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Resumo

A inclusão da comunidade surda no ambiente educacional brasileiro enfrenta barreiras

significativas devido à carência de intérpretes e à falta de fluência na Ĺıngua Brasileira

de Sinais (Libras) por parte de professores e alunos ouvintes. Este trabalho apresenta o

desenvolvimento de um modelo de reconhecimento de sinais dinâmicos da Libras focado

no contexto de sala de aula, utilizando técnicas de aprendizado de máquina. Para isso,

foi constrúıdo um conjunto de dados próprio contendo 900 v́ıdeos de 20 sinais distintos,

executados por nove sinalizadores. A metodologia consistiu na extração de pontos de

referência (keypoints) por meio da ferramenta MediaPipe Holistic, seguida pelo cálculo de

caracteŕısticas geométricas (ângulos e distâncias) e de movimento. O modelo de classi-

ficação baseou-se em redes neurais recorrentes (RNN) do tipo Long Short-Term Memory

(LSTM). Os resultados demonstram que a integração de caracteŕısticas de movimento,

juntamente com o emprego de modelos especialistas para distinguir classes amb́ıguas, pro-

porcionaram uma acurácia geral do modelo de 88,89%. A abordagem contribui para o

avanço dos estudos na tarefa de reconhecimento de sinais da Libras, oferecendo uma base

para o desenvolvimento de futuras ferramentas de acessibilidade no contexto educacional.

Palavras-chave: Reconhecimento de sinais, aprendizado de máquina, sinais dinâmicos,

contexto educacional, visão computacional.



Abstract

The inclusion of the deaf community in the Brazilian educational environment faces sig-

nificant barriers due to the shortage of interpreters and the lack of fluency in Brazilian

Sign Language (Libras) among hearing teachers and students. This work presents the de-

velopment of a dynamic Libras sign recognition model focused on the classroom context,

using machine learning techniques. For this purpose, a proprietary dataset containing

900 videos of 20 distinct signs, performed by nine signers, was constructed. The metho-

dology consisted of extracting keypoints using the MediaPipe Holistic tool, followed by

the calculation of geometric features (angles and distances) and movement features. The

classification model was based on Long Short-Term Memory (LSTM) recurrent neural

networks (RNN). The results demonstrate the integration of movement features, with the

use of specialist models to distinguish ambiguous classes, provided an overall accuracy of

the model of 88.89%. The approach contributes to the advancement of studies in the task

of Libras sign recognition, providing a basis for the development of future accessibility

tools in the educational context.

Keywords: Sign recognition, machine learning, dynamic signs, educational context, com-

puter vision.
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5.3 Ângulos da mão calculados a partir dos pontos. . . . . . . . . . . . . . . . 28
5.4 Keypoints da pose, obtidos pelo MediaPipe. . . . . . . . . . . . . . . . . . 29

6.1 Matriz de confusão do modelo base. . . . . . . . . . . . . . . . . . . . . . . 40
6.2 Matriz de confusão do modelo especialista para classes “Pesquisar” e “Per-
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1 Introdução

A Ĺıngua Brasileira de Sinais (Libras) é a ĺıngua utilizada pela comunidade surda no

Brasil, como meio principal de comunicação. Entretanto, apesar de a ĺıngua ser essencial

na comunidade e reconhecida oficialmente por lei (BRASIL, 2002), apenas uma pequena

parcela de ouvintes sabe se comunicar por meio dela, o que prejudica a inclusão dos surdos

na sociedade.

A Libras utiliza recursos espaço-visuais na constituição dos sinais, cujos princi-

pais elementos são a configuração da mão, expressões não manuais, orientação da palma

da mão, localização do sinal e movimento (ARAúJO; FERREIRA, 2016). Dado que a

ĺıngua é essencialmente visual-motora, o movimento é uma caracteŕıstica muito presente

e determinante na maioria dos sinais.

Considerando essa natureza essencialmente visual e dinâmica, a tarefa de reco-

nhecimento de sinais é definida, no contexto da computação, como o processo de ensinar

um sistema a identificar e classificar um sinal espećıfico a partir de um v́ıdeo. A ideia geral

é que um algoritmo de inteligência artificial seja capaz de analisar um v́ıdeo e determinar

qual sinal foi executado, fornecendo a respectiva tradução em português.

Embora existam vários estudos na área de reconhecimento de sinais de outras

ĺınguas, como American Sign Language (ASL) (BUTTAR et al., 2023), Chinese Sign

Language (CSL) (HE et al., 2023), Indian Sign Language (ISL) (DIKSHANT et al.,

2024), os estudos para a Libras possuem espaço para muitos avanços e enfrentam diversos

desafios.

Um dos principais desafios é a escassez de bases de dados de sinais públicas, uma

vez que as bases existentes possuem uma gama razoável de sinais, porém com poucas

amostras de sinalizadores para cada sinal. Essa caracteŕıstica dificulta consideravelmente

o treinamento de modelos que realizam as tarefas de reconhecimento. Dessa forma, grande

parte das pesquisas na área busca construir suas próprias bases de dados aplicadas em

contextos espećıficos, combinando técnicas de aumento de dados (data augmentation)

visando obter resultados melhores nos treinamentos.
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Além disso, algumas pesquisas abordam a tarefa de reconhecimento de sinais com

recursos auxiliares para aprimorar a detecção dos movimentos, como é o caso de sensores,

luvas ou câmeras de profundidade. Apesar de haver um ganho no desempenho do modelo,

essas técnicas restringem o contexto de utilização de uma ferramenta de reconhecimento

de sinais, de modo a sempre depender desses recursos auxiliares. Em contrapartida, os

estudos que realizam o reconhecimento utilizando apenas uma câmera também apresentam

bons resultados e são mais flex́ıveis e acesśıveis para uma implementação em um contexto

prático na sociedade.

Diante do amplo espectro de desafios de inclusão da comunidade surda, o contexto

educacional destaca-se como uma área consideravelmente cŕıtica. A dificuldade de acesso

a intérpretes em tempo integral nas salas de aula e a falta de fluência de professores e

alunos na Libras conferem uma barreira à comunicação. Visto que o ambiente educacional

de uma sala de aula é um espaço fundamental para o desenvolvimento e inclusão social,

é necessária uma intervenção para que essas dificuldades sejam superadas. Logo, o foco

deste trabalho consiste justamente no reconhecimento de sinais comumente utilizados em

salas de aula.

Dessa forma, este estudo justifica-se pela necessidade de contribuir para o avanço

na tarefa de reconhecimento de sinais da Libras com movimento, uma vez que a comu-

nicação e a inclusão dos surdos na sociedade enfrentam inúmeras barreiras que precisam

ser quebradas. Acredita-se que, com a contribuição proposta, mais um passo será dado

para tornar a comunicação mais acesśıvel.

1.1 Objetivos

O objetivo geral do trabalho é desenvolver e treinar um modelo capaz de reconhecer sinais

da Libras com movimento no contexto educacional e no contexto da computação.

Os objetivos espećıficos consistem em:

• Construir uma base de dados de v́ıdeos de sinais no contexto educacional e no

contexto da computação;

• Desenvolver e treinar um modelo de aprendizado de máquina para a tarefa de reco-
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nhecimento de sinais da Libras com movimento;

• Explorar a utilização da base de dados constrúıda no treinamento do modelo e

avaliar o desempenho.
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2 Fundamentação Teórica

Este caṕıtulo descreve os fundamentos teóricos necessários para a construção do trabalho.

Ele é dividido em duas seções, sendo elas a Seção 2.1 que trata sobre a Ĺıngua Brasileira

de Sinais (Libras) e a Seção 2.2 que discorre sobre o tipo de rede neural Long Short-Term

Memory (LSTM).

2.1 Ĺıngua Brasileira de Sinais (Libras)

A Libras é a ĺıngua oficial da comunidade surda no Brasil, reconhecida pela lei nº

10.436/2002 (BRASIL, 2002). É o meio de comunicação pelo qual os surdos conseguem

expressar-se livremente com recursos espaço-visuais. Entretanto, mesmo após mais de

duas décadas do reconhecimento oficial, poucas pessoas ouvintes sabem se comunicar por

meio dela, e os recursos de acessibilidade seguem insuficientes para incluir os surdos na

sociedade de forma plena.

Embora seja a ĺıngua de sinais predominante no Brasil, a Libras não é a única

existente. Existem inúmeras ĺınguas de sinais por todo o mundo, com diferentes variações

lingúısticas, como regionalismos e sotaques. Cada ĺıngua possui sua própria estrutura

léxica e gramatical, que pode diferir completamente de outras. Alguns exemplos de outras

ĺınguas conhecidas internacionalmente são: Ĺıngua de Sinais Americana (ASL), Ĺıngua

de Sinais Francesa (LSF), Ĺıngua de Sinais Britânica (BSL), Ĺıngua de Sinais Chinesa

(CSL) e Ĺıngua de Sinais Indiana (ISL). Dentro do Brasil, apenas a Libras é oficialmente

reconhecida por lei como a ĺıngua da comunidade surda. No entanto, existem muitas

outras ĺınguas de sinais ind́ıgenas independentes da Libras, como a Ĺıngua de Sinais

Kaapor (LSK) e a Ĺıngua Terena de Sinais (LTS).

