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Resumo

Este trabalho de conclusão de curso investiga o uso de modelos de aprendizado de máquina

para a predição de insuficiência card́ıaca em tempo real, com foco na realidade do sistema

de saúde brasileiro. O objetivo principal é treinar e avaliar modelos preditivos utili-

zando uma base de dados que reflita os parâmetros cĺınicos adotados nacionalmente. A

solução considera o uso de computação de borda para realizar o processamento local dos

sinais vitais, reduzindo a dependência de conexão cont́ınua com a internet e a latência na

geração de alertas. Os resultados demonstraram que o modelo XGBoost obteve o melhor

desempenho geral, com acurácia de 82% e F1-Score de 83%, enquanto o modelo SVM

destacou-se pela maior sensibilidade (86% de recall). A implementação em dispositivos

móveis validou a eficiência da computação de borda, reduzindo a latência de inferência em

99,3% em comparação ao processamento remoto e garantindo respostas imediatas para o

monitoramento de pacientes.

Palavras-chave: Predição de insuficiência card́ıaca, Aprendizado de máquina, Com-

putação de borda, Internet das Coisas (IoT).



Abstract

This final project investigates the use of machine learning models for real-time heart fai-

lure risk prediction, with a focus on the context of the Brazilian healthcare system. The

main objective is to train and evaluate predictive models using a dataset that reflects

the clinical parameters commonly adopted in national medical practice. The proposed

solution incorporates edge computing to enable local processing of vital signs, reducing

dependence on continuous internet connectivity and minimizing latency in alert gene-

ration. The results demonstrated that the XGBoost model achieved the best overall

performance, with 82% accuracy and an 83% F1-Score, while the SVM model stood out

with the highest sensitivity (86% recall). Implementation on mobile devices validated the

efficiency of edge computing, reducing inference latency by 99.3% compared to remote

processing and ensuring immediate responses for patient monitoring.

Keywords: Heart failure prediction, Machine learning, Edge computing, Internet of

Things (IoT).
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Lista de Figuras 6

Lista de Tabelas 7

Lista de Abreviações 8

1 Introdução 9
1.1 Apresentação do tema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2 Motivação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Objetivos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Objetivos gerais . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
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3.1 PICO(t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Questões de Pesquisa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3 Palavras-chave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.4 String de busca . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.5 Critérios de inclusão e exclusão . . . . . . . . . . . . . . . . . . . . . . . . 26
3.6 Seleção e avaliação . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.7 Resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8 Análise dos resultados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Materiais e métodos 34
4.1 Descrição dos dados . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2 Modelagem Preditiva para Insuficiência Card́ıaca . . . . . . . . . . . . . . 39
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4.2.3 Implementação em Dispositivos Móveis . . . . . . . . . . . . . . . . 46

5 Resultados 49
5.1 Resultados do treinamento dos modelos . . . . . . . . . . . . . . . . . . . . 49
5.2 Resultados da aplicação em Dispositivos Móveis . . . . . . . . . . . . . . . 52
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1 Introdução

1.1 Apresentação do tema

As doenças cardiovasculares continuam sendo a principal causa de morte no Brasil (USP,

2024), representando um grave problema de saúde pública. Nesse contexto, soluções tec-

nológicas capazes de promover monitoramento cont́ınuo e preditivo da saúde card́ıaca são

cada vez mais importantes. A utilização de modelos de aprendizado de máquina embarca-

dos em dispositivos móveis tem se mostrado uma abordagem promissora para assistência

médica em tempo real (ABDELLATIF et al., 2019). Essa combinação permite reduzir

significativamente a latência de resposta dos modelos e a dependência de infraestruturas

centralizadas, viabilizando o monitoramento preditivo em regiões com infraestrutura de

rede limitada ou instável.

Em alguns sistemas de monitoramento de saúde, o processamento das informações

ocorre de forma centralizada, a partir da transmissão dos dados coletados para servidores

em nuvem (AMIN; HOSSAIN, 2021). Embora essa abordagem apresente um maior poder

computacional, ela traz limitações para aplicações em tempo real, como a predição de in-

suficiência card́ıaca. Entre os principais obstáculos estão a latência da rede, a dependência

de conectividade estável, a sobrecarga nos servidores e os riscos associados à privacidade

dos dados senśıveis dos pacientes (ROMAN; LOPEZ; MAMBO, 2018).

Em contextos como os ambientes de vida assistida, nos quais o tempo de resposta

a episódios cĺınicos pode ser decisiva, esses desafios comprometem a eficácia dos sistemas

baseados em nuvem. Atrasos na transmissão ou interrupções na conexão podem impedir

a emissão de alertas em tempo hábil, colocando em risco a segurança dos usuários. Além

disso, regiões com infraestrutura de rede precária — como áreas remotas ou economica-

mente desfavorecidas — enfrentam dificuldades adicionais para a adoção de soluções que

dependem da internet.

Estudos recentes que aliam o aprendizado de máquina à computação de borda,

como o que motiva este trabalho (ALMEIDA et al., 2025), apresentam resultados pro-
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missores na detecção precoce de insuficiência card́ıaca em tempo real. Contudo, a pre-

dominância do uso de bases de dados internacionais nos estudos existentes compõe um

obstáculo na aplicabilidade prática dessas soluções no contexto cĺınico brasileiro, visto

que os perfis cĺınicos das populações em questão nas bases de dados internacionais podem

divergir significativamente do perfil cĺınico nacional. A escassez de pesquisas baseadas

em dados nacionais evidencia, portanto, uma lacuna a ser explorada para que essas fer-

ramentas possam ser adotadas de forma segura e eficaz no sistema de saúde brasileiro.

1.2 Motivação

A motivação central deste trabalho é contribuir em uma solução tecnológica para a

predição de insuficiência card́ıaca em tempo real, voltada para a população de áreas

com acesso limitado à internet no Brasil. Apesar do aumento da cobertura de internet

no Brasil, ainda existem lacunas no acesso e na qualidade da conexão, especialmente em

áreas rurais (IBGE, 2025). Nesse contexto, a proposição de soluções que realizem o pro-

cessamento local dos dados mostra-se essencial para mitigar os impactos da conectividade

limitada em determinadas regiões do páıs. Ao reduzir a dependência de conectividade

plena com servidores remotos, torna-se viável o monitoramento cont́ınuo de sinais vitais

mesmo em cenários de infraestrutura precária. Dessa forma, a adoção de tecnologias em-

barcadas em dispositivos móveis pode ampliar o alcance do monitoramento preventivo da

saúde card́ıaca, promovendo maior inclusão e equidade no campo da saúde.

O artigo Real-Time Heart Failure Prediction: An Approach for Ambient Assisted

Living (ALMEIDA et al., 2025), que motiva este trabalho, propõe uma arquitetura focada

na predição de insuficiência card́ıaca em tempo real, integrando aprendizado de máquina

e computação de borda. O estudo parte da limitação de abordagens tradicionais baseadas

em servidores centralizados, que sofrem com latência, dependência de conectividade e ris-

cos à privacidade dos dados. Como alternativa, os autores desenvolveram uma ferramenta

para dispositivos móveis que permite que as predições sejam realizadas localmente. Para

isso, foram previamente treinados e avaliados algoritmos como Random Forest, K-Nearest

Neighbors e Logistic Regression, utilizando um conjunto de dados cĺınicos.

O conjunto de dados adotado no estudo resulta da integração de quatro bases de
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dados distintas, as quais compartilham variáveis em comum. Essas bases de dados são:

um conjunto de dados fