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RESUMO

O timbre é um atributo multidimensional cuja análise puramente espectral muitas
vezes obscurece a dinâmica temporal dos transientes, decisiva para a identificação da fonte
sonora. Neste contexto, este trabalho foca na análise do modelo ADSR (Attack, Decay,
Sustain, Release) do envelope de amplitude, explorando sistematicamente formulações
matemáticas para sua construção. A metodologia proposta envolve a extração do envelope
via Transformada de Hilbert e sua parametrização através de uma competição de modelos
ajustados por Mínimos Quadrados, permitindo a criação de perfis de amplitude temporal
para cada som. Estes perfis foram utilizados para treinar um classificador Random Forest,
que alcançou uma acurácia global de 81,0% na distinção entre famílias de instrumentos. Os
resultados demonstram que o envelope de amplitude, especialmente através dos coeficientes
de curvatura das fases, oferece informações distintivas robustas, validando sua eficácia para
a diferenciação de fontes sonoras e contribuindo para pesquisas futuras em Recuperação
de Informação Musical (MIR) e síntese sonora.

Palavras-chave: timbre; envelope sonoro; ADSR; processamento de áudio.



ABSTRACT

Timbre is a multidimensional attribute whose purely spectral analysis often obscures
the temporal dynamics of transients, which are decisive for sound source identification.
In this context, this work focuses on the analysis of the ADSR (Attack, Decay, Sustain,
Release) amplitude envelope model, systematically exploring mathematical formulations
for its construction. The proposed methodology involves envelope extraction via the
Hilbert Transform and its parameterization through a competition of models fitted by
Least Squares, enabling the creation of temporal amplitude profiles for each sound. These
profiles were used to train a Random Forest classifier, which achieved a global accuracy
of 81.0% in distinguishing between instrument families. The results demonstrate that
the amplitude envelope, especially through the phase curvature coefficients, offers robust
distinctive information, validating its effectiveness for the differentiation of sound sources
and contributing to future research in Music Information Retrieval (MIR) and sound
synthesis.

Keywords: timbre; sound envelope; ADSR; audio processing.
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1 INTRODUÇÃO

O som é um elemento intrínseco à experiência humana, servindo como meio
fundamental de comunicação, expressão artística e percepção do ambiente. Desde os
primórdios, a humanidade busca não apenas produzir sons, mas também compreendê-los e
manipulá-los. Com o avanço da tecnologia digital, o processamento de áudio tornou-se uma
área vasta de pesquisa, permitindo que máquinas analisem e sintetizem sinais acústicos
com precisão crescente (Müller, 2015).

No universo da música, a capacidade de discernir entre diferentes fontes sonoras é
essencial. Um piano e um violino, por exemplo, podem executar a mesma nota (mesma
frequência fundamental) na mesma intensidade (amplitude), e ainda assim serem percebidos
como distintos. Essa distinção é possível graças ao timbre, uma qualidade multidimensional
do som que confere sua textura característica, muitas vezes descrita como a "cor"do som
(Grey, 1977).

Esta monografia insere-se no contexto da Computação Musical e do Processamento
Digital de Sinais, propondo uma abordagem analítica para a identificação de timbres
através da modelagem de seus envelopes temporais.

1.1 CONTEXTUALIZAÇÃO

A análise de sinais de áudio envolve a extração de características que permitam
descrever o sinal de forma compacta e informativa. Enquanto a altura e a intensidade são
grandezas físicas bem definidas — relacionadas respectivamente à frequência e à amplitude
da onda —, o timbre é um atributo psicofísico mais complexo.

Tradicionalmente, a síntese sonora utiliza modelos matemáticos para criar sons
artificiais. Um dos modelos mais clássicos e difundidos na síntese é o envelope ADSR
(Attack, Decay, Sustain, Release), que descreve a evolução da amplitude do som ao longo do
tempo em quatro estágios distintos (Roads, 1996). Embora o ADSR tenha sido concebido
para a síntese (criação) de sons, sua aplicação na análise (reconhecimento) de instrumentos
acústicos reais apresenta um campo fértil para investigação. A hipótese central é que o
perfil temporal de amplitude — capturado pelo envelope — carrega informações suficientes
para segregar categorias de instrumentos, desde que extraído e parametrizado corretamente
através de métodos numéricos robustos.

1.2 O PROBLEMA DO TIMBRE

A American National Standards Institute (1994) define formalmente o timbre
como o atributo da sensação auditiva que permite a um ouvinte julgar que dois sons,
apresentados de maneira similar e com mesma intensidade e altura, são diferentes.
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A identificação automática de timbres é, portanto, um desafio de reconhecimento
de padrões. O problema reside na alta variabilidade dos sinais acústicos naturais e na
necessidade de reduzir a dimensionalidade dos dados brutos de áudio para um conjunto de
parâmetros tratáveis (Peeters et al., 2011).

É importante ressaltar que a análise por envelope sonoro (Domínio do Tempo)
e a análise espectral via Transformada de Fourier (Domínio da Frequência) oferecem
perspectivas ortogonais e complementares sobre o timbre (Oppenheim e Schafer, 2009).
Enquanto a Transformada de Fourier decompõe o sinal em seus componentes harmôni-
cos constitutivos, revelando a cor ou textura estática do som (estrutura espectral), ela
frequentemente obscurece a informação sobre a evolução temporal dos transientes.

Em contrapartida, a modelagem do envelope captura a dinâmica da excitação e a
dissipação de energia do sistema físico (o gesto sonoro), mas ignora o conteúdo frequencial.
Instrumentos como o violino e a flauta podem apresentar ataques suaves similares (confusão
no domínio do tempo), mas espectros distintos; inversamente, um piano e uma guitarra
podem compartilhar conteúdo harmônico, mas diferem drasticamente em seus envelopes
de decaimento.

Neste trabalho, o problema específico abordado é a eficácia da representação
simplificada do envelope sonoro pelo modelo ADSR na tarefa de distinção tímbrica. Testa-
se, portanto, se a segmentação de um envelope complexo (extraído, por exemplo, via
Transformada de Hilbert) em um modelo de funções, ajustadas via Mínimos Quadrados,
preserva a identidade do instrumento original.

1.3 OBJETIVOS

1.3.1 Objetivo Geral

Diante da relevância do timbre na diferenciação de sons, o objetivo principal deste
trabalho é investigar a eficácia da utilização do envelope de amplitude de ondas sonoras,
parametrizado pelo modelo ADSR, como característica distintiva para a identificação e
classificação de timbres instrumentais.

1.3.2 Objetivos Específicos

Para alcançar o objetivo geral, foram definidos os seguintes objetivos específicos:

• Revisar a literatura sobre a física do som, processamento digital de sinais e o modelo
ADSR;

• Formalizar matematicamente o envelope ADSR para determinar a melhor aderência
aos sinais acústicos reais;
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• Desenvolver e implementar uma metodologia computacional para a extração do
envelope analítico do sinal (utilizando a Transformada de Hilbert) e a subsequente
segmentação automática nos estágios ADSR (utilizando métodos de otimização e
Mínimos Quadrados);

• Avaliar a capacidade de discriminação dos parâmetros extraídos ao aplicá-los em um
conjunto de amostras de diferentes instrumentos musicais.

1.4 JUSTIFICATIVA

A relevância deste estudo é dupla: acadêmica e prática. Do ponto de vista
acadêmico, contribui para a área de Recuperação de Informação Musical (Music Information
Retrieval - MIR) ao explorar métodos de segmentação de sinal e ajuste de curvas em dados
reais, testando os limites de modelos teóricos de síntese quando aplicados à análise.

Na prática, algoritmos eficientes de identificação de timbre têm aplicações diretas
em transcrição automática de música, indexação de bancos de dados de áudio, melhoria de
sistemas de compressão de áudio e desenvolvimento de novos sintetizadores que aprendem
com amostras reais. Além disso, o estudo aprofundado das formulações matemáticas
(linear versus exponencial) e dos algoritmos de ajuste (como Mínimos Quadrados) fornece
um entendimento crítico sobre como simplificações matemáticas afetam a representação
da realidade física.

1.5 ESTRUTURA DO TRABALHO

Este trabalho está organizado em cinco capítulos, conforme descrito a seguir:

• Capítulo 1 - Introdução: Apresenta o contexto, a problematização, os objetivos e
a justificativa da pesquisa.

• Capítulo 2 - Fundamentação Teórica: Aborda os conceitos fundamentais
de acústica, o modelo ADSR, e as ferramentas matemáticas utilizadas, como a
Transformada de Hilbert e o Método dos Mínimos Quadrados.

• Capítulo 3 - Metodologia: Detalha o processo de desenvolvimento do algoritmo
de extração e segmentação do envelope, explicando as decisões de implementação e
as ferramentas de software utilizadas.

• Capítulo 4 - Resultados e Discussão: Apresenta os dados obtidos a partir da apli-
cação da metodologia em amostras de áudio, discutindo a eficácia da parametrização
ADSR na diferenciação dos timbres.

• Capítulo 5 - Conclusão: Sintetiza as descobertas do trabalho, aponta limitações
encontradas e sugere trabalhos futuros.
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2 FUNDAMENTAÇÃO TEÓRICA

A análise de sinais de áudio visando a identificação e classificação de instrumentos
musicais demanda uma abordagem multidisciplinar, exigindo a convergência entre a
acústica física, a psicoacústica e o processamento digital de sinais. O timbre, objeto central
deste estudo, não é uma grandeza escalar simples, mas sim um atributo multidimensional
e complexo. Ao contrário da frequência ou da amplitude, que podem ser mapeadas
diretamente para as sensações de altura e intensidade, o timbre é determinado por uma
intrincada combinação de fatores espectrais (conteúdo harmônico) e temporais (dinâmica
da amplitude).

Historicamente, a teoria clássica, baseada nos trabalhos de Helmholtz, sugeria que
o espectro estacionário — a composição de harmônicos e suas amplitudes relativas — era o
determinante primário da cor do som Benson (2006). Entretanto, avanços na Psicoacústica
durante o século XX demonstraram que essa visão era incompleta. A evolução temporal do
som, especificamente a forma como a amplitude se comporta desde o início da vibração até
sua extinção, conhecida como envelope de amplitude, desempenha um papel determinante
na identificação da fonte sonora.

Este capítulo estabelece o arcabouço teórico para a modelagem desse envelope,
transitando dos princípios da acústica até os algoritmos de otimização matemática utilizados
para a extração de parâmetros.

2.1 ACÚSTICA E PERCEPÇÃO SONORA

Do ponto de vista físico, o som é uma perturbação mecânica que se propaga em
meios elásticos, como o ar ou a água, através de ondas longitudinais de pressão. Para que
um som musical seja produzido, é necessário um sistema vibratório (corda, coluna de ar,
membrana) e um mecanismo de excitação.

As três grandezas físicas fundamentais de uma onda sonora correlacionam-se com
atributos perceptivos específicos:

• Frequência (f): Grandeza física medida em Hertz (Hz). Sua contraparte perceptiva
é a Altura, que define a sensação de notas graves ou agudas. É determinada
fundamentalmente pela frequência de vibração primária do corpo sonoro (f0).

• Amplitude (A): Relacionada à energia ou pressão da onda. Sua contraparte
perceptiva é a Intensidade, popularmente referida como volume. A relação entre
amplitude física e intensidade percebida é logarítmica, descrita pela Lei de Weber-
Fechner Silverthorn (2017).
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• Forma de Onda / Espectro: A complexidade da vibração. Sua contraparte é o
Timbre, a qualidade que confere identidade à fonte sonora.

A definição de timbre pela American National Standards Institute (ANSI) é feita
por exclusão: é o atributo da sensação auditiva que permite a um ouvinte julgar que dois
sons dissimilares, possuindo a mesma intensidade e altura, são diferentes. Essa definição,
embora correta, é vaga quanto à causa. A pesquisa moderna entende o timbre como uma
assinatura espectro-temporal, onde os transientes de ataque (o início do som) carregam
uma quantidade desproporcional de informação sobre a identidade do instrumento.

2.2 O ENVELOPE DE AMPLITUDE

O envelope de amplitude é a curva que descreve a variação temporal da intensidade
de um sinal sonoro. Enquanto a forma de onda contém as oscilações rápidas que determinam
a frequência, o envelope é a envoltória que contorna esses picos, modulando o som ao
longo do tempo.

Figura 1 – Visualização de envelopes de amplitude: 1-Tabla 2-Trompa e 3-Flauta

Fonte: Adaptado de Wikipedia (2005).

A importância do envelope é evidenciada em experimentos de síntese e edição:
ao remover o ataque inicial (os primeiros milissegundos) de uma gravação de piano, o
som resultante torna-se difícil de distinguir de uma flauta ou órgão. Isso ocorre porque o
envelope temporal dita a dinâmica da energia: instrumentos percussivos liberam energia
de forma explosiva, enquanto instrumentos de sopro ou arco podem sustentar ou aumentar
a energia gradualmente.

2.3 O MODELO ADSR

Para fins de síntese e análise computacional, o envelope natural — que pode ser
complexo e irregular — é frequentemente simplificado pelo modelo ADSR (Attack, Decay,
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Sustain, Release). Este modelo, padronizado inicialmente pela indústria de sintetizadores
na década de 1970, divide a vida de uma nota musical em quatro estágios distintos
(Beauchamp, 2007).

Figura 2 – Representação gráfica do modelo ADSR clássico.

Fonte: Adaptado de Wikimidia (2007).

Cada fase representa um comportamento físico e perceptivo:

1. Ataque (Attack - TA): O intervalo de tempo necessário para que a amplitude
suba do zero até o seu pico máximo.

• Física: Representa a inércia do sistema sendo vencida pela força de excitação.
Em um piano (percussivo), o ataque é quase instantâneo (< 10 ms). Em um
violoncelo (friccionado), o ataque é lento (> 100 ms), pois a corda precisa entrar
em ressonância gradualmente.

2. Decaimento (Decay - TD): O tempo que a amplitude leva para cair do pico
máximo até o nível de sustentação.

• Física: Após o choque inicial, a energia excedente se dissipa rapidamente ou se
estabiliza em um modo de vibração sustentável.

3. Sustentação (Sustain - LS): Diferentemente das outras fases que são medidas
em tempo, o Sustain é um nível de amplitude (geralmente expresso como uma
porcentagem do pico).

• Física: Corresponde ao equilíbrio entre a energia fornecida pelo músico e a
energia dissipada pelo instrumento. Instrumentos de excitação contínua (sopros,
arco, órgãos) possuem LS > 0. Instrumentos de excitação impulsiva (piano,
violão, percussão) teoricamente possuem LS ≈ 0 ou um decaimento contínuo,
pois não há injeção de energia nova após o ataque.

4. Liberação (Release - TR): O tempo para a amplitude cair do nível de sustentação
(ou do nível atual) até o silêncio, após o músico encerrar a nota.
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• Física: Representa o amortecimento natural do sistema. O som não para
instantaneamente; a caixa de ressonância e o ambiente reverberante continuam
vibrando por um breve período.

A comparação visual entre envelopes de diferentes famílias de instrumentos ilustra
a capacidade discriminatória deste modelo.

Figura 3 – Três tipos de envelopes de amplitude: (a) Baixo, (b) Teclado e (c) Pads de
Percussão.

(a) Baixo (b) Teclado (c) Pads de Percussão

Fonte: Adaptado de Drew Swicher (2019).

2.4 MODELAGEM MATEMÁTICA DO ENVELOPE

Enquanto sintetizadores digitais antigos utilizavam segmentos de reta para gerar
o ADSR (Modelo Linear Piecewise), a acústica de instrumentos reais obedece a leis de
decaimento exponencial, governadas pela dissipação de energia devido ao atrito e resistência
do ar.

Um modelo matematicamente mais preciso para as fases de decaimento e liberação
é dado por funções exponenciais da forma:

y(t) = A0 · e− t
τ (2.1)

Onde τ é a constante de tempo do sistema. Embora a aproximação linear por partes seja
frequentemente utilizada como uma simplificação robusta que reduz o custo computacional
(Beauchamp, 2007), um conjunto de retas faz com que o envelope se torne não diferenciável
nos pontos entre as etapas da curva ADSR, o que faz com que a percepção do som soe
anti-natural ao ouvido humano, cuja audição é logarítmica, portanto, seria melhor utilizar
um modelo que mantivesse a suavidade nesses pontos de transição.

2.5 PROCESSAMENTO DIGITAL DE SINAIS

A aplicação prática do modelo teórico a gravações de áudio requer técnicas avançadas
de Processamento Digital de Sinais (PDS).