Durante muitos anos, a ĺıngua de sinais sofreu grande resistência e preconceito

na sociedade. A técnica do oralismo era a única forma permitida de comunicação entre os

surdos, devido ao Congresso de Milão, que ocorreu em 1880. Somente a partir de 1960 as

ĺınguas de sinais voltaram a ser aceitas na sociedade, graças aos estudos de Stokoe (1960).
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Ele concluiu que as ĺınguas de sinais possuem estruturas léxicas e sintáticas completas,

capazes de produzir infinitas frases e expressar ideias como qualquer outra ĺıngua. Dessa

forma, entende-se que a Libras não é português gesticulado, uma vez que possui sintaxe,

semântica e pragmática próprias, totalmente independentes da ĺıngua oral. Ela é completa

em si mesma e carrega recursos suficientes para expressar qualquer ideia.

Segundo Araújo e Ferreira (2016), o sinal em Libras é formado por um conjunto

de cinco parâmetros:

• Configuração da mão: Formas que as mãos assumem na realização do sinal,

podendo ser em formas de letras, números ou outras;

• Ponto de articulação: Espaço em frente ao corpo onde os sinais são articulados;

• Movimento: Deslocamento da mão no espaço;

• Orientação: Orientação da palma da mão durante a realização do sinal, que pode

ser para cima, para baixo, para dentro, para fora ou para o lado;

• Expressões não manuais: A expressão facial que é usada para definir ou intensi-

ficar os significados dos sinais.

A grande maioria dos sinais da Libras possui bastante movimento, porém nem

todos se configuram dessa forma. Há também alguns sinais estáticos, como a datilologia,

ou alfabeto manual, que é a representação das letras do alfabeto da ĺıngua portuguesa

por meio de configurações de mão na Libras.

As Figuras 2.1a e 2.1b exemplificam dois sinais da Libras “Pesquisar” e “Pergun-

tar” que se distinguem majoritariamente pelo movimento.

2.2 Long Short-Term Memory (LSTM)

As Redes Neurais Recorrentes (RNNs) são uma classe de arquiteturas de aprendizado

profundo projetadas especificamente para o processamento de dados sequenciais, como

séries temporais, áudio ou v́ıdeo. Diferente das redes neurais convencionais, as RNNs

possuem conexões ćıclicas que permitem que a informação persista, funcionando como uma
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(a) Sinal “Pesquisar” (b) Sinal “Perguntar”

Figura 2.1: Sinais de “Pesquisar” e “Perguntar” (QUADROS, R., 2023).

memória interna que retém conhecimentos de entradas anteriores para influenciar a sáıda.

Entretanto, as RNNs tradicionais apresentam limitações ao lidar com sequências longas,

por conta do problema do desaparecimento ou explosão do gradiente, o que as impede

de aprender dependências de longo prazo de maneira eficaz (LIPTON; BERKOWITZ;

ELKAN, 2015).

Para mitigar esses problemas, Hochreiter e Schmidhuber (1997) introduziram a

arquitetura de Memória de Longo e Curto Prazo (Long Short-Term Memory - LSTM).

O diferencial da LSTM consiste em uma estrutura de célula de memória, que regula o

fluxo de informações por meio de portas (gates). Essas portas utilizam pesos para decidir

quais dados devem ser armazenados, descartados ou carregados para o próximo estado.

A unidade LSTM é composta por:

• Porta de Esquecimento (Forget Gate): Responsável por identificar quais in-

formações do estado anterior da célula não são mais relevantes e devem ser descar-

tadas.

• Porta de Entrada (Input Gate): Decide quais novas informações da entrada

atual serão atualizadas e armazenadas no estado da célula.

• Porta de Sáıda (Output Gate): Determina qual parte do estado atual da célula

será enviada como sáıda para a próxima etapa da sequência.

No domı́nio do reconhecimento de sinais, a rede LSTM destaca-se pela capacidade
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de processamento temporal, sendo útil para capturar a dinâmica do movimento, que é

determinante para o significado da maioria dos sinais na Libras. Como a execução de

um sinal envolve uma trajetória de movimentos das mãos e do corpo, a LSTM consegue

aprender as correlações entre os quadros, permitindo uma rastreabilidade do movimento

ao longo do tempo.
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3 Trabalhos Relacionados

Existem inúmeras formas de abordar a tarefa de reconhecimento de sinais em visão compu-

tacional, e diferentes métodos são utilizados de acordo com as caracteŕısticas do problema.

A categorização é definida em relação à continuidade dos sinais e à presença ou não de

movimento. A tarefa de reconhecer sinais individuais, muitas vezes em ńıvel de letras

ou palavras, é chamada de Isolated Sign Language Recognition (ISLR). Já a tarefa de

interpretar um fluxo cont́ınuo de v́ıdeo em uma sequência de sinais, sem necessidade de

pausas entre os sinais, é chamada de Continuous Sign Language Recognition (CSLR). Por

outro lado, os sinais também são categorizados pela presença de movimento, de modo

que os sinais sem movimento são chamados de sinais estáticos, enquanto os demais, com

movimento, são comumente chamados de sinais dinâmicos.

Alguns estudos utilizam algoritmos clássicos para classificar os sinais, como o

Histograma de Gradientes (Histogram of Oriented Gradients - HOG) (BASTOS, 2015).

Porém esses métodos geralmente ficam limitados a sinais estáticos, pois não desempenham

bem sozinhos quando se adiciona o movimento. Para reconhecimento de sinais estáticos,

o modelo You Only Look Once (YOLO) também é muito utilizado em diferentes versões

e apresenta bons resultados (BUTTAR et al., 2023).

Já para a tarefa de reconhecimento de sinais com movimento, os algoritmos

clássicos raramente são utilizados isoladamente na literatura. As estratégias mais utili-

zadas são baseadas em algoritmos de aprendizado profundo e existem inúmeras maneiras

de abordar o problema. Assim, frequentemente, encontram-se trabalhos que exploram

diferentes combinações de Redes Neurais Convolucionais (Convolutional Neural Network

- CNN) e Redes Neurais Recorrentes (Recurrent Neural Network - RNN) que alcançam

um bom desempenho no reconhecimento. Rajapakshe et al. (2025) aborda a tarefa com-

binando uma CNN treinada para extrair caracteŕısticas dos v́ıdeos, com uma rede LSTM

responsável pelo reconhecimento dos sinais a partir dos dados extráıdos.

As CNNs são redes especializadas em analisar dados com topologia de grade,

como imagens, sendo ótimas para processar os quadros dos v́ıdeos de sinais. Enquanto
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isso, as RNNs são projetadas para processar dados sequenciais, como séries temporais,

utilizando uma memória para reter informações de entradas anteriores, o que contribui

na análise da continuidade dos sinais e rastreabilidade do movimento. Já a rede LSTM é

um tipo de RNN bastante presente na literatura em tarefas de reconhecimento de sinais.

É posśıvel processar os dados de entrada das redes de maneiras diferentes. A

abordagem mais comum é extrair pontos relevantes dos quadros (keypoints) e utilizá-

los diretamente como entrada da rede. He et al. (2023) faz a extração dos keypoints

do esqueleto e da mão e os utiliza como entrada em uma rede LSTM para realizar o

reconhecimento da ĺıngua de sinais chinesa. Além disso, uma outra estratégia interessante,

utilizada por Alves, Boldt e Paixão (2024), é codificar os keypoints extráıdos dos quadros

em imagens bidimensionais, contendo informações espaciais e temporais. Em seguida,

uma rede CNN constrúıda sobre a rede residual profunda de 18 camadas (ResNet18) é

alimentada com os quadros codificados para classificar os sinais da Libras.

Ao invés de alimentar uma rede neural com keypoints, também é posśıvel fornecer

uma sequência de quadros diretamente a uma rede. É o caso do trabalho de Singh (2021),

que organiza os quadros sequencialmente e os envia como entrada para uma rede neural

3D-CNN. Então, ela processa os quadros e já devolve a classificação como sáıda, sem

precisar de uma extração prévia de keypoints. Uma vantagem dessa abordagem é que

isso pode contribuir para a detecção de outros elementos importantes no sinal, além do

movimento, como, por exemplo, a expressão facial.

Estudos mais recentes também fazem uso de modelos mais complexos na tarefa

de reconhecimento de sinais. Damdoo e Kumar (2025) constroem um modelo chamado

SignEdgeLVM, baseado na arquitetura Sign Language Transformer (SLTr). Ele processa

as representações de quadros espaço-temporais usando camadas de auto-atenção (self-

attention) e feed forward. Por conta do mecanismo de auto-atenção, que ajuda o modelo

a entender o contexto temporal, foi posśıvel realizar o reconhecimento de sinais cont́ınuos

(CSLR). Essa tarefa é consideravelmente mais complexa e exige tanto um modelo mais

profundo quanto um volume bem maior de dados para treinamento, além de um poder

computacional elevado.

Algumas técnicas para aprimorar a performance dos modelos também estão pre-
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sentes na literatura, como o fine-tuning em modelos pré-treinados. Dentre os benef́ıcios

de se utilizar modelos pré-treinados, um dos mais percept́ıveis e relevantes é obter um me-

lhor desempenho quando há poucos dados no conjunto do problema a ser resolvido. Uma

vez que os modelos são pré-treinados em conjuntos de dados consideravelmente maiores,

as redes aprendem caracteŕısticas de alto ńıvel que servem como fundamentos para ex-

trair novos aprendizados a partir de conhecimentos já consolidados. Além disso, o tempo

de treinamento e o sobreajuste (overfitting) podem ser reduzidos com a aplicação dessa

técnica.

