada quadro foi redimensionado para 640 pizels de largura por 480 pizels de
altura, de forma a prepard-lo para extrair as caracteristicas. Em seguida, os pontos de
referéncia (keypoints) sao estimados utilizando a ferramenta “MediaPipe Holistic”!® do
Google. Ela é capaz de extrair keypoints nao s6 das maos, mas também da pose e da face
simultaneamente.

Os parametros utilizados no MediaPipe foram:

e Modo de imagem estatica: Determina a natureza da entrada de dados. Utilizou-
se a opgao desativada, na qual o sistema trata as imagens como um fluxo de video
continuo: ele detecta a pessoa nos primeiros quadros e, em seguida, passa a rastrear

apenas os keypoints nos quadros subsequentes;

e Complexidade do modelo: Define o nivel de complexidade do modelo de keypo-
ints. Utilizou-se o valor 2, que determina a complexidade mais alta, resultando em

maior precisao, porém com aumento na laténcia de inferéncia;

e Suavizagao dos keypoints: Utilizou-se o modo ativo, que aplica um filtro aos

keypoints ao longo das imagens para reduzir tremores;

e Habilitacao de segmentacao: Desativada, para nao gerar uma mascara de seg-

mentagao da pessoa;

e Suavizacao da segmentagao: Desativada, uma vez que a segmentagao também

foi desabilitada;

e Refinamento de marcos faciais: Desativado, optando por nao realizar refina-

mentos adicionais nos pontos ao redor dos olhos e labios;

e Confianca minima de detecgao: O valor minimo de confianga exigido do modelo

para que a deteccao seja considerada bem-sucedida. Utilizou-se uma confianca de

90%;

https://pypi.org/project /mediapipe/
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e Confianca minima de rastreamento: O valor minimo de confianca exigido do
modelo de rastreamento para que a pose seja considerada rastreada com sucesso.

Utilizou-se uma confianca de 90%.

Em um tnico quadro, sao extraidos pontos na forma de coordenadas tridimensi-
onais da pose, da face e das maos. Ao todo, obtém-se 543 coordenadas por quadro (33
da pose + 468 da face + 21 da mao esquerda + 21 da mao direita = 543 coordenadas).
Para acelerar a extracao, até 4 processos sao criados para extrair os pontos, de modo que
cada processo fica responsavel por processar um quadro independente. Utilizou-se o pa-
ralelismo em nivel de processo, visando evitar o Bloqueio Global do Interpretador ( Global
Interpreter Lock - GIL) do Python quando o paralelismo ocorre em nivel de thread. Os

pontos das maos detectados pelo MediaPipe sao exibidos na Figura 5.2.

®
g® - ®16 0. WRIST 11. MIDDLE_FINGER_DIP
N e 1. THUMB_CMC 12. MIDDLE_FINGER_TIP
7 e [15 2. THUMB_MCP 13. RING_FINGER_MCP
a0 e 7 STHUMBIP 14. RING_FINGER_PIP
. oy ®19 4. THUMB_TIP 15. RING_FINGER_DIP
4 >\ 9 1318 5. INDEX_FINGER_.MCP  16. RING_FINGER_TIP
3® 17 6. INDEX_FINGER_PIP 17. PINKY_MCP
. 7. INDEX_FINGER_DIP 18. PINKY_PIP
2 8. INDEX_FINGER_TIP 19. PINKY_DIP
1o 9. MIDDLE_FINGER_MCP  20. PINKY_TIP
Lo 10. MIDDLE_FINGER_PIP

Figura 5.2: Keypoints da mao, obtidos pelo MediaPipe.

5.1.1 Caracteristicas Geométricas

Ap6s todos os pontos terem sido extraidos dos quadros selecionados de um video, inicia-
se a etapa de extracao de caracteristicas personalizadas a partir desses dados. Foram
calculados os angulos internos de diferentes pontos de articulagao de cada mao e diferentes
distancias entre pontos estratégicos da pose. Os angulos calculados sao exibidos na Figura
5.3.

A partir de um ponto de articulacao, obtém-se dois vetores vy e vo com origem na

articulagao e extremidades em dois pontos vizinhos na mao. Com isso, é possivel calcular

o angulo entre os vetores através da normalizacao, gerando os vetores unitarios v = Tl
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Figura 5.3: Angulos da mao calculados a partir dos pontos.

va
[lvall

e Vg = . Em seguida, calcula-se o produto escalar entre esses vetores normalizados.
O angulo 6 é entao obtido através da relagao § = arccos(¥q - V).
A operacao completa de célculo do angulo entre dois vetores pode ser expressa

pela equacao:

0 = arccos (L l) (5.1)

vl lvell

Antes de calcular as distancias entre os keypoints da pose, é necessario normaliza-
los, visando padronizar a posicao e o tamanho do corpo na imagem. Dessa forma, todos os
pontos da pose sao ajustados para que o centro dos ombros se torne a origem do sistema de
coordenadas. Além disso, todos os pontos também sao divididos pelo tamanho do tronco.
Isso garante que o modelo entenda os sinais da mesma forma, independentemente da
distancia do sinalizador em relagao a camera. Todos os pontos detectados pelo MediaPipe
sao exibidos na Figura 5.4.

Seja P; o vetor de coordenadas (z,y, z) do i-ésimo keypoint. O processo de nor-

malizagao para obter o ponto normalizado P, é definido pelas seguintes etapas:

1. Célculo do centro de referéncia: O ponto central (C) é definido como o ponto

médio entre os ombros (pontos 11 e 12):
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Figura 5.4: Keypoints da pose, obtidos pelo MediaPipe.

P+ P (5.2)

2. Célculo do Fator de Escala (Tamanho do Tronco): O fator de escala (s) é a

distancia entre o centro dos ombros e o centro dos quadris (pontos 23 e 24):

P. P.
. HC _ Pt Py (5.3)
2
3. Normalizagao: Cada ponto P; é transladado e reescalado:
. P -C
B = (5.4)
S

Apds a normalizacao ter sido aplicada, calcula-se o segundo grupo de carac-

teristicas personalizadas. Trata-se das distancias entre pares de pontos especificos da
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pose. Foram determinados 36 pares de pontos para calcular distancias e compor os dados
de entrada do modelo, juntamente com os angulos das maos. Os 36 pares sao listados na

Tabela 5.1.

Tabela 5.1: Pares de pontos da pose para calcular distancias.

Pontos Posigoes na pose

Py, P15 Nariz e pulso esquerdo

Py, Pig Nariz e pulso direito

Pia, Pig Ombro direito e pulso direito

Pi2, P15 Ombro direito e pulso esquerdo

Pi1, Pis Ombro esquerdo e pulso direito

P11, P15 Ombro esquerdo e pulso esquerdo

Pio, P14 Ombro direito e cotovelo direito

P12, P13 Ombro direito e cotovelo esquerdo

Pi1, P14 Ombro esquerdo e cotovelo direito

P11, P13 Ombro esquerdo e cotovelo esquerdo

Pig, P1s Pulso direito e dedo minimo direito

Pig, P17 Pulso direito e dedo minimo esquerdo

P15, Pi7 Pulso esquerdo e dedo minimo esquerdo

Pi5, Pig Pulso esquerdo e dedo minimo direito

P16, Pao Pulso direito e dedo indicador direito

Pig, Pig Pulso direito e dedo indicador esquerdo

Pi5, Py Pulso esquerdo e dedo indicador direito

P15, Pio Pulso esquerdo e dedo indicador esquerdo

Pig, Py Dedo minimo direito e dedo indicador direito
P13, Pig Dedo minimo direito e dedo indicador esquerdo
Pi7, Py Dedo minimo esquerdo e dedo indicador direito
P17, Pig Dedo minimo esquerdo e dedo indicador esquerdo
Pig, Pao Dedo minimo direito e dedo polegar direito
Pig, P21 Dedo minimo direito e dedo polegar esquerdo
Pi7, Po1 Dedo minimo esquerdo e dedo polegar esquerdo
Pi7, Pao Dedo minimo esquerdo e dedo polegar direito
Pso, Poo Dedo indicador direito e dedo polegar direito
Pog, P21 Dedo indicador direito e dedo polegar esquerdo
Pig, P21 Dedo indicador esquerdo e dedo polegar esquerdo
Pig, P2 Dedo indicador esquerdo e dedo polegar direito
Pa1, Poo Dedo polegar esquerdo e dedo polegar direito
Pig, Py Dedo indicador esquerdo e dedo indicador direito
Pi7, P13 Dedo minimo esquerdo e dedo minimo direito
P15, Pig Pulso esquerdo e pulso direito

Pi3, P14 Cotovelo esquerdo e cotovelo direito

w, w Centro dos ombros e centro do quadril

Fonte: Elaborada pelo autor (2026).

Assim como nos angulos das maos, as distancias também sao calculadas para cada
quadro selecionado do video. Ao todo, sao calculadas 88 caracteristicas (26 angulos da
mao esquerda + 26 angulos da mao direita + 36 distancias da pose = 88 caracteristicas).
Elas sao concatenadas em um tnico vetor que é utilizado como entrada do modelo.

As caracteristicas extraidas dos videos sao serializadas e salvas em diferentes
arquivos, para que um video que foi pré-processado uma vez nao precise passar pelo
mesmo procedimento. No inicio da etapa de pré-processamento, verifica-se se existem
caracteristicas extraidas para o video em questao, com o objetivo de pular essa etapa e

evitar uma computacao desnecessaria.
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5.1.2 Expansao do Conjunto de Caracteristicas Geométricas

De modo a tentar extrair ainda mais desempenho do modelo, algumas variacoes de ca-
racteristicas foram planejadas e calculadas. A primeira variacao corresponde a adi¢ao de
mais distancias, além das descritas na Tabela 5.1, adi¢ao de vetor normal das palmas das
maos e a remocao de algumas distancias entre dedos retornados pelo modelo da pose,
substituindo-os pelos keypoints do modelo das maos que possuem uma precisao melhor.

As variagoes de caracteristicas geométricas foram:

e Distancias internas das maos (18 caracteristicas): Foram calculadas 9 distancias
para cada mao, normalizadas pela escala da propria mao. Dentre elas, 4 distancias
sao entre a ponta do polegar e a ponta dos outros dedos, enquanto 5 distancias sao

do pulso até a ponta de todos os dedos;

e Normais das Palmas (6 caracteristicas): Foi calculado o vetor normal (x, y,
z) da palma de cada méao através do produto vetorial entre os vetores do pulso ao

dedo indicador e do pulso ao dedo minimo;

e Distancias entre as maos e a face (24 caracteristicas): Foram calculadas
distancias de 2 keypoints de cada mao até 6 keypoints da face. Essas distancias

foram normalizadas pelo tamanho do tronco;

¢ Remocao de distancias das maos pelo modelo da pose (10 caracteristicas):
Os keypoints das maos apresentam precisao superior quando obtidos pelo modelo
das maos, comparado ao modelo da pose. Logo, optou-se por priorizar a utilizacao
do modelo das maos para calcular as distancias internas. Assim, 10 distancias
anteriormente calculadas entre keypoints da pose foram removidas e substituidas por
distancias entre keypoints do modelo das maos. Estes sao os pares de pontos cujas
distancias foram removidas: (Pig, Pig), (P15, Pi7), (P16, Pao), (P15, Po), (Pis, Pxo),
(Pr7, Prg), (Pis, Px2), (P17, Pa1), (Pao, Pa2) € (Prg, Pa1).