2.5.1 Sinais Discretos e Amostragem

O sinal de áudio contínuo x(t) é convertido em uma sequência discreta x[n] através
da amostragem em intervalos Ts. A precisão da análise temporal depende diretamente
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da taxa de amostragem (Fs = 1/Ts), que deve satisfazer o critério de Nyquist para evitar
distorções espectrais (aliasing)(Oppenheim e Schafer, 2009).

2.5.2 Transformada de Hilbert e Envelope Analítico

Extrair o envelope de um sinal oscilatório cru não é trivial, pois o valor médio
do sinal tende a zero. Métodos simples como a retificação (valor absoluto) seguida de
filtragem passa-baixa introduzem atrasos de fase (atraso de grupo) que podem distorcer a
medição precisa do tempo de ataque.

A abordagem do Sinal Analítico via Transformada de Hilbert é mais adequada
para esta aplicação. A Transformada de Hilbert, denotada por H{x[n]}, gera um sinal
que é uma versão de x[n] defasada em 90◦. O sinal analítico z[n] é construído como um
número complexo:

z[n] = x[n] + iH{x[n]} (2.2)

O envelope instantâneo E[n] é, portanto, a magnitude (módulo) deste vetor complexo
girante:

E[n] = |z[n]| =
√

x[n]2 + (H{x[n]})2 (2.3)

Este método permite obter um envelope suave, que tangencia perfeitamente os picos do
sinal sem introduzir atrasos temporais significativos.

2.5.3 Ajuste de Curvas via Mínimos Quadrados (MMQ)

Uma vez obtido o envelope bruto E[n] via Transformada de Hilbert, o desafio
principal deste trabalho é ajustar o modelo ADSR assim idealizado aos dados reais, que
contêm ruído e micro-variações. Este é um problema clássico de regressão.

O Método dos Mínimos Quadrados (MMQ) busca encontrar os parâmetros da
curva que minimizam a soma dos quadrados dos resíduos. O resíduo é a diferença vertical
entre o envelope real medido e o modelo proposto.

Matematicamente, definindo o erro para cada amostra, onde yi é o valor definido
do envelope real e xi é o valor no modelo ADSR calculado, buscamos minimizar a função
de erro S:

S(c) =
N∑

k=0

 P∑
j=0

cjϕj(xk) − yk

2

(2.4)

A aplicação do MMQ permite que o algoritmo ignore pequenas oscilações irrelevantes
(ruído ou vibrato) e encontre a tendência macroscópica que melhor define o ataque ou o
decaimento, resultando em parâmetros TA ou TD estatisticamente robustos.
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Figura 4 – Exemplo de reta ajustada através do Método dos Mínimos Quadrados (MMQ).

Fonte: Adaptado de Guilherme Castilho (2023).
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3 METODOLOGIA

Este capítulo detalha o fluxo de processamento desenvolvido para a extração de
características tímbricas e a subsequente classificação dos instrumentos. A metodologia foi
implementada utilizando a linguagem Python, com suporte das bibliotecas Librosa para
manipulação de áudio, SciPy para computação científica e Scikit-Learn para aprendizado
de máquina (Pedregosa et al., 2011).

3.1 BASE DE DADOS E PRÉ-PROCESSAMENTO

Para a validação do estudo, foi utilizado um conjunto de dados composto por
amostras de instrumentos orquestrais provenientes da biblioteca VSCO 2: Community
Edition (Versilian Studios (2024)), desenvolvida pela Versilian Studios . Esta biblioteca
fornece amostras de alta qualidade gravadas individualmente, sendo uma referência em
bancos de dados de áudio abertos.

Esse conjunto contém amostras de variadas durações, a depender do tipo de
instrumento tocado, e também são tocadas notas variadas.

A base de dados foi organizada em quatro famílias principais: Cordas, Madeiras,
Metais e Percussão. Como as amostras originais já são disponibilizadas no formato WAV,
não houve necessidade de conversão de codecs com perdas, garantindo a integridade
espectral e temporal do sinal desde a aquisição.

O pré-processamento das amostras envolveu as seguintes etapas:

• Normalização: Todas as amostras foram normalizadas em amplitude para o
intervalo [0, 1], eliminando variações de volume de gravação (ganho) que poderiam
enviesar o classificador, garantindo que a análise foque na forma do envelope e não
na intensidade absoluta.