A arquitetura TCNet do estudo proposto por Lu, Salah e Poppe (2024) utiliza

uma rede SpyNet pré-treinada para estimar movimento e alcançou resultados do estado

da arte na tarefa de reconhecimento de sinais. Outro exemplo é o estudo de Liu et al.

(2021), que utiliza a arquitetura VGG16 pré-treinada como base. Os autores utilizaram

as primeiras quatro camadas da VGG16 e adicionaram mais cinco camadas de convolução

dilatada no modelo, atingindo uma taxa de reconhecimento de 93,5% no conjunto de

dados público Sahand.

Modelos pré-treinados também são utilizados para realizar tarefas de extração de

caracteŕısticas, como no estudo de Bansal e Jain (2023), em que a ResNet50 pré-treinada

é aplicada nos v́ıdeos do conjunto de dados para servir de entrada para uma rede RNN

posteriormente. Uma ideia semelhante se aplica ao estudo de Zuo e Mak (2022), que

utiliza a arquitetura VGG11 para extrair caracteŕısticas visuais dos quadros dos v́ıdeos

de entrada.

Além disso, outra técnica muito presente é o aumento de dados. Essa abordagem

é comumente utilizada quando não há muitos dados no conjunto, de forma a tentar reduzir

o overfitting e alcançar uma melhor generalização do modelo durante o treinamento. Al-

guns aumentos podem ser aplicados, como transformações em imagens (rotação, inversão,

translação, brilho, contraste, rúıdo, zoom), transformações em v́ıdeos (deformação tem-

poral elástica, recorte) e outras que contribuam para a generalização dos dados.

Os autores Oropesa, Felicen e Guzman (2024) realizaram um aumento de 10 vezes

dos dados, partindo de um conjunto de 97 v́ıdeos por sinal, para um novo conjunto de 970

v́ıdeos por sinal. Com o melhor modelo e o conjunto de dados aumentado, foram obtidas
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acurácias de 98% no treinamento e 86% nos testes em ambiente real, o que sugere um

bom aproveitamento dessa abordagem.

Existe também a possibilidade de extrair caracteŕısticas personalizadas, resultan-

tes da combinação de outras caracteŕısticas. Sarmento (2023) treinou um modelo utili-

zando um vetor de 90 caracteŕısticas aglomeradas, provenientes da extração dos ângulos

entre as conexões dos keypoints de cada mão e da extração da distância entre os keypoints

da pose. Para os ângulos ou distâncias que não estavam presentes, foi atribúıdo o valor 0

como forma de preenchimento (padding). Comparada às outras abordagens testadas pela

autora, esta obteve os melhores resultados de acurácia, além de facilitar o treinamento do

modelo.

Este presente trabalho se propõe em utilizar uma abordagem muito semelhante

à de Sarmento (2023), com a mesma arquitetura do modelo e extração de caracteŕısticas

personalizadas. Entretanto, como contribuição deste trabalho, são implementados mo-

delos especialistas para sinais amb́ıguos e elaboradas outras caracteŕısticas geométricas e

de movimento. Além disso, são realizados experimentos variando o tamanho da rede e

quantidade de quadros selecionados.
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4 Conjunto de dados

Quando se trata de treinar um modelo de aprendizado profundo para uma tarefa de reco-

nhecimento, é necessário ter um conjunto de dados representativo. Atualmente, existem

alguns conjuntos conhecidos na literatura que apresentam uma gama razoável de sinais.

Porém o maior desafio de utilizar esses conjuntos no modelo é a pequena quantidade de

v́ıdeos por sinal. Como mostra a Tabela 4.1, existem, no máximo, 7 v́ıdeos por classe em

um único conjunto de dados. Além disso, o tamanho dos v́ıdeos, a resolução e o plano de

fundo não são padronizados, exigindo um trabalho de pré-processamento para fornecer

os dados ao modelo. Existem também os conjuntos de dados MINDS - Libras1 e Libras

- UFOP2 que são mais abrangentes, porém também não focam em sinais do contexto

educacional.

Tabela 4.1: Quantidade de classes, sinalizadores e v́ıdeos por classe nas diferentes fontes
de dados.

Fonte
Nº classes
distintas

Nº sinalizadores
Nº v́ıdeos
por classe

Nº total
de v́ıdeos

UFPE3 1396 4 De 1 a 7 4221
UFV4 1004 3 De 1 a 4 1029
INES5 237 1 De 1 a 2 282
SignBank6 485 1 1 485

Fonte: Sarmento (2023).

Dessa forma, a maioria dos autores na literatura escolhe construir um conjunto

de dados próprio. Dado que o objetivo deste trabalho é reconhecer sinais do contexto

educacional e, considerando os fatores citados, também optou-se por construir um con-

junto de dados espećıfico para essa tarefa. Ao todo, foram escolhidos 20 sinais diferentes

para constituir o conjunto de dados, de forma que todos apresentem movimento e se en-

quadrem no contexto de sinais utilizados em uma sala de aula. Mais especificamente,

1https://www.kaggle.com/datasets/j0aopsantos/minds-libras
2https://www.kaggle.com/datasets/andersonls/libras-ufop-dataset
3https://libras.cin.ufpe.br/
4https://sistemas.cead.ufv.br/capes/dicionario/
5https://www.ines.gov.br/dicionario-de-libras/
6https://signbank.libras.ufsc.br/pt
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oito sinais estão ligados à área da computação e podem ser utilizados em uma sala de

aula, enquanto doze sinais são mais genéricos no contexto educacional. Os sinais esco-

lhidos foram: “Professor”, “Estudar”, “Aluno”, “Dúvida”7, “Perguntar”, “Responder”,

“Entender”, “Pesquisar”8, “Aprender”9, “Quadro”, “Prova”, “Trabalho escolar”, “Com-

putador”10, “Internet”11, “Tecnologia”, “Algoritmo”, “Inteligência artificial”, “Software”,

“Código fonte” e “Compilador”. Os doze primeiros são os sinais genéricos de sala de aula,

enquanto os oito últimos são os sinais espećıficos da computação.

4.1 Captura dos v́ıdeos

Os v́ıdeos dos sinais foram gravados por alunos e professores da faculdade de Letras da

Universidade Federal de Juiz de Fora (UFJF) em dois dias diferentes. A primeira gravação

foi feita no dia 28 de julho de 2025, com quatro pessoas sinalizando. Já a segunda gravação

foi realizada no dia 30 de julho de 2025, com cinco pessoas sinalizando. Dos sinalizadores

presentes, oito deles são ouvintes e um é surdo. Cada pessoa gravou 5 repetições de todos

os 20 sinais, totalizando 45 repetições por sinal. Além disso, é importante ressaltar que

todos os participantes possuem conhecimento em Libras.

Todos os v́ıdeos foram gravados no mesmo local, em uma sala preparada para a

captura de v́ıdeos de sinais na faculdade de Letras, mantendo a mesma configuração de

iluminação, plano de fundo e câmera em toda a coleta. Pode haver pequenas divergências

quanto à distância dos elementos dos v́ıdeos gravados no primeiro dia, comparados aos

v́ıdeos do segundo dia, porém não houve impacto significativo no resultado obtido.

O plano de fundo foi um tecido chromakey verde, que cobre toda a área de

gravação dos v́ıdeos. O uso do chromakey é útil para possibilitar edições do plano de

fundo dos v́ıdeos, porém para este presente trabalho, nenhuma edição do plano de fundo

foi realizada. Para a iluminação, contou-se com quatro fontes de luz: uma lâmpada de

teto localizada no centro da sala e três holofotes posicionados sobre um tripé, localizados

à esquerda, à direita e à frente do sinalizador e direcionados a ele durante todas as

7https://libras.cin.ufpe.br/sign/460
8https://libras.cin.ufpe.br/sign/1080
9https://libras.cin.ufpe.br/sign/848

10https://libras.cin.ufpe.br/sign/354
11https://libras.cin.ufpe.br/sign/378



4.2 Preparação dos v́ıdeos 21

capturas. O sinalizador se posicionava a aproximadamente 50 cent́ımetros à frente do

chromakey e mantinha-se no mesmo local em todos os v́ıdeos. A área gravada dos v́ıdeos

sempre capturava o sinalizador a partir de alguns cent́ımetros acima da cabeça até alguns

cent́ımetros abaixo da região da cintura e sempre posicionado ao centro horizontalmente.

A câmera utilizada foi Canon SL3 e os v́ıdeos foram gravados na resolução 1920

× 1080 (Full HD), a 60 quadros por segundo. Foi acordado que, para cada sinal, uma

pessoa informaria ao sinalizador qual seria o próximo sinal e o sinalizaria para padronizar

a execução. Em seguida, a gravação era iniciada e o sinalizador repetia o mesmo sinal 5

vezes, sempre iniciando e terminando o sinal com a posição de repouso das mãos. Cada

v́ıdeo ficou com uma duração média de 15 segundos antes de ser processado.