Assim, totalizam-se 38 novas caracteristicas (18 + 6 + 24 - 10 = 38), visto que 10
caracteristicas foram apenas substituidas pelas mesmas distancias, utilizando os keypoints

das maos em vez da pose.
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5.1.3 Caracteristicas de Movimento

Para capturar a dinamica temporal dos sinais, um conjunto de caracteristicas baseadas
na velocidade e aceleragao dos keypoints foi implementado. Para isso, considere P,; € R?
o vetor de posi¢ao (z,y, z) do i-ésimo keypoint no quadro ¢, onde ¢t € [1,T] e T é o niimero

total de quadros.

Calculo de Velocidade e Aceleragao

A velocidade instantanea V;; é aproximada pela diferenga entre keypoints em quadros

consecutivos:

‘/t,i = Pt,i — Ptfl,i, para t > 1. (55)

A aceleracao instantanea A;; é calculada como a taxa de variagao da velocidade:

Api =Vii—Vii1i, parat > 1. (5.6)
Para t =1, assume-se V;;, =0e A;; = 0.
Caracteristicas por keypoints
Para cada keypoint selecionado, quatro caracteristicas sao extraidas a cada quadro:

1. Magnitude da Velocidade Normalizada:

A Vsl
Vi = . 5.7
4 (Vi) + ¢ (5:7)

2. Magnitude da Aceleragcao Normalizada:

. [ Aeill
Q¢ = : 5.8
P maxy (|| Arl) + e (5.8)

3. Dire¢ao do Movimento (X e Y):

Componentes normalizados do vetor de velocidade no R?:
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Vit Vit

dpps= b g
T Vol € T [Vigall + €

onde:

e ||Viy]l é a norma Euclidiana apenas nos componentes z e y.

o V..ieV,.;sao os componentes da velocidade instantanea do i-ésimo keypoint

no quadro t ao longo dos eixos x e y, respectivamente.

e ¢ = 1079 é utilizado nos denominadores para evitar divisao por 0.

Keypoints Selecionados

As caracteristicas acima sao calculadas para um subconjunto de 15 keypoints selecionados:
e Maos (6 por mao): Pulso, e as pontas dos 5 dedos.
e Pose (3 pontos): Nariz, Pulso Esquerdo e Pulso Direito.

Isso resulta em 15 x 4 = 60 caracteristicas locais por quadro. A inclusao dupli-
cada dos pulsos, pelo modelo de maos e modelo de pose foi feita de maneira redundante
intencionalmente para cobrir casos em que os pontos sao detectados por somente um dos

modelos.

Caracteristicas de Movimento Globais

Além das caracteristicas locais, 5 descritores globais sdo computados para resumir o com-

portamento do movimento ao longo de toda a sequéncia de video:

1. Quadro de Pico de Velocidade (p): Esta caracteristica identifica o0 momento do

sinal em que ocorre a maior intensidade de movimento:

. arg maX(Ucomb(t))’ (5.10)
T
onde:
o Veomp(t) = [|Vigsqll + |[Vipirll é a velocidade combinada das duas maos no

instante ¢.
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e T é o numero total de quadros do video.

e arg max retorna o indice ¢ onde o valor é maximo.

2. Variancia da Velocidade Normalizada (0?): Esta caracteristica mede a con-
sisténcia ou variabilidade da velocidade ao longo da execucao. Sinais com ritmo
constante possuem variancia baixa, enquanto sinais com pausas possuem variancia

alta:

T —
2= %ztzl(vcomb(t) - Ucomb)2 (5 11)
max(vcomb) + € ’ .

onde:

® U.omb ¢ & velocidade média do sinal.

e O denominador max(ve.m,) normaliza o valor.

3. Coordenacao do Movimento: Esta caracteristica avalia o grau de coordenagao
entre as maos esquerda e direita. E til para distinguir sinais simétricos de sinais em
que as maos se movem de forma independente ou alternada. Se ambas as maos estao
em movimento, calcula-se o coeficiente de correlacao de Pearson entre a magnitude
das velocidades da mao esquerda e da mao direita para determinar a simetria. O

resultado pode variar de -1 a 1, de modo que:

e Coeficiente = 1: As maos possuem um movimento coordenado;
e Coeficiente = 0: As maos possuem movimentos independentes;

e Coeficiente = -1: As maos possuem movimentos alternados.

4. Picos de Aceleragao e Suavidade (K): Esta caracteristica mede a complexi-
dade do movimento contando quantas vezes a aceleragdo muda de sentido (sinal).
Movimentos fluidos possuem poucas mudangas, enquanto movimentos complexos ou

trémulos possuem muitas.

K = %Z 1[sgn(a:) # sgn(a:—1)], (5.12)

t=2
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onde:

e q; ¢ a aceleragao da velocidade combinada no instante t.
e sgn(z) ¢ a fungado sinal (retorna +1 ou —1).
e 1 retorna 1 se houver mudanga de sinal, ou 0 caso contrario.

5. Indicador de Mao Dominante (D): Determina qual mao é a dominante no sinal,

comparando a quantidade total de movimento realizada por cada uma:

Vil = [Vamsall)
> (Veoir |l + (Ve el

onde valores préoximos a +1 indicam dominancia da mao direita, préoximos a —1

(5.13)

indicam dominancia da mao esquerda, e valores proximos a 0 indicam uso balanceado

das duas maos (ou nenhum movimento).

6. Razao de Duracao do Movimento (R): Calcula a porcentagem do video em
que houve movimento significativo, filtrando os momentos estaticos, ou com pouco

movimento:

1

R=— D " L [veoms(t) > 0,1 - max(veoms)], (5.14)

t=1
onde o limiar de 0,1 (10%) é aplicado para filtrar movimentos com baixa velocidade

em relacao ao pico de velocidade do video.

Ao todo, 66 caracteristicas de movimento foram calculadas (60 locais 4 6 globais).