• Filtragem: Foi aplicado um filtro de suavização (média móvel) leve sobre o envelope
extraído para reduzir ruídos de alta frequência e micro-variações que poderiam gerar
falsos positivos na detecção automática das transições entre as fases ADSR.

3.2 ALGORITMO DE EXTRAÇÃO DE ENVELOPE

A extração do envelope de amplitude E[n] foi realizada através do método do
Sinal Analítico via Transformada de Hilbert, conforme fundamentado na Seção 2.5.2.
Este método foi escolhido por sua capacidade de seguir os picos da forma de onda sem
introduzir o atraso de fase característico de filtros passa-baixa tradicionais.
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3.3 SEGMENTAÇÃO AUTOMÁTICA VIA DERIVADAS

Diferentemente da abordagem simplista de limiares fixos, este trabalho implementou
um algoritmo de segmentação baseado na análise da taxa de variação do sinal. Como
o envelope extraído E[n] é uma sequência discreta, o cálculo da derivada contínua dE

dt
é

aproximado numericamente pelo gradiente discreto (diferenças finitas).

O vetor de derivadas ∆E[n] foi calculado computacionalmente através da diferença
central entre amostras adjacentes, conforme a aproximação:

∆E[n] ≈ E[n + 1] − E[n − 1]
2 (3.1)

Essa operação transforma o perfil de amplitude em um perfil de velocidade de
variação. Para mitigar a amplificação de ruído inerente ao processo de diferenciação, o
envelope E[n] foi previamente submetido a uma suavização por média móvel. Com base
no vetor ∆E, o algoritmo segmenta as fases seguindo a lógica de transição de sinais:

1. Ataque (TA): Compreende o intervalo de crescimento rápido. O algoritmo identifica
o início quando E[n] supera um limiar de ruído (1% da amplitude máxima) e define o
final no índice do pico global, ponto onde a derivada cruza o eixo zero (∆E[n] = 0)
vindo de valores positivos.

2. Decaimento (TD): Inicia-se imediatamente após o pico global. Nesta fase, a
derivada assume valores negativos (∆E[n] < 0). O fim do decaimento é determinado
dinamicamente monitorando a magnitude da derivada; quando |∆E[n]| cai abaixo de
um limiar de tolerância ϵ (aproximando-se de zero), o sistema entende que a curva
estabilizou, marcando o início da sustentação.

3. Sustentação (LS): Região de estabilidade relativa onde a variação da amplitude é
mínima. Matematicamente, é o intervalo onde a derivada oscila em torno de zero,
mantendo o nível de energia do instrumento.

4. Liberação (TR): Identificada quando a derivada rompe a estabilidade e assume
novamente valores negativos acentuados (∆E[n] ≪ 0), indicando a extinção da nota,
até que a amplitude retorne ao nível de silêncio.

3.4 MODELAGEM HÍBRIDA E SELEÇÃO DE MODELOS

Para capturar a complexidade do timbre, não foi imposto um único modelo ma-
temático. Implementou-se uma rotina de Comparação de Modelos utilizando o Método
dos Mínimos Quadrados (MMQ). Para cada fase (Ataque, Decaimento, Liberação), o
algoritmo ajustou diferentes funções candidatas:
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• Modelo Linear (y = at + b);

• Modelo Exponencial (y = Ae−Bt + C);

• Modelo Sigmoidal (Logístico).

O modelo selecionado para compor o vetor de características foi aquele que apresentou o
menor Erro Quadrático Médio (MSE) em relação ao envelope real.

3.5 CLASSIFICAÇÃO TÍMBRICA

A etapa final consistiu na classificação supervisionada dos instrumentos.

• Vetor de Características: Cada amostra foi representada por um vetor expandido
contendo não apenas os tempos (TA, TD, TR,), mas também os conjuntos de coefici-
entes obtidos via MMQ (CA, CD, CS, CR) e a amplitude na fase de sustentação. Isso
permitiu ao modelo aprender a curvatura do som, não apenas sua duração.

• Modelo: Utilizou-se o algoritmo Random Forest (Floresta Aleatória) com 100
árvores de decisão.