4.2 Preparação dos v́ıdeos

Após todos os 180 v́ıdeos serem capturados (20 sinais × 9 sinalizadores = 180 v́ıdeos),

ainda era necessário cortá-los para isolar uma repetição do sinal por v́ıdeo, uma vez que

cada v́ıdeo contemplava 5 repetições de um sinal. Os v́ıdeos foram cortados manualmente,

por conta da dificuldade de estimar com precisão em quais instantes cada v́ıdeo precisaria

ser cortado de forma automática, uma vez que a duração da execução do sinal varia para

cada sinalizador. Dessa forma, utilizou-se o software “Fotos Microsoft”12 para cortar cada

v́ıdeo em cinco novos v́ıdeos. O motivo de utilizar esse software foi que os v́ıdeos cortados

resultantes mantinham a resolução e a taxa de quadros iguais às dos v́ıdeos originais.

Testou-se também a utilização do software “Microsoft Clipchamp”13, porém este reduzia

a resolução dos v́ıdeos resultantes na versão gratuita.

A posição de repouso das mãos foi preservada no ińıcio e no final de cada v́ıdeo

resultante para manter a padronização. Além disso, nenhum quadro de um v́ıdeo se repete

em qualquer outro v́ıdeo, pois eles foram cortados um a um, mantendo o quadro inicial de

um v́ıdeo sempre posterior ao quadro final do v́ıdeo anterior. Ao final do processamento,

consolidou-se um conjunto de 900 v́ıdeos (20 sinais × 9 sinalizadores × 5 repetições por

sinal = 900 v́ıdeos), com tempo médio de duração de 2 segundos por v́ıdeo.

12https://www.microsoft.com/pt-br/windows/tips/photos-app
13https://clipchamp.com/pt-br/
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Cada v́ıdeo foi salvo com o nome “XX-sinalizador-YY-execucao” (Exemplo: 00-

sinalizador-00-execucao), de modo que o primeiro número representa o identificador do si-

nalizador, enquanto o segundo representa o identificador da execução do sinal em questão,

variando de 00 a 04. Agruparam-se os v́ıdeos por sinais em pastas, logo cada pasta contém

todas as execuções do sinal, de todos os sinalizadores. As pastas foram padronizadas com

o nome “XX-nomedosinal” (Exemplo: 00-professor), de forma que o número representa

o identificador do sinal, variando de 00 a 19. Posteriormente, o identificador do sinal no

nome das pastas é utilizado como rótulo das classes dos sinais fornecidos ao modelo.
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5 Metodologia

Para a execução da tarefa de reconhecimento de sinais, adotou-se a estratégia de extrair

os keypoints dos quadros dos v́ıdeos, calcular caracteŕısticas personalizadas a partir deles

e, em seguida, utilizá-las para treinar uma rede neural com blocos LSTM. Utilizou-se

como ponto de partida a metodologia de melhor resultado proposta por Sarmento (2023).

Todo o processo foi reproduzido e, em seguida, adaptado para melhorar ainda mais o

desempenho do modelo no reconhecimento dos sinais escolhidos. A Seção 5.1 aborda

como o pré-processamento dos dados foi realizado para prepará-los para serem usados

como entrada do modelo. A Seção 5.2 apresenta informações a respeito da arquitetura do

modelo e lista todas as configurações iniciais dos parâmetros utilizados. Já na Seção 5.3,

discute-se o treinamento do modelo.

5.1 Pré-processamento dos dados

Antes de treinar o modelo, é necessário preparar os dados da maneira como a rede os

espera. A proposta de Sarmento (2023) que obteve a melhor acurácia consiste em extrair

caracteŕısticas personalizadas a partir dos keypoints obtidos. Uma amostragem de quadros

também é realizada para selecionar aqueles com maior potencial de fornecer informações

relevantes ao modelo, visando melhorar o reconhecimento. Além disso, os keypoints são

normalizados, e o conjunto de dados é aumentado de forma a reduzir o overfitting. Todas

essas técnicas foram aplicadas nesta etapa inicial de pré-processamento dos dados dos

v́ıdeos. O código foi inteiramente desenvolvido na linguagem Python, com o aux́ılio de

algumas bibliotecas e ferramentas. Um fluxo de execução é apresentado na Figura 5.1.

Inicialmente, todos os arquivos com a extensão “.mp4” são buscados nas pastas

de v́ıdeos, seguindo a ordem dos sinais da classe “00” até a classe “19”. Os v́ıdeos são

então processados na mesma ordem em que estão listados nas pastas. A partir do nome da

pasta e do nome do arquivo do v́ıdeo, obtém-se o identificador da classe e do sinalizador,

respectivamente.
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Figura 5.1: Fluxo de execução.

A primeira etapa do processamento dos v́ıdeos é a amostragem de quadros.

Utilizou-se a biblioteca OpenCV14 para fazer a leitura e o processamento de cada v́ıdeo.

É necessário que o v́ıdeo possua pelo menos a quantidade de quadros a ser amostrada

para que ele possa ser utilizado no modelo. Uma técnica de padding poderia ser aplicada

nos casos de v́ıdeos com menos quadros. Porém, dado que nenhum v́ıdeo do conjunto de

dados constrúıdo apresenta essa caracteŕıstica, optou-se por não aplicá-la.

Seguindo a metodologia base de Sarmento (2023), optou-se por amostrar 15 qua-

dros de cada v́ıdeo. Existem diferentes formas de escolher os quadros de um v́ıdeo. Uma

posśıvel abordagem seria amostrar segundo uma distribuição uniforme, porém isso não ga-

rante que os quadros mais relevantes serão selecionados. Utilizar a distribuição uniforme

14https://opencv.org/



5.1 Pré-processamento dos dados 25

para amostrar os quadros produziria a mesma chance de selecionar qualquer quadro do

v́ıdeo. No entanto, os quadros do ińıcio e do final do v́ıdeo contêm trechos da posição

de repouso das mãos, que não correspondem especificamente ao sinal em questão. Dessa

forma, é interessante aplicar uma distribuição que privilegie os quadros mais relevantes,

que se encontram no meio do v́ıdeo. Tendo isso em vista, a distribuição escolhida para

a amostragem foi a distribuição normal, que tende a selecionar mais quadros do meio do

v́ıdeo e menos quadros iniciais e finais.

De modo a melhorar a generalização do modelo e reduzir o overfitting, aplicou-se

a técnica de aumento de dados. Ela consiste em criar cópias modificadas dos dados do

conjunto, visando aumentar a diversidade sem a necessidade de coletar novos dados reais.

Para isso, algumas transformações foram combinadas aleatoriamente, de forma que os

dados aumentados fossem diferentes. O conjunto de dados foi aumentado em 20 vezes,

variando aleatoriamente os parâmetros das transformações em cada v́ıdeo. É importante

ressaltar que as transformações são aplicadas diretamente nos quadros selecionados e, a

cada aumento de um v́ıdeo, novos quadros são amostrados pela distribuição normal. Com

isso, aumenta-se ainda mais a diversidade, pois diferentes quadros podem estar presentes

no conjunto de dados aumentado. Além disso, o mesmo conjunto de transformações

aplicado a um quadro deve ser aplicado a todos os outros da amostra de aumento em

questão, logo os mesmos parâmetros são mantidos para cada sequência de quadros.

As seguintes transformações foram aplicadas:

• Espelhamento horizontal: Escolhe-se aleatoriamente se o v́ıdeo será espelhado

horizontalmente ou não. Essa transformação é especialmente útil para simular a

execução dos sinais utilizando a mão dominante inversa;

• Rotação: Rotaciona-se de -5 a 5 graus, simulando diferentes orientações;

• Translação: Translada-se horizontalmente e/ou verticalmente de -20 a 20 pixels

(até 20 pixels para a esquerda ou para a direita e/ou até 20 pixels para cima ou

para baixo);

• Corte centralizado: Corta-se até 10% das bordas dos quadros, mantendo-os sem-

pre centralizados;
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• Contraste: Alteração no contraste de 70% até 130% do contraste original (100%);

• Brilho: Alteração do brilho de -20 até 20 ńıveis de intensidade de pixel.

Cada quadro foi redimensionado para 640 pixels de largura por 480 pixels de

altura, de forma a prepará-lo para extrair as caracteŕısticas. Em seguida, os pontos de

referência (keypoints) são estimados utilizando a ferramenta “MediaPipe Holistic”15 do

Google. Ela é capaz de extrair keypoints não só das mãos, mas também da pose e da face

simultaneamente.

Os parâmetros utilizados no MediaPipe foram:

• Modo de imagem estática: Determina a natureza da entrada de dados. Utilizou-

se a opção desativada, na qual o sistema trata as imagens como um fluxo de v́ıdeo

cont́ınuo: ele detecta a pessoa nos primeiros quadros e, em seguida, passa a rastrear

apenas os keypoints nos quadros subsequentes;

• Complexidade do modelo: Define o ńıvel de complexidade do modelo de keypo-

ints. Utilizou-se o valor 2, que determina a complexidade mais alta, resultando em

maior precisão, porém com aumento na latência de inferência;

• Suavização dos keypoints : Utilizou-se o modo ativo, que aplica um filtro aos

keypoints ao longo das imagens para reduzir tremores;

• Habilitação de segmentação: Desativada, para não gerar uma máscara de seg-

mentação da pessoa;

• Suavização da segmentação: Desativada, uma vez que a segmentação também

foi desabilitada;

• Refinamento de marcos faciais: Desativado, optando por não realizar refina-

mentos adicionais nos pontos ao redor dos olhos e lábios;

• Confiança mı́nima de detecção: O valor mı́nimo de confiança exigido do modelo

para que a detecção seja considerada bem-sucedida. Utilizou-se uma confiança de

90%;

15https://pypi.org/project/mediapipe/
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• Confiança mı́nima de rastreamento: O valor mı́nimo de confiança exigido do

modelo de rastreamento para que a pose seja considerada rastreada com sucesso.