5.2 Arquitetura do Modelo

O modelo responsavel pela tarefa de reconhecer os sinais da Libras, baseado na arquitetura
de Sarmento (2023), consiste em uma rede neural com uma camada LSTM. Além dessa
camada, outras também sao adicionadas para cumprir tarefas importantes na composicao
geral do modelo.

A camada de entrada define o formato dos dados que entram na rede, preparando-

a para receber uma sequéncia de quadros. Ja a camada de normalizacao padroniza os
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dados de entrada para que tenham média zero e variancia unitaria. Isso acelera a con-
vergéncia e evita problemas com escalas de valores diferentes. A camada LSTM é a
principal do modelo e é eficaz no processamento temporal. Para a tarefa de reconheci-
mento de sinais, a LSTM se destaca por ser capaz de aprender dependéncias de longo
prazo, o que ¢é essencial, pois o movimento dos sinais contribui profundamente para o
significado. Uma funcao de regularizacao L1 também ¢ aplicada ao kernel. Em seguida,
uma camada de dropout desativa aleatoriamente uma porcentagem de neurénios durante o
treinamento, o que contribui para reduzir o overfitting. Por fim, uma camada de saida com
ativacao softmaz gera as probabilidades finais de cada classe a partir das caracteristicas
aprendidas.

Além disso, foi utilizado o otimizador Adam com decaimento de peso (Adaptive
Moment Estimation with Weight Decay - AdamW) (LOSHCHILOV; HUTTER, 2017)
para proporcionar uma convergéncia mais rapida e estavel do modelo. O AdamW decide
como ajustar os pesos da rede neural para que ela cometa menos erros durante o apren-
dizado. Ja a técnica de decaimento de peso aplica uma penalizacao que tende a manter
os pesos do modelo com valores pequenos. A utilizacdo do otimizador resulta em uma
melhor generalizacao e convergéncia do modelo no treinamento. A arquitetura completa
do modelo é descrita na Tabela 5.2.

Tabela 5.2: Arquitetura do modelo para reconhecimento de sinais.

Camada Dimensao de saida
Entrada Tamanho do lote, N® de quadros, N° de caracteristicas)

(
Normalizagao (Tamanho do lote, N? de quadros, N? de caracteristicas)
LSTM (Tamanho do lote, N® de neur6nios)
(
(

Dropout Tamanho do lote, N® de neur6nios)
Classificagao (Densa) | (Tamanho do lote, N de classes)

Fonte: Elaborada pelo autor (2026).

Os parametros utilizados foram:

e Numero de caracteristicas: 88;

e Numero de classes: 20;

e Fator de regularizagao L1: 0,001;
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e Taxa de Dropout: 0,4;

Tamanho do video de entrada: 640 x 480;

Taxa de aprendizado: 0,0001;

Taxa de decaimento de peso: 0,005;

Funcao de perda: Entropia cruzada categérica esparsa.

5.3 Treinamento do Modelo

Como as etapas de pré-processamento foram realizadas previamente e as caracteristicas
extraidas salvas, a etapa de treinamento foi consideravelmente mais leve, uma vez que os
dados nao precisaram ser re-processados a cada novo treinamento.

A base foi dividida de modo que cada sinalizador estivesse presente em apenas
um grupo (treinamento, validagdo ou teste), para nao enviesar o modelo. A estratégia
utilizada foi a validagao cruzada 9-fold, sempre utilizando os videos de 7 sinalizadores para
treinamento, 1 sinalizador para validacao e 1 sinalizador para teste. A cada mudanca de
fold, um novo sinalizador era escolhido para compor o conjunto de validacao e outro
sinalizador era escolhido para o conjunto de teste.

Visando evitar que o modelo decorasse os dados de treinamento, foi utilizada a
técnica de parada antecipada (early stopping), com paciéncia de 20 épocas. Essa técnica de
regularizacao visa evitar o overfitting monitorando o desempenho do modelo no conjunto
de validacao e parando o treinamento quando a performance para de melhorar. Ao final
do treinamento, os pesos da época de melhor acurdcia de validagao foram selecionados.
Escolheu-se realizar o treinamento por 200 épocas.

O treinamento foi realizado em um computador com processador Intel(R) Core(TM)
i5-12450H (2.00 GHz), placa de video NVIDIA Geforce RTX 2050 4GB e 16GB de
memoéria RAM de 4800 MT/s.

Realizar o treinamento sem a utilizagao da placa de video é possivel, porém pre-
judica consideravelmente a performance e aumenta o tempo gasto em cada teste. A

execucao desta etapa utilizando somente a CPU, no sistema operacional Windows, levava
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em torno de 6 horas para ser finalizada. Dessa forma, preparou-se o ambiente para execu-
tar o treinamento com a GPU, garantindo um tempo de execucao viavel de testes. O meio
mais acessivel encontrado para isso foi utilizar o Windows Subsystem for Linuz (WSL) e
instalar o conjunto de ferramentas CUDA da NVIDIA. Tendo preparado o ambiente de
execugao, cada treinamento realizado com a GPU levava em torno de 45 minutos, cerca
de 8 vezes mais rapido que na CPU.

Apés o treinamento de cada fold, o modelo com os melhores pesos previu os
dados de teste e foi avaliado quanto a acurdcia. Ao final do treinamento de todos os
folds, os resultados foram combinados de modo a obter a acuracia geral da base de dados
completa. Além disso, a matriz de confusao foi gerada para uma melhor visualizacao
do comportamento do modelo para cada classe, juntamente com graficos de evolucao da

acuracia e da funcao de perda.
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6 Experimentos e Resultados

Neste capitulo sao apresentados e discutidos os resultados dos experimentos realizados
para o reconhecimento de sinais da Libras. O objetivo é avaliar o impacto de diferentes
configuragoes de hiperparametros, conjuntos de caracteristicas e modificagoes na arquite-
tura do modelo, visando superar o desempenho do modelo base utilizado como referéncia.
A métrica utilizada para a comparacao dos modelos foi a acuracia geral do conjunto de

dados completo.