• Validação: O conjunto de dados foi dividido aleatoriamente em 70% para treina-
mento e 30% para teste. A avaliação de desempenho foi feita através da Acurácia
Global e da Matriz de Confusão.
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4 RESULTADOS E DISCUSSÃO

4.1 ANÁLISE DO CONJUNTO DE DADOS

O processo de extração de características foi aplicado a uma base de dados contendo
amostras de Cordas, Madeiras, Metais e Percussão. Observou-se, porém, que parte das
amostras não foram analizadas devido a dificuldade do algoritmo de identificar através
da nomenclatura das amostras a qual família elas pertenciam, gerando um resultado que
ignorou parte delas.

Figura 5 – Distribuição das amostras por família, evidenciando a predominância de
percussão na base de dados.

Fonte: Elaborado pelo autor (2026).

4.2 DESEMPENHO DO CLASSIFICADOR

O modelo de classificação Random Forest, treinado com os vetores de características
ADSR expandidos (tempos + coeficientes de curvatura), alcançou uma Acurácia Global
de 81.0% no conjunto de teste. Este resultado valida a hipótese central do trabalho de
que o envelope temporal carrega informações distintivas suficientes para a categorização
instrumental.

4.3 ANÁLISE DA MATRIZ DE CONFUSÃO

A avaliação detalhada do desempenho do classificador foi realizada através da
Matriz de Confusão. Trata-se de uma estrutura tabular que confronta as categorizações
preditas pelo modelo com as classes reais (rótulos verdadeiros) das amostras de teste.

Formalmente, para um problema de classificação multiclasse com K classes distintas
(neste estudo, K = 4: Cordas, Madeiras, Metais e Percussão), a matriz de confusão C é
definida como uma matriz quadrada de dimensão K × K. Cada elemento Ci,j da matriz
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representa a contagem de observações que pertencem à classe verdadeira i e que foram
classificadas pelo algoritmo como pertencentes à classe j.

Nesta representação:

• Os elementos da diagonal principal (i = j) correspondem aos acertos do modelo
(Verdadeiros Positivos para a classe i);

• Os elementos fora da diagonal (i ̸= j) representam os erros de classificação, explici-
tando as confusões entre pares específicos de instrumentos (Falsos Positivos e Falsos
Negativos).

A análise da matriz de confusão é superior à simples métrica de acurácia global,
pois permite identificar vieses do modelo e classes específicas onde o classificador apresenta
maior dificuldade de generalização (Pedregosa et al., 2011).

A Figura 6 apresenta a Matriz de Confusão obtida, permitindo uma análise deta-
lhada dos acertos e erros por classe.

Figura 6 – Matriz de Confusão do classificador Random Forest (Acurácia: 81,0%).

Fonte: Elaborado pelo autor (2026).

A análise da matriz revela comportamentos distintos entre as famílias:

• Percussão: O modelo obteve desempenho excelente, identificando corretamente 35
das 37 amostras de teste. Isso se deve às características únicas do envelope percussivo:
ataque extremamente rápido (quase instantâneo) e ausência de sustentação (LS ≈ 0),
perfis que o modelo matemático capturou com facilidade.
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• Cordas: Houve uma taxa de acerto consistente (14 amostras), com algumas confu-
sões com Madeiras e Percussão. As confusões com percussão (4 casos) podem ser
atribuídas a técnicas de execução como o pizzicato, que geram envelopes similares
aos de instrumentos percussivos.

• Metais e Madeiras: Estas classes apresentaram maior dificuldade de classificação.
Devido ao menor número de amostras disponíveis para treinamento, o modelo teve
dificuldade em generalizar os padrões dessas famílias, confundindo-as ocasionalmente
com Cordas e Percussão.

4.4 IMPORTÂNCIA DAS CARACTERÍSTICAS

A análise de importância das variáveis é uma técnica fundamental para a interpre-
tabilidade de modelos de aprendizado de máquina, permitindo quantificar a contribuição
relativa de cada atributo para o poder preditivo do modelo. No contexto do algoritmo
Random Forest, essa métrica é calculada através da Diminuição Média da Impureza.
Durante o processo de treinamento, cada vez que uma árvore de decisão seleciona uma
variável para realizar uma divisão em um nó, calcula-se o quanto essa divisão reduziu
a impureza das classes resultantes (geralmente medida pelo Índice Gini ou Entropia).
A importância final de uma característica é determinada pela média ponderada dessas
reduções de impureza acumuladas em todas as árvores que compõem a floresta.