Utilizou-se uma confiança de 90%.

Em um único quadro, são extráıdos pontos na forma de coordenadas tridimensi-

onais da pose, da face e das mãos. Ao todo, obtém-se 543 coordenadas por quadro (33

da pose + 468 da face + 21 da mão esquerda + 21 da mão direita = 543 coordenadas).

Para acelerar a extração, até 4 processos são criados para extrair os pontos, de modo que

cada processo fica responsável por processar um quadro independente. Utilizou-se o pa-

ralelismo em ńıvel de processo, visando evitar o Bloqueio Global do Interpretador (Global

Interpreter Lock - GIL) do Python quando o paralelismo ocorre em ńıvel de thread. Os

pontos das mãos detectados pelo MediaPipe são exibidos na Figura 5.2.

Figura 5.2: Keypoints da mão, obtidos pelo MediaPipe.

5.1.1 Caracteŕısticas Geométricas

Após todos os pontos terem sido extráıdos dos quadros selecionados de um v́ıdeo, inicia-

se a etapa de extração de caracteŕısticas personalizadas a partir desses dados. Foram

calculados os ângulos internos de diferentes pontos de articulação de cada mão e diferentes

distâncias entre pontos estratégicos da pose. Os ângulos calculados são exibidos na Figura

5.3.

A partir de um ponto de articulação, obtém-se dois vetores v1 e v2 com origem na

articulação e extremidades em dois pontos vizinhos na mão. Com isso, é posśıvel calcular

o ângulo entre os vetores através da normalização, gerando os vetores unitários v̂1 = v1

||v1||
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Figura 5.3: Ângulos da mão calculados a partir dos pontos.

e v̂2 = v2

||v2|| . Em seguida, calcula-se o produto escalar entre esses vetores normalizados.

O ângulo θ é então obtido através da relação θ = arccos(v̂1 · v̂2).

A operação completa de cálculo do ângulo entre dois vetores pode ser expressa

pela equação:

θ = arccos

(
v1

||v1||
· v2

||v2||

)
(5.1)

.

Antes de calcular as distâncias entre os keypoints da pose, é necessário normalizá-

los, visando padronizar a posição e o tamanho do corpo na imagem. Dessa forma, todos os

pontos da pose são ajustados para que o centro dos ombros se torne a origem do sistema de

coordenadas. Além disso, todos os pontos também são divididos pelo tamanho do tronco.

Isso garante que o modelo entenda os sinais da mesma forma, independentemente da

distância do sinalizador em relação à câmera. Todos os pontos detectados pelo MediaPipe

são exibidos na Figura 5.4.

Seja Pi o vetor de coordenadas (x, y, z) do i-ésimo keypoint. O processo de nor-

malização para obter o ponto normalizado P̂i é definido pelas seguintes etapas:

1. Cálculo do centro de referência: O ponto central (C) é definido como o ponto

médio entre os ombros (pontos 11 e 12):
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Figura 5.4: Keypoints da pose, obtidos pelo MediaPipe.

C =
P11 + P12

2
(5.2)

.

2. Cálculo do Fator de Escala (Tamanho do Tronco): O fator de escala (s) é a

distância entre o centro dos ombros e o centro dos quadris (pontos 23 e 24):

s =

∥∥∥∥C − P23 + P24

2

∥∥∥∥ (5.3)

.

3. Normalização: Cada ponto Pi é transladado e reescalado:

P̂i =
Pi − C

s
(5.4)

.

Após a normalização ter sido aplicada, calcula-se o segundo grupo de carac-

teŕısticas personalizadas. Trata-se das distâncias entre pares de pontos espećıficos da
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pose. Foram determinados 36 pares de pontos para calcular distâncias e compor os dados

de entrada do modelo, juntamente com os ângulos das mãos. Os 36 pares são listados na

Tabela 5.1.

Tabela 5.1: Pares de pontos da pose para calcular distâncias.

Pontos Posições na pose
P0, P15 Nariz e pulso esquerdo
P0, P16 Nariz e pulso direito
P12, P16 Ombro direito e pulso direito
P12, P15 Ombro direito e pulso esquerdo
P11, P16 Ombro esquerdo e pulso direito
P11, P15 Ombro esquerdo e pulso esquerdo
P12, P14 Ombro direito e cotovelo direito
P12, P13 Ombro direito e cotovelo esquerdo
P11, P14 Ombro esquerdo e cotovelo direito
P11, P13 Ombro esquerdo e cotovelo esquerdo
P16, P18 Pulso direito e dedo mı́nimo direito
P16, P17 Pulso direito e dedo mı́nimo esquerdo
P15, P17 Pulso esquerdo e dedo mı́nimo esquerdo
P15, P18 Pulso esquerdo e dedo mı́nimo direito
P16, P20 Pulso direito e dedo indicador direito
P16, P19 Pulso direito e dedo indicador esquerdo
P15, P20 Pulso esquerdo e dedo indicador direito
P15, P19 Pulso esquerdo e dedo indicador esquerdo
P18, P20 Dedo mı́nimo direito e dedo indicador direito
P18, P19 Dedo mı́nimo direito e dedo indicador esquerdo
P17, P20 Dedo mı́nimo esquerdo e dedo indicador direito
P17, P19 Dedo mı́nimo esquerdo e dedo indicador esquerdo
P18, P22 Dedo mı́nimo direito e dedo polegar direito
P18, P21 Dedo mı́nimo direito e dedo polegar esquerdo
P17, P21 Dedo mı́nimo esquerdo e dedo polegar esquerdo
P17, P22 Dedo mı́nimo esquerdo e dedo polegar direito
P20, P22 Dedo indicador direito e dedo polegar direito
P20, P21 Dedo indicador direito e dedo polegar esquerdo
P19, P21 Dedo indicador esquerdo e dedo polegar esquerdo
P19, P22 Dedo indicador esquerdo e dedo polegar direito
P21, P22 Dedo polegar esquerdo e dedo polegar direito
P19, P20 Dedo indicador esquerdo e dedo indicador direito
P17, P18 Dedo mı́nimo esquerdo e dedo mı́nimo direito
P15, P16 Pulso esquerdo e pulso direito
P13, P14 Cotovelo esquerdo e cotovelo direito
P11+P12

2
, P23+P24

2
Centro dos ombros e centro do quadril

Fonte: Elaborada pelo autor (2026).

Assim como nos ângulos das mãos, as distâncias também são calculadas para cada

quadro selecionado do v́ıdeo. Ao todo, são calculadas 88 caracteŕısticas (26 ângulos da

mão esquerda + 26 ângulos da mão direita + 36 distâncias da pose = 88 caracteŕısticas).

Elas são concatenadas em um único vetor que é utilizado como entrada do modelo.

As caracteŕısticas extráıdas dos v́ıdeos são serializadas e salvas em diferentes

arquivos, para que um v́ıdeo que foi pré-processado uma vez não precise passar pelo

mesmo procedimento. No ińıcio da etapa de pré-processamento, verifica-se se existem

caracteŕısticas extráıdas para o v́ıdeo em questão, com o objetivo de pular essa etapa e

evitar uma computação desnecessária.
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5.1.2 Expansão do Conjunto de Caracteŕısticas Geométricas

De modo a tentar extrair ainda mais desempenho do modelo, algumas variações de ca-

racteŕısticas foram planejadas e calculadas. A primeira variação corresponde à adição de

mais distâncias, além das descritas na Tabela 5.1, adição de vetor normal das palmas das

mãos e à remoção de algumas distâncias entre dedos retornados pelo modelo da pose,

substituindo-os pelos keypoints do modelo das mãos que possuem uma precisão melhor.

As variações de caracteŕısticas geométricas foram:

• Distâncias internas das mãos (18 caracteŕısticas): Foram calculadas 9 distâncias

para cada mão, normalizadas pela escala da própria mão. Dentre elas, 4 distâncias

são entre a ponta do polegar e a ponta dos outros dedos, enquanto 5 distâncias são

do pulso até a ponta de todos os dedos;

• Normais das Palmas (6 caracteŕısticas): Foi calculado o vetor normal (x, y,

z) da palma de cada mão através do produto vetorial entre os vetores do pulso ao

dedo indicador e do pulso ao dedo mı́nimo;

• Distâncias entre as mãos e a face (24 caracteŕısticas): Foram calculadas

distâncias de 2 keypoints de cada mão até 6 keypoints da face. Essas distâncias

foram normalizadas pelo tamanho do tronco;

• Remoção de distâncias das mãos pelo modelo da pose (10 caracteŕısticas):

Os keypoints das mãos apresentam precisão superior quando obtidos pelo modelo

das mãos, comparado ao modelo da pose. Logo, optou-se por priorizar a utilização

do modelo das mãos para calcular as distâncias internas. Assim, 10 distâncias

anteriormente calculadas entre keypoints da pose foram removidas e substitúıdas por

distâncias entre keypoints do modelo das mãos. Estes são os pares de pontos cujas

distâncias foram removidas: (P16, P18), (P15, P17), (P16, P20), (P15, P19), (P18, P20),

(P17, P19), (P18, P22), (P17, P21), (P20, P22) e (P19, P21).