6.1 Modelo Base

Para garantir a comparabilidade dos resultados, todos os experimentos foram realizados
utilizando a mesma base de dados de sinais dinamicos. Como ponto de partida, definiu-se
como modelo base o apresentado no trabalho de Sarmento (2023), que foi descrito na
Secao 5.2. Ele utiliza apenas os atributos geométricos mencionados na Secao 5.1.1, uma
selecao normal de 15 quadros, uma camada LSTM com 512 unidades e hiperparametros
descritos na Secao 5.2. Utilizando as mesmas configuragoes, atingiu-se uma acuracia de
84,00% para o conjunto dos 20 sinais estudados neste trabalho.

A Figura 6.1 mostra como o modelo base se desempenhou em cada classe, conside-
rando o treinamento com todo o conjunto de dados. A matriz de confusao foi normalizada
pelas linhas (rétulos verdadeiros). Isso significa que cada valor na diagonal principal re-
presenta a propor¢ao de previsoes corretas para aquela classe especifica em relacao ao
total de amostras reais daquela classe, também conhecido como recall da classe.

Observa-se que algumas classes tiveram um alto recall, como é o caso de: “Profes-
sor”, “Prova”, “Computador”, “Internet”, “Tecnologia”, “Algoritmo”, “Cédigo” e “Com-
pilador”. Entretanto, as classes “Perguntar” e “Pesquisar” apresentaram alta confusao
entre si, assim como as classes “Inteligéncia Artificial” e “Software”. Isso se deve ao fato de

que esses sinais sao ambiguos e possuem elementos muito semelhantes na sua construcao.

J& as demais classes tiveram recall razoavel, com falsos negativos mais distribuidos.
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Professor

Estudar { 0,0%

Perguntar 4 2,2% 0,0%

Responder 111,1% 2,2%

Entender { 0.0% 11,1%

Pesquisar { 8,9% 0,0%

Aprender { 0,0% 0,0%

Trabalho 4 0,0% 11,1%

Rétulo verdadeiro

Computador 4 0,0% 0,0%

Internet { 0,0% 0,0%

Tecnologia  0,0% 0,0%

Algoritmo 1 0,0% 0,0%

Inteligéncia Artificial { 0,0%  0,0%

Software 4 0,0% 0,0%

Compilador 4 0,0% 0,0%

0,0% 00% 22% 00% 00% 22% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00%
0,0% 0,0% 4,4% 0,0% 00% 44% 00% 0,0% 133% 00% 00% 0,0% 0,0% 00% 00% 00% 0,0%
Aluno 4 0,0% 0,0% 0,0% 00% 0,0% 0,0% 13,3% 00% 00% 0,0% 00% 00% 00% 0,0% 0,0% 00% 0,0%
Duvida 4 44% 0,0% 0,0% 0,0% 00% 0,0% 0,0% 00% 133% 00% 0,0% 00% 00% 00% 6,7% 0,0% 0,0% 44%
0,0% 0,0% Q{Papd/y 0,0% 0,0% 33,3% 00% 0,0% 00% 00% 00% 00% 0,0% 22% 00% 00% 0,0%
0,0% 0,0% 6,7% 0,0% 00% 22% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0%
0,0% 0,0% 0,0% 0,0% EEEFHE 00% 00% 00% 00% 00% 00% 00% 00% 89% 22% 00% 0,0%
0,0% 0,0% 22,2% 0,0% 0,0% 0,0% 0,0% 00% 0,0% 00% 00% 00% 0,0% 00% 00% 0,0%
11,1% 0,0% 0,0% 0,0% 0,0% 0,0% EEEFA 0,0% 0,0% 22% 0,0% 0,0% 00% 11,1% 0,0% 0,0% 0,0%
Quadro { 8,9% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 00% 0,0% 0,0% 00% 67% 00% 0,0% 0,0%
Provaq 0,0% 4,4% 0,0% 00% 00% 0,0% 00% 00% 00% 0,0% 0,0% 00% 0,0% 0,0% 00% 00% 0,0% 0,0%
0,0% 00% 00% 0,0% 00% 00% 00% 0,0% 00% [Er¥rd 00% 00% 00% 67% 00% 00% 0,0%
0,0% 0,0% 00% 00% 00% 00% 00% 00% 0,0% 0,0% 0,0% 0,0% 0,0% 00% 00% 22%
89% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% |EIWEN 00% 0,0% 0,0% 00% 0,0%
0,0% 0,0% 0,0% 0,0% 00% 22% 00% 0,0% 00% 00% 00% 0,0% @ 00% 0,0% 00% 0,0%
4,4% 0,0% 00% 0,0% 00% 00% 00% 00% 0,0% 00% 00% 00% 0,0% @ 0.0% 00% 0,0%
0,0% 00% 00% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0% [EPPEH178% 0,0%
0,0% 00% 00% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0% 26,7% REEVE 0,0%

Cédigo { 0,0% 0,0% 0,0% 0,0% 00% 0,0% 00% 0,0% 00% 00% 00% 00% 00% 00% 00% 22% 00% 00%

0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 22% 00% 00% 00%
5 8 £ ¢ &5 %3 % B &8 O§ 5§ £ & ¢ 5 ¢ g 8
& 2 < 3 3 8§ § ¥ 8 &£ & & £ &8 35 3% : 3
g4 °E 3 5 8 & ° £ 2 = 5 B 5 °
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Inteligéncia Artificial 4

Rétulo previsto

Figura 6.1: Matriz de confusao do modelo base.

6.2 Analise do Niimero de Quadros por Video
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O primeiro conjunto de experimentos buscou avaliar o impacto do nimero de quadros

selecionados no desempenho do modelo. A hipétese é que um maior nimero de quadros

permite capturar nuances mais finas do movimento dos sinais que podem ajudar o modelo

a distingui-los. A Tabela 6.1 apresenta o comparativo entre modelos utilizando 15 e 30

quadros.