Figura 7 – Gráfico definindo a importância de cada feature no modelo de classificação.

Fonte: Elaborado pelo autor (2026).

A análise resultante, apresentada na Figura 7, indicou que os coeficientes de
curvatura (parâmetros da função exponencial/linear) tiveram peso significativo na decisão
do classificador, frequentemente superando a importância apenas da duração absoluta
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(TA ou TD). Isso confirma que a forma como o som cresce ou decai (se linearmente ou
exponencialmente) é um discriminador tímbrico tão importante quanto o tempo que ele
leva para fazê-lo.
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5 CONSIDERAÇÕES FINAIS

Esta monografia investigou a eficácia do envelope sonoro, parametrizado via modelo
ADSR, como descritor para a identificação automática de timbres. Através de uma
abordagem que combinou processamento digital de sinais (Transformada de Hilbert) e
métodos numéricos de otimização (Mínimos Quadrados), foi possível extrair vetores de
características detalhados de amostras reais.

Os resultados obtidos, com uma acurácia de 81.1%, demonstram que o envelope
temporal é, de fato, uma impressão digital robusta do instrumento. A implementação
de uma comparação de modelos matemáticos provou-se acertada, permitindo ao algo-
ritmo adaptar-se à física específica de cada instrumento, capturando desde o decaimento
exponencial natural de um prato de bateria até a sustentação linear de um violino.

5.1 LIMITAÇÕES

A principal limitação encontrada residiu no balanceamento da base de dados. A
menor disponibilidade de amostras de sopros (Metais e Madeiras) na biblioteca utilizada
impactou a capacidade do modelo de generalizar padrões para essas classes específicas,
gerando confusões com a família das Cordas.

5.2 CONTRIBUIÇÕES

O trabalho contribui ao apresentar uma metodologia completa que não apenas
extrai os tempos do ADSR, mas também quantifica a curvatura das transições através dos
coeficientes das funções ajustadas. A criação de um vetor de características expandido,
que inclui esses coeficientes, mostrou-se vital para aumentar a precisão da classificação,
fornecendo uma base sólida para futuros experimentos em Recuperação de Informação
Musical (MIR).

5.3 TRABALHOS FUTUROS

Como desdobramento natural desta pesquisa, vislumbra-se a expansão significativa
da base de dados, incorporando o conjunto completo da Versilian Studios e outras
bibliotecas de alta confiabilidade para garantir o equilíbrio estatístico entre as classes. Nesse
contexto, planeja-se a validação cruzada utilizando o renomado acervo da Philharmonia
Orchestra de Londres. Olá, Rafael,Embora este banco demande um pré-processamento
adicional devido ao formato nativo comprimido (MP3), sua excelência na rotulagem e
a diversidade de técnicas de execução justificam sua inclusão para testar a robustez do
algoritmo em cenários de Big Data musical.
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Concomitantemente à expansão dos dados, pretende-se evoluir a granularidade da
classificação. O objetivo é transitar da atual categorização por famílias para a identificação
de instrumentos singulares, capacitando o sistema a distinguir sutilezas tímbricas entre
instrumentos correlatos, como o violoncelo e a viola, ou o piano e o teclado elétrico.
Para suportar essa precisão, será fundamental testar um espectro mais amplo de funções
candidatas na etapa de modelagem matemática, incluindo funções de surto (surge functions)
e modelos não-lineares complexos que descrevam com maior fidelidade os transientes de
ataque.

Por fim, reconhecendo que o timbre é um fenômeno multidimensional, a evolução
definitiva deste trabalho reside na hibridização de descritores. Propõe-se a fusão dos
parâmetros temporais ADSR, aqui validados, com descritores espectrais consolidados,
como os Coeficientes Cepstrais de Frequência Mel (MFCCs) ou o Centroide Espectral
(Felix, 2019). Acredita-se que a união entre a precisão temporal do envelope e a riqueza
frequencial do espectro permitirá aumentar o nível de precisão, aproximando o sistema da
capacidade discriminatória do ouvido humano.
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