Assim, totalizam-se 38 novas caracteŕısticas (18 + 6 + 24 - 10 = 38), visto que 10

caracteŕısticas foram apenas substitúıdas pelas mesmas distâncias, utilizando os keypoints

das mãos em vez da pose.
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5.1.3 Caracteŕısticas de Movimento

Para capturar a dinâmica temporal dos sinais, um conjunto de caracteŕısticas baseadas

na velocidade e aceleração dos keypoints foi implementado. Para isso, considere Pt,i ∈ R3

o vetor de posição (x, y, z) do i-ésimo keypoint no quadro t, onde t ∈ [1, T ] e T é o número

total de quadros.

Cálculo de Velocidade e Aceleração

A velocidade instantânea Vt,i é aproximada pela diferença entre keypoints em quadros

consecutivos:

Vt,i = Pt,i − Pt−1,i, para t > 1. (5.5)

A aceleração instantânea At,i é calculada como a taxa de variação da velocidade:

At,i = Vt,i − Vt−1,i, para t > 1. (5.6)

Para t = 1, assume-se V1,i = 0 e A1,i = 0.

Caracteŕısticas por keypoints

Para cada keypoint selecionado, quatro caracteŕısticas são extráıdas a cada quadro:

1. Magnitude da Velocidade Normalizada:

v̂t,i =
∥Vt,i∥

maxt(∥Vt,i∥) + ϵ
(5.7)

2. Magnitude da Aceleração Normalizada:

ât,i =
∥At,i∥

maxt(∥At,i∥) + ϵ
(5.8)

3. Direção do Movimento (X e Y):

Componentes normalizados do vetor de velocidade no R2:
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dx,t,i =
Vx,t,i

∥Vxy,t,i∥+ ϵ
, dy,t,i =

Vy,t,i

∥Vxy,t,i∥+ ϵ
, (5.9)

onde:

• ∥Vxy∥ é a norma Euclidiana apenas nos componentes x e y.

• Vx,t,i e Vy,t,i são os componentes da velocidade instantânea do i-ésimo keypoint

no quadro t ao longo dos eixos x e y, respectivamente.

• ϵ = 10−6 é utilizado nos denominadores para evitar divisão por 0.

Keypoints Selecionados

As caracteŕısticas acima são calculadas para um subconjunto de 15 keypoints selecionados:

• Mãos (6 por mão): Pulso, e as pontas dos 5 dedos.

• Pose (3 pontos): Nariz, Pulso Esquerdo e Pulso Direito.

Isso resulta em 15 × 4 = 60 caracteŕısticas locais por quadro. A inclusão dupli-

cada dos pulsos, pelo modelo de mãos e modelo de pose foi feita de maneira redundante

intencionalmente para cobrir casos em que os pontos são detectados por somente um dos

modelos.

Caracteŕısticas de Movimento Globais

Além das caracteŕısticas locais, 5 descritores globais são computados para resumir o com-

portamento do movimento ao longo de toda a sequência de v́ıdeo:

1. Quadro de Pico de Velocidade (ρ): Esta caracteŕıstica identifica o momento do

sinal em que ocorre a maior intensidade de movimento:

ρ =
argmax(vcomb(t))

T
, (5.10)

onde:

• vcomb(t) = ∥Vt,Esq∥ + ∥Vt,Dir∥ é a velocidade combinada das duas mãos no

instante t.
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• T é o número total de quadros do v́ıdeo.

• argmax retorna o ı́ndice t onde o valor é máximo.

2. Variância da Velocidade Normalizada (σ2): Esta caracteŕıstica mede a con-

sistência ou variabilidade da velocidade ao longo da execução. Sinais com ritmo

constante possuem variância baixa, enquanto sinais com pausas possuem variância

alta:

σ2 =
1
T

∑T
t=1(vcomb(t)− v̄comb)

2

max(vcomb) + ϵ
, (5.11)

onde:

• v̄comb é a velocidade média do sinal.

• O denominador max(vcomb) normaliza o valor.

3. Coordenação do Movimento: Esta caracteŕıstica avalia o grau de coordenação

entre as mãos esquerda e direita. É útil para distinguir sinais simétricos de sinais em

que as mãos se movem de forma independente ou alternada. Se ambas as mãos estão

em movimento, calcula-se o coeficiente de correlação de Pearson entre a magnitude

das velocidades da mão esquerda e da mão direita para determinar a simetria. O

resultado pode variar de -1 a 1, de modo que:

• Coeficiente = 1: As mãos possuem um movimento coordenado;

• Coeficiente = 0: As mãos possuem movimentos independentes;

• Coeficiente = -1: As mãos possuem movimentos alternados.

4. Picos de Aceleração e Suavidade (K): Esta caracteŕıstica mede a complexi-

dade do movimento contando quantas vezes a aceleração muda de sentido (sinal).

Movimentos fluidos possuem poucas mudanças, enquanto movimentos complexos ou

trêmulos possuem muitas.

K =
1

T

T∑
t=2

1[sgn(at) ̸= sgn(at−1)], (5.12)
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onde:

• at é a aceleração da velocidade combinada no instante t.

• sgn(x) é a função sinal (retorna +1 ou −1).

• 1 retorna 1 se houver mudança de sinal, ou 0 caso contrário.

5. Indicador de Mão Dominante (D): Determina qual mão é a dominante no sinal,

comparando a quantidade total de movimento realizada por cada uma:

D =

∑T
t=1(∥Vt,Dir∥ − ∥Vt,Esq∥)∑T
t=1(∥Vt,Dir∥+ ∥Vt,Esq∥)

, (5.13)

onde valores próximos a +1 indicam dominância da mão direita, próximos a −1

indicam dominância da mão esquerda, e valores próximos a 0 indicam uso balanceado

das duas mãos (ou nenhum movimento).

6. Razão de Duração do Movimento (R): Calcula a porcentagem do v́ıdeo em

que houve movimento significativo, filtrando os momentos estáticos, ou com pouco

movimento:

R =
1

T

T∑
t=1

1[vcomb(t) > 0, 1 ·max(vcomb)], (5.14)

onde o limiar de 0, 1 (10%) é aplicado para filtrar movimentos com baixa velocidade

em relação ao pico de velocidade do v́ıdeo.

Ao todo, 66 caracteŕısticas de movimento foram calculadas (60 locais + 6 globais).

5.2 Arquitetura do Modelo

Omodelo responsável pela tarefa de reconhecer os sinais da Libras, baseado na arquitetura

de Sarmento (2023), consiste em uma rede neural com uma camada LSTM. Além dessa

camada, outras também são adicionadas para cumprir tarefas importantes na composição

geral do modelo.

A camada de entrada define o formato dos dados que entram na rede, preparando-

a para receber uma sequência de quadros. Já a camada de normalização padroniza os
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dados de entrada para que tenham média zero e variância unitária. Isso acelera a con-

vergência e evita problemas com escalas de valores diferentes. A camada LSTM é a

principal do modelo e é eficaz no processamento temporal. Para a tarefa de reconheci-

mento de sinais, a LSTM se destaca por ser capaz de aprender dependências de longo

prazo, o que é essencial, pois o movimento dos sinais contribui profundamente para o

significado. Uma função de regularização L1 também é aplicada ao kernel. Em seguida,

uma camada de dropout desativa aleatoriamente uma porcentagem de neurônios durante o

treinamento, o que contribui para reduzir o overfitting. Por fim, uma camada de sáıda com

ativação softmax gera as probabilidades finais de cada classe a partir das caracteŕısticas

aprendidas.

Além disso, foi utilizado o otimizador Adam com decaimento de peso (Adaptive

Moment Estimation with Weight Decay - AdamW) (LOSHCHILOV; HUTTER, 2017)

para proporcionar uma convergência mais rápida e estável do modelo. O AdamW decide

como ajustar os pesos da rede neural para que ela cometa menos erros durante o apren-

dizado. Já a técnica de decaimento de peso aplica uma penalização que tende a manter

os pesos do modelo com valores pequenos. A utilização do otimizador resulta em uma

melhor generalização e convergência do modelo no treinamento. A arquitetura completa

do modelo é descrita na Tabela 5.2.

Tabela 5.2: Arquitetura do modelo para reconhecimento de sinais.

Camada Dimensão de sáıda
Entrada (Tamanho do lote, Nº de quadros, Nº de caracteŕısticas)
Normalização (Tamanho do lote, Nº de quadros, Nº de caracteŕısticas)
LSTM (Tamanho do lote, Nº de neurônios)
Dropout (Tamanho do lote, Nº de neurônios)
Classificação (Densa) (Tamanho do lote, Nº de classes)

Fonte: Elaborada pelo autor (2026).

Os parâmetros utilizados foram:

• Número de caracteŕısticas: 88;

• Número de classes: 20;

• Fator de regularização L1: 0,001;
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• Taxa de Dropout : 0,4;

• Tamanho do v́ıdeo de entrada: 640 × 480;

• Taxa de aprendizado: 0,0001;

• Taxa de decaimento de peso: 0,005;

• Função de perda: Entropia cruzada categórica esparsa.

5.3 Treinamento do Modelo

Como as etapas de pré-processamento foram realizadas previamente e as caracteŕısticas

extráıdas salvas, a etapa de treinamento foi consideravelmente mais leve, uma vez que os

dados não precisaram ser re-processados a cada novo treinamento.