Tabela 6.1: Impacto da alteracao do niimero de quadros no desempenho do modelo.

Modelo | Caracteristicas

N2 Quadros

Unidades LSTM

Acuracia

M, Originais
Base Originais

30
15

512
012

84,22%

84,00%

Fonte: Elaborada pelo autor (2026).



6.3 Analise da Arquitetura do Modelo 41

Os resultados indicam que a ampliacao para 30 quadros por video proporcionou

um ganho de aproximadamente 0,22% em relacao ao modelo base.

6.3 Analise da Arquitetura do Modelo

Alguns experimentos foram realizados com foco na arquitetura do modelo, variando o
tamanho do lote e a profundidade da rede. A Tabela 6.2 apresenta o comparativo entre
modelos utilizando 256, 512 e 1024 unidades LSTM. O tamanho do lote foi fixado em
1024, com excecao do modelo M; que precisou ser reduzido para 512 por limitacao de
recursos da maquina. Além disso, os mesmos testes foram realizados com 15 e 30 quadros

para realizar um comparativo mais amplo.

Tabela 6.2: Impacto da alteracao de hiperparametros e profundidade do modelo.

Modelo | Caracteristicas | N2 Quadros | Unidades LSTM | Tamanho do Lote | Acuricia
Mo Originais 30 1024 512 87,22%
My Originais 30 512 1024 84,22%
Ms Originais 30 256 1024 84,00%
My Originais 15 1024 1024 84,33%
Base Originais 15 512 1024 84,00%
Ms Originais 15 256 1024 83,67%

Fonte: Elaborada pelo autor (2026).

Os resultados indicam que o aumento das unidades LSTM contribuiu para um
melhor desempenho do modelo. Para os testes realizados com 15 quadros por video, o
aumento das unidades LSTM de 512 (configuracao do modelo base) para 1024 produziu
um ganho de 0,33% de acurécia. J4 nos testes com 30 quadros por video, o aumento das
unidades LSTM de 512 para 1024 gerou um ganho de 3,00%. Além disso, esse cendrio
evidencia ainda mais o impacto positivo do aumento do nimero de quadros, ao comparar

os modelos com as duas melhores acurdcias dentre os testes.

6.4 Analise de Caracteristicas

Um dos focos centrais deste trabalho foi a exploracao de novos conjuntos de caracteristicas
para enriquecer a representacao dos sinais. Foram testadas combinagoes de caracteristicas
geométricas (angulos e distancias das maos e da pose) mencionadas na Se¢ao 5.1.1, um se-

gundo grupo expandido de distancias entre pontos especificos da face e das maos descritas
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na Segao H.1.2, e caracteristicas de movimento, calculadas pela diferenca entre quadros
consecutivos, apresentadas na Secao 5.1.3. Os testes foram realizados com 512 unidades
LSTM e tamanho de lote 1024. A Tabela 6.3 resume os testes realizados variando as

caracteristicas.

Tabela 6.3: Comparativo do impacto de diferentes conjuntos de atributos. Orig.:
Geométricas originais, Exp.: Geométricas expansao, Mov.: Movimento.

Modelo Caracteristicas N¢? Caracte. | N2 Quadros | Acurécia
M Orig. + Exp. + Mov. 192 30 86,78%
M Orig. + Mov. 154 30 86,33%
My Orig. + Exp. 126 30 85,11%
M, Exp. + Mov. 114 30 83,67%
M, Orig. 88 30 84,22%
My Exp. 48 30 80,56%
My, Mov. 66 30 73,78%
Base Orig. 88 15 84,00%

Fonte: Elaborada pelo autor (2026).

A anélise dos dados revela que a combinagao completa de caracteristicas (Geométricas,
Novas Distancias e Movimento) atingiu o melhor desempenho geral. Observa-se que o
uso isolado de atributos de movimento nao é suficiente para uma classificacao precisa
(73,78% de acurédcia), mas sua integracdo como informacao complementar aos atribu-
tos geométricos é fundamental para distinguir sinais que possuem configuracoes de mao

semelhantes, mas dinamicas de movimento distintas.

6.5 Arquitetura com Modelos Especialistas

Para tratar as classes que apresentavam maior confusao no modelo base, foi implemen-
tada uma arquitetura com um modelo especialista. Esse modelo consiste em uma rede
treinada especificamente para distinguir entre classes semelhantes, como “Pesquisar” e
“Perguntar”, ou “Software” e “Inteligéncia artificial”.

De modo a avaliar o desempenho do modelo especialista, cada um foi treinado
individualmente, buscando a melhor configuracao para ser utilizada juntamente com o
modelo completo. Quanto a configuragao, a rede especialista manteve a arquitetura do
modelo geral, porém configurada com 1024 unidades LSTM e tamanho de lote de 32. A

Tabela 6.4 apresenta o desempenho variando as caracteristicas utilizadas no treinamento
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do modelo para as classes “Pesquisar” e “Perguntar”.

Tabela 6.4: Variacao das caracteristicas no modelo especialista das classes “Perguntar”
e “Pesquisar”. Orig.: Geométricas originais, Exp.: Geométricas expansao, Mov.: Movi-

mento.
Modelo Caracteristicas N2 Caracteristicas | N2 Quadros | Acuréacia
Ey Orig. 88 30 71,11%
E, Mov. 66 30 77,78%
E3 Orig. + Exp. 126 30 67,78%
Ey Orig. + Exp. + Mov. 192 30 63,33%

Fonte: Elaborada pelo autor (2026).

Destaca-se pela andlise dos resultados que a melhor configuragao para o modelo
especialista das classes “Perguntar” e “Pesquisar” é a utilizacao unicamente das carac-
teristicas de movimento, que alcancou uma acuracia de 77,78%. Em contrapartida, o
modelo base obteve uma acurédcia inferior de 65,50% entre as duas classes. A matriz de
confusao do melhor modelo pode ser observada na Figura 6.2.

Ao contrario do modelo geral, o modelo especialista desempenha melhor utili-
zando apenas caracteristicas de movimento provavelmente por conta das outras carac-
teristicas possuirem valores muito similares. Logo, utilizar um conjunto menor de carac-
teristicas que ¢é capaz de distinguir os sinais ¢ mais vantajoso.

Para o modelo especialista entre as classes “Software” e “Inteligéncia artificial”,
os mesmos testes foram realizados. A Tabela 6.5 apresenta o resultado do treinamento

variando as caracteristicas do modelo especialista para as duas classes.

Tabela 6.5: Variacao das caracteristicas no modelo especialista das classes “Software” e
“Inteligéncia artificial”. Orig.: Geométricas originais, Exp.: Geométricas expansao, Mov.:
Movimento.

Modelo Caracteristicas N¢@ Caracte. | N2 Quadros | Acurécia
Es Orig. 88 30 88,89%
Eg Mov. 66 30 98,52%
Ex Orig. + Exp. 126 30 87,78%
Ey Orig. + Exp. + Mov. 192 30 85,56%

Fonte: Elaborada pelo autor (2026).

Da mesma forma que o modelo anterior, o modelo das classes “Software” e “In-

teligéncia artificial” obteve o melhor resultado utilizando apenas as caracteristicas de

movimento, alcancando uma acurdcia de 98,52%. Em contrapartida, o modelo base ob-
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Perguntar 77,8% 22,2%

Rétulo verdadeiro

Pesquisar

Perguntar
Pesquisar

Rétulo previsto

Figura 6.2: Matriz de confusao do modelo especialista para classes “Pesquisar” e “Per-
guntar” utilizando caracteristicas de movimento.

teve uma acuracia inferior, de 77,50%, entre as duas classes. A matriz de confusao do
melhor modelo pode ser observada na Figura 6.3.

Em seguida, os modelos especialistas foram testados em funcionamento junto com
o modelo geral. Os testes contemplam a presenca de apenas o primeiro modelo especialista
operando no reconhecimento, apenas o segundo modelo especialista e os dois modelos
especialistas juntos. Quando um modelo especialista é utilizado, o modelo geral é treinado
com 19 classes, ao invés de 20, pois duas classes sao agregadas em uma. Da mesma
forma, quando dois modelos especialistas sao utilizados, o modelo geral é treinado com
18 classes. Os modelos sao treinados de forma independente. Apds a classificacao inicial
pelo modelo geral, as instancias identificadas como classe agregada sao encaminhadas ao
modelo especialista, que realiza a distingao final entre os dois sinais especificos. Os testes
utilizaram 1024 unidades LSTM tanto para o modelo geral, quanto para os modelos
especialistas. Quanto ao tamanho de lote foi utilizado 512 no modelo geral e 32 nos

modelos especialistas. A Tabela 6.6 apresenta os resultados dos testes do modelo geral
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Inteligéncia Artificial 97,8%

Rétulo verdadeiro

Software 100,0%

Inteligéncia Artificial

Rétulo previsto

Figura 6.3: Matriz de confusao do modelo especialista para classes “Software” e “Inte-
ligéncia Artificial” utilizando caracteristicas de movimento.

combinado com os especialistas.

Tabela 6.6: Modelo geral combinado com modelos especialistas. Orig.: Geométricas
originais, Exp.: Geométricas expandidas, Mov.: Movimento.

Modelo Caracteristicas Caracteristicas Especialista Especialista Acurécia
modelo geral especialistas Perg. - Pesq. Soft. - I.A.
Mis + Eo Orig. + Exp. + Mov. Mov. Sim Nao 87,89%
Mis + Eg Orig. + Exp. + Mov. Mov. Nao Sim 87,00%
Mi¢ + E3 + Eg | Orig. + Exp. + Mov. Mov. Sim Sim 88,89%

Fonte: Elaborada pelo autor (2026).

Verifica-se que a combinagao de todas as caracteristicas no modelo geral, junta-
mente com os dois modelos especialistas (utilizando apenas caracteristicas de movimento),
cada um com 1024 unidades LSTM, constitui o modelo de maior acuracia. Pela matriz
de confusao da Figura 6.4 observa-se que os sinais “Perguntar/Pesquisar” foram menos
confundidos entre si, comparado ao modelo base. Em ambos os sinais, o recall das classes
foi de 82,2%, ao passo que no modelo base os recalls foram de 62,2% e 68,9% respecti-
vamente. Da mesma forma, os sinais “Inteligéncia artificial/Software” alcancaram recall

superior de 97,8% nas classes, enquanto no modelo base os recalls foram de 82,2% e 73,3%.
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Isso mostra que os modelos especialistas contribuiram para melhorar o reconhecimento

dos sinais ambiguos, principalmente quando utilizam as caracteristicas de movimento.