A base foi dividida de modo que cada sinalizador estivesse presente em apenas

um grupo (treinamento, validação ou teste), para não enviesar o modelo. A estratégia

utilizada foi a validação cruzada 9-fold, sempre utilizando os v́ıdeos de 7 sinalizadores para

treinamento, 1 sinalizador para validação e 1 sinalizador para teste. A cada mudança de

fold, um novo sinalizador era escolhido para compor o conjunto de validação e outro

sinalizador era escolhido para o conjunto de teste.

Visando evitar que o modelo decorasse os dados de treinamento, foi utilizada a

técnica de parada antecipada (early stopping), com paciência de 20 épocas. Essa técnica de

regularização visa evitar o overfitting monitorando o desempenho do modelo no conjunto

de validação e parando o treinamento quando a performance para de melhorar. Ao final

do treinamento, os pesos da época de melhor acurácia de validação foram selecionados.

Escolheu-se realizar o treinamento por 200 épocas.

O treinamento foi realizado em um computador com processador Intel(R) Core(TM)

i5-12450H (2.00 GHz), placa de v́ıdeo NVIDIA Geforce RTX 2050 4GB e 16GB de

memória RAM de 4800 MT/s.

Realizar o treinamento sem a utilização da placa de v́ıdeo é posśıvel, porém pre-

judica consideravelmente a performance e aumenta o tempo gasto em cada teste. A

execução desta etapa utilizando somente a CPU, no sistema operacional Windows, levava
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em torno de 6 horas para ser finalizada. Dessa forma, preparou-se o ambiente para execu-

tar o treinamento com a GPU, garantindo um tempo de execução viável de testes. O meio

mais acesśıvel encontrado para isso foi utilizar o Windows Subsystem for Linux (WSL) e

instalar o conjunto de ferramentas CUDA da NVIDIA. Tendo preparado o ambiente de

execução, cada treinamento realizado com a GPU levava em torno de 45 minutos, cerca

de 8 vezes mais rápido que na CPU.

Após o treinamento de cada fold, o modelo com os melhores pesos previu os

dados de teste e foi avaliado quanto à acurácia. Ao final do treinamento de todos os

folds, os resultados foram combinados de modo a obter a acurácia geral da base de dados

completa. Além disso, a matriz de confusão foi gerada para uma melhor visualização

do comportamento do modelo para cada classe, juntamente com gráficos de evolução da

acurácia e da função de perda.
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6 Experimentos e Resultados

Neste caṕıtulo são apresentados e discutidos os resultados dos experimentos realizados

para o reconhecimento de sinais da Libras. O objetivo é avaliar o impacto de diferentes

configurações de hiperparâmetros, conjuntos de caracteŕısticas e modificações na arquite-

tura do modelo, visando superar o desempenho do modelo base utilizado como referência.

A métrica utilizada para a comparação dos modelos foi a acurácia geral do conjunto de

dados completo.

6.1 Modelo Base

Para garantir a comparabilidade dos resultados, todos os experimentos foram realizados

utilizando a mesma base de dados de sinais dinâmicos. Como ponto de partida, definiu-se

como modelo base o apresentado no trabalho de Sarmento (2023), que foi descrito na

Seção 5.2. Ele utiliza apenas os atributos geométricos mencionados na Seção 5.1.1, uma

seleção normal de 15 quadros, uma camada LSTM com 512 unidades e hiperparâmetros

descritos na Seção 5.2. Utilizando as mesmas configurações, atingiu-se uma acurácia de

84,00% para o conjunto dos 20 sinais estudados neste trabalho.

A Figura 6.1 mostra como o modelo base se desempenhou em cada classe, conside-

rando o treinamento com todo o conjunto de dados. A matriz de confusão foi normalizada

pelas linhas (rótulos verdadeiros). Isso significa que cada valor na diagonal principal re-

presenta a proporção de previsões corretas para aquela classe espećıfica em relação ao

total de amostras reais daquela classe, também conhecido como recall da classe.

Observa-se que algumas classes tiveram um alto recall, como é o caso de: “Profes-

sor”, “Prova”, “Computador”, “Internet”, “Tecnologia”, “Algoritmo”, “Código” e “Com-

pilador”. Entretanto, as classes “Perguntar” e “Pesquisar” apresentaram alta confusão

entre si, assim como as classes “Inteligência Artificial” e “Software”. Isso se deve ao fato de

que esses sinais são amb́ıguos e possuem elementos muito semelhantes na sua construção.

Já as demais classes tiveram recall razoável, com falsos negativos mais distribúıdos.



6.2 Análise do Número de Quadros por Vı́deo 40

Figura 6.1: Matriz de confusão do modelo base.

6.2 Análise do Número de Quadros por Vı́deo

O primeiro conjunto de experimentos buscou avaliar o impacto do número de quadros

selecionados no desempenho do modelo. A hipótese é que um maior número de quadros

permite capturar nuances mais finas do movimento dos sinais que podem ajudar o modelo

a distingui-los. A Tabela 6.1 apresenta o comparativo entre modelos utilizando 15 e 30

quadros.

Tabela 6.1: Impacto da alteração do número de quadros no desempenho do modelo.

Modelo Caracteŕısticas Nº Quadros Unidades LSTM Acurácia
M1 Originais 30 512 84,22%
Base Originais 15 512 84,00%

Fonte: Elaborada pelo autor (2026).
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Os resultados indicam que a ampliação para 30 quadros por v́ıdeo proporcionou

um ganho de aproximadamente 0,22% em relação ao modelo base.

6.3 Análise da Arquitetura do Modelo

Alguns experimentos foram realizados com foco na arquitetura do modelo, variando o

tamanho do lote e a profundidade da rede. A Tabela 6.2 apresenta o comparativo entre

modelos utilizando 256, 512 e 1024 unidades LSTM. O tamanho do lote foi fixado em

1024, com exceção do modelo M1 que precisou ser reduzido para 512 por limitação de

recursos da máquina. Além disso, os mesmos testes foram realizados com 15 e 30 quadros

para realizar um comparativo mais amplo.

Tabela 6.2: Impacto da alteração de hiperparâmetros e profundidade do modelo.

Modelo Caracteŕısticas Nº Quadros Unidades LSTM Tamanho do Lote Acurácia
M2 Originais 30 1024 512 87,22%
M1 Originais 30 512 1024 84,22%
M3 Originais 30 256 1024 84,00%
M4 Originais 15 1024 1024 84,33%
Base Originais 15 512 1024 84,00%
M5 Originais 15 256 1024 83,67%

Fonte: Elaborada pelo autor (2026).

Os resultados indicam que o aumento das unidades LSTM contribuiu para um

melhor desempenho do modelo. Para os testes realizados com 15 quadros por v́ıdeo, o

aumento das unidades LSTM de 512 (configuração do modelo base) para 1024 produziu

um ganho de 0,33% de acurácia. Já nos testes com 30 quadros por v́ıdeo, o aumento das

unidades LSTM de 512 para 1024 gerou um ganho de 3,00%. Além disso, esse cenário

evidencia ainda mais o impacto positivo do aumento do número de quadros, ao comparar

os modelos com as duas melhores acurácias dentre os testes.

6.4 Análise de Caracteŕısticas

Um dos focos centrais deste trabalho foi a exploração de novos conjuntos de caracteŕısticas

para enriquecer a representação dos sinais. Foram testadas combinações de caracteŕısticas

geométricas (ângulos e distâncias das mãos e da pose) mencionadas na Seção 5.1.1, um se-

gundo grupo expandido de distâncias entre pontos espećıficos da face e das mãos descritas
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na Seção 5.1.2, e caracteŕısticas de movimento, calculadas pela diferença entre quadros

consecutivos, apresentadas na Seção 5.1.3. Os testes foram realizados com 512 unidades

LSTM e tamanho de lote 1024. A Tabela 6.3 resume os testes realizados variando as

caracteŕısticas.

Tabela 6.3: Comparativo do impacto de diferentes conjuntos de atributos. Orig.:
Geométricas originais, Exp.: Geométricas expansão, Mov.: Movimento.

Modelo Caracteŕısticas Nº Caracte. Nº Quadros Acurácia
M6 Orig. + Exp. + Mov. 192 30 86,78%
M7 Orig. + Mov. 154 30 86,33%
M8 Orig. + Exp. 126 30 85,11%
M9 Exp. + Mov. 114 30 83,67%
M1 Orig. 88 30 84,22%
M10 Exp. 48 30 80,56%
M11 Mov. 66 30 73,78%
Base Orig. 88 15 84,00%

Fonte: Elaborada pelo autor (2026).

A análise dos dados revela que a combinação completa de caracteŕısticas (Geométricas,

Novas Distâncias e Movimento) atingiu o melhor desempenho geral. Observa-se que o

uso isolado de atributos de movimento não é suficiente para uma classificação precisa

(73,78% de acurácia), mas sua integração como informação complementar aos atribu-

tos geométricos é fundamental para distinguir sinais que possuem configurações de mão

semelhantes, mas dinâmicas de movimento distintas.

6.5 Arquitetura com Modelos Especialistas

Para tratar as classes que apresentavam maior confusão no modelo base, foi implemen-

tada uma arquitetura com um modelo especialista. Esse modelo consiste em uma rede

treinada especificamente para distinguir entre classes semelhantes, como “Pesquisar” e

“Perguntar”, ou “Software” e “Inteligência artificial”.