Professor {LEEA 0,0% 0,0% 0,0% 22% 00% 0,0% 44% 00% 67% 00% 00% 22% 00% 00% 0,0% 00% 00% 00% 0,0%
Estudar 4 0.0% 0,0% 0,0% 0,0% 0,0% 22% 00% 00% 22% 0,0% 00% 00% 00% 0,0% 00% 00% 00% 22%
Aluno { 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 17,8% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0%
Davida{ 0,0% 0,0% 0,0% 22% 44% 00% 22% 0,0% 133% 00% 00% 00% 00% 00% 22% 00% 00% 44% 0,0%
Perguntar q{ 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 17,8% 0,0% 0,0% 00% 00% 00% 0,0% 00% 00% 00% 00% 0,0% 0,0%
Responder 4 2.2% 0,0% 0,0% 0,0% 4,4% 0,0% 6,7% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0%
Entender 4 0,0% 13,3% 0,0% 0,0% 0,0% 0,0% 0,0% 22% 00% 00% 00% 00% 00% 00% 44% 00% 00% 0,0% 0,0%
Pesquisar 1 0,0% 0,0% 0,0% 0,0% 17,8% 0,0% 0,0% 0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0%
e
a Aprender { 0,0% 0,0% 4,4% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 22% 00% 0,0% 00% 44% 00% 00% 0,0% 0,0%
©
'g Quadro { 44% 0,0% 0,0% 00% 00% 0,0% 0,0% 00% 0,0% 0,0% 0,0% 0,0% 0,0% 0,0% 22% 00% 00% 0,0% 0,0%
—
(]
Z Prova4 0,0% 89% 0,0% 00% 00% 00% 00% 0,0% 0,0% 0,0% EMMEY 00% 00% 00% 00% 00% 00% 00% 00% 0,0%
E
\46 Trabalhoq 0,0% 8,9% 0,0% 0,0% 00% 00% 89% 00% 00% 0,0% 0,0% 0,0% 00% 22% 22% 00% 00% 0,0% 0,0%
4
Computador 4 0,0% 0,0% 0,0% 0,0% 0,0% 00% 0,0% 00% 00% 0,0% 00% 0,0% 0,0% 00% 00% 00% 00% 11,1% 0,0%
Internet{ 0,0% 0,0% 11,1% 0,0% 0,0% 00% 0,0% 00% 00% 0,0% 00% 0,0% 0,0% 0,0% 0,0% 00% 0,0% 0,0% 0,0%
Tecnologia { 0,0% 0,0% 0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0% 0,0% 0,0% 0,0%
Algoritmo 4 0.0% 0,0% 0,0% 0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0% 0,0% 0,0% 0,0%
Inteligéncia Artificial { 0,.0% 0,0% 0,0% 0,0% 0,0% 00% 00% 0,0% 0,0% 00% 00% 00% 00% 00% 0,0% 0,0% 22% 0,0% 0,0%
Software { 0,0% 0,0% 0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0% 2,2%
Cédigo  0,0% 0,0% 0,0% 0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 0,0% 0,0%
Compilador 4 0,0% 0,0% 0,0% 0,0% 00% 00% 00% 00% 00% 00% 00% 00% 00% 00% 22% 00% 00% 00% 00%
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Rétulo previsto
Figura 6.4: Matriz de confusao do melhor modelo combinando o modelo geral com os

especialistas.
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7 Conclusao

Este trabalho propos o desenvolvimento de um sistema de reconhecimento de sinais
dinamicos da Lingua Brasileira de Sinais (Libras) focado no contexto educacional, vi-
sando auxiliar nos estudos para a mitigacao das barreiras de comunicacao enfrentadas
pela comunidade surda em salas de aula. O objetivo geral foi alcancado por meio da
criacao de um conjunto de dados especifico e da implementacao de modelos de aprendi-
zado de maquina capazes de classificar sinais com movimento.

A metodologia envolveu a construcao de uma base de dados propria contendo
900 videos, contemplando 20 sinais distintos realizados por 9 sinalizadores. Para o pro-
cessamento desses dados, utilizou-se a ferramenta MediaPipe Holistic para a extragao de
keypoints e a técnica de aumento de dados em 20 vezes para buscar maior generalizacao
do modelo no treinamento.

A arquitetura do modelo baseou-se em redes neurais recorrentes do tipo Long
Short-Term Memory (LSTM), explorando diferentes conjuntos de caracteristicas, como
angulos e distancias, além de atributos de movimento.

Os experimentos demonstraram que a evolugao incremental do modelo base, per-

mitiu ganhos de desempenho na tarefa de reconhecimento de sinais. Verificou-se que:

e A ampliacao do nimero de quadros amostrados (de 15 para 30) e do ntiimero de uni-
dades LSTM (de 512 para 1024) foi determinante para capturar melhor a dindmica

dos sinais.

e A integracao de caracteristicas de movimento foi essencial para distinguir sinais com

configuragoes de mao semelhantes, mas trajetorias distintas.

e A implementacao de uma arquitetura com modelos especialistas mostrou-se eficaz
para tratar ambiguidades, como as observadas entre os pares “Pesquisar/Perguntar”

e “Software/Inteligéncia Artificial”.

e O modelo geral combinado com os especialistas atingiu uma acurécia final de 88,89%,
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superando a referéncia inicial de 84,00% do modelo base.

Apesar dos resultados promissores, este trabalho ainda apresenta lacunas para

avancos. Como propostas para trabalhos futuros, sugerem-se os seguintes pontos:

e Expansao do Vocabulario: Ampliar a base de dados para incluir uma gama

maior de sinais do contexto educacional e de outras areas.

e Reconhecimento Continuo: Evoluir da classificacio de sinais isolados (ISLR)
para o reconhecimento de sinais continuos (CSLR), permitindo a tradugao de frases

completas sem a necessidade de pausas.

¢ Refinamento da Arquitetura: Explorar novas arquiteturas para os modelos geral
e especialistas, como a otimizacao de hiperparametros especificos e adicao de novas

camadas relevantes.

e Modelos Especialistas: Explorar a utilizagao de outros modelos especialistas para
melhorar o desempenho do modelo em classes que ainda apresentam confusao, como

“Aluno”, “Duvida”, “Entender”, “Trabalho”, “Computador” e “Internet”.

¢ Implementacao em Tempo Real: Testar a eficiencia computacional do modelo

em dispositivos méveis para uso pratico em ambientes de ensino.

As contribuigoes deste estudo reforcam a viabilidade do uso de aprendizado de
maquina e visao computacional para promover a acessibilidade, servindo como base para

futuras ferramentas de apoio a inclusao social e educacional de surdos no Brasil.
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