De modo a avaliar o desempenho do modelo especialista, cada um foi treinado

individualmente, buscando a melhor configuração para ser utilizada juntamente com o

modelo completo. Quanto à configuração, a rede especialista manteve a arquitetura do

modelo geral, porém configurada com 1024 unidades LSTM e tamanho de lote de 32. A

Tabela 6.4 apresenta o desempenho variando as caracteŕısticas utilizadas no treinamento
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do modelo para as classes “Pesquisar” e “Perguntar”.

Tabela 6.4: Variação das caracteŕısticas no modelo especialista das classes “Perguntar”
e “Pesquisar”. Orig.: Geométricas originais, Exp.: Geométricas expansão, Mov.: Movi-
mento.

Modelo Caracteŕısticas Nº Caracteŕısticas Nº Quadros Acurácia
E1 Orig. 88 30 71,11%
E2 Mov. 66 30 77,78%
E3 Orig. + Exp. 126 30 67,78%
E4 Orig. + Exp. + Mov. 192 30 63,33%

Fonte: Elaborada pelo autor (2026).

Destaca-se pela análise dos resultados que a melhor configuração para o modelo

especialista das classes “Perguntar” e “Pesquisar” é a utilização unicamente das carac-

teŕısticas de movimento, que alcançou uma acurácia de 77,78%. Em contrapartida, o

modelo base obteve uma acurácia inferior de 65,50% entre as duas classes. A matriz de

confusão do melhor modelo pode ser observada na Figura 6.2.

Ao contrário do modelo geral, o modelo especialista desempenha melhor utili-

zando apenas caracteŕısticas de movimento provavelmente por conta das outras carac-

teŕısticas possúırem valores muito similares. Logo, utilizar um conjunto menor de carac-

teŕısticas que é capaz de distinguir os sinais é mais vantajoso.

Para o modelo especialista entre as classes “Software” e “Inteligência artificial”,

os mesmos testes foram realizados. A Tabela 6.5 apresenta o resultado do treinamento

variando as caracteŕısticas do modelo especialista para as duas classes.

Tabela 6.5: Variação das caracteŕısticas no modelo especialista das classes “Software” e
“Inteligência artificial”. Orig.: Geométricas originais, Exp.: Geométricas expansão, Mov.:
Movimento.

Modelo Caracteŕısticas Nº Caracte. Nº Quadros Acurácia
E5 Orig. 88 30 88,89%
E6 Mov. 66 30 98,52%
E7 Orig. + Exp. 126 30 87,78%
E8 Orig. + Exp. + Mov. 192 30 85,56%

Fonte: Elaborada pelo autor (2026).

Da mesma forma que o modelo anterior, o modelo das classes “Software” e “In-

teligência artificial” obteve o melhor resultado utilizando apenas as caracteŕısticas de

movimento, alcançando uma acurácia de 98,52%. Em contrapartida, o modelo base ob-
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Figura 6.2: Matriz de confusão do modelo especialista para classes “Pesquisar” e “Per-
guntar” utilizando caracteŕısticas de movimento.

teve uma acurácia inferior, de 77,50%, entre as duas classes. A matriz de confusão do

melhor modelo pode ser observada na Figura 6.3.

Em seguida, os modelos especialistas foram testados em funcionamento junto com

o modelo geral. Os testes contemplam a presença de apenas o primeiro modelo especialista

operando no reconhecimento, apenas o segundo modelo especialista e os dois modelos

especialistas juntos. Quando um modelo especialista é utilizado, o modelo geral é treinado

com 19 classes, ao invés de 20, pois duas classes são agregadas em uma. Da mesma

forma, quando dois modelos especialistas são utilizados, o modelo geral é treinado com

18 classes. Os modelos são treinados de forma independente. Após a classificação inicial

pelo modelo geral, as instâncias identificadas como classe agregada são encaminhadas ao

modelo especialista, que realiza a distinção final entre os dois sinais espećıficos. Os testes

utilizaram 1024 unidades LSTM tanto para o modelo geral, quanto para os modelos

especialistas. Quanto ao tamanho de lote foi utilizado 512 no modelo geral e 32 nos

modelos especialistas. A Tabela 6.6 apresenta os resultados dos testes do modelo geral
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Figura 6.3: Matriz de confusão do modelo especialista para classes “Software” e “Inte-
ligência Artificial” utilizando caracteŕısticas de movimento.

combinado com os especialistas.

Tabela 6.6: Modelo geral combinado com modelos especialistas. Orig.: Geométricas
originais, Exp.: Geométricas expandidas, Mov.: Movimento.

Modelo
Caracteŕısticas
modelo geral

Caracteŕısticas
especialistas

Especialista
Perg. - Pesq.

Especialista
Soft. - I.A.

Acurácia

M14 + E2 Orig. + Exp. + Mov. Mov. Sim Não 87,89%
M15 + E6 Orig. + Exp. + Mov. Mov. Não Sim 87,00%

M16 +E2 +E6 Orig. + Exp. + Mov. Mov. Sim Sim 88,89%

Fonte: Elaborada pelo autor (2026).

Verifica-se que a combinação de todas as caracteŕısticas no modelo geral, junta-

mente com os dois modelos especialistas (utilizando apenas caracteŕısticas de movimento),

cada um com 1024 unidades LSTM, constitui o modelo de maior acurácia. Pela matriz

de confusão da Figura 6.4 observa-se que os sinais “Perguntar/Pesquisar” foram menos

confundidos entre si, comparado ao modelo base. Em ambos os sinais, o recall das classes

foi de 82,2%, ao passo que no modelo base os recalls foram de 62,2% e 68,9% respecti-

vamente. Da mesma forma, os sinais “Inteligência artificial/Software” alcançaram recall

superior de 97,8% nas classes, enquanto no modelo base os recalls foram de 82,2% e 73,3%.
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Isso mostra que os modelos especialistas contribúıram para melhorar o reconhecimento

dos sinais amb́ıguos, principalmente quando utilizam as caracteŕısticas de movimento.

Figura 6.4: Matriz de confusão do melhor modelo combinando o modelo geral com os
especialistas.
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7 Conclusão

Este trabalho propôs o desenvolvimento de um sistema de reconhecimento de sinais

dinâmicos da Ĺıngua Brasileira de Sinais (Libras) focado no contexto educacional, vi-

sando auxiliar nos estudos para a mitigação das barreiras de comunicação enfrentadas

pela comunidade surda em salas de aula. O objetivo geral foi alcançado por meio da

criação de um conjunto de dados espećıfico e da implementação de modelos de aprendi-

zado de máquina capazes de classificar sinais com movimento.

A metodologia envolveu a construção de uma base de dados própria contendo

900 v́ıdeos, contemplando 20 sinais distintos realizados por 9 sinalizadores. Para o pro-

cessamento desses dados, utilizou-se a ferramenta MediaPipe Holistic para a extração de

keypoints e a técnica de aumento de dados em 20 vezes para buscar maior generalização

do modelo no treinamento.

A arquitetura do modelo baseou-se em redes neurais recorrentes do tipo Long

Short-Term Memory (LSTM), explorando diferentes conjuntos de caracteŕısticas, como

ângulos e distâncias, além de atributos de movimento.

Os experimentos demonstraram que a evolução incremental do modelo base, per-

mitiu ganhos de desempenho na tarefa de reconhecimento de sinais. Verificou-se que:

• A ampliação do número de quadros amostrados (de 15 para 30) e do número de uni-

dades LSTM (de 512 para 1024) foi determinante para capturar melhor a dinâmica

dos sinais.

• A integração de caracteŕısticas de movimento foi essencial para distinguir sinais com

configurações de mão semelhantes, mas trajetórias distintas.

• A implementação de uma arquitetura com modelos especialistas mostrou-se eficaz

para tratar ambiguidades, como as observadas entre os pares “Pesquisar/Perguntar”

e “Software/Inteligência Artificial”.

• Omodelo geral combinado com os especialistas atingiu uma acurácia final de 88,89%,
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superando a referência inicial de 84,00% do modelo base.

Apesar dos resultados promissores, este trabalho ainda apresenta lacunas para

avanços. Como propostas para trabalhos futuros, sugerem-se os seguintes pontos:

• Expansão do Vocabulário: Ampliar a base de dados para incluir uma gama

maior de sinais do contexto educacional e de outras áreas.

• Reconhecimento Cont́ınuo: Evoluir da classificação de sinais isolados (ISLR)

para o reconhecimento de sinais cont́ınuos (CSLR), permitindo a tradução de frases

completas sem a necessidade de pausas.

• Refinamento da Arquitetura: Explorar novas arquiteturas para os modelos geral

e especialistas, como a otimização de hiperparâmetros espećıficos e adição de novas

camadas relevantes.

• Modelos Especialistas: Explorar a utilização de outros modelos especialistas para

melhorar o desempenho do modelo em classes que ainda apresentam confusão, como

“Aluno”, “Dúvida”, “Entender”, “Trabalho”, “Computador” e “Internet”.

• Implementação em Tempo Real: Testar a eficiência computacional do modelo

em dispositivos móveis para uso prático em ambientes de ensino.

As contribuições deste estudo reforçam a viabilidade do uso de aprendizado de

máquina e visão computacional para promover a acessibilidade, servindo como base para

futuras ferramentas de apoio à inclusão social e educacional de surdos no Brasil.
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⟨https://arxiv.org/abs/1506.00019⟩.

LIU, J. et al. Dynamic gesture recognition based on cnn-lstm-attention. In: . [s.n.], 2021.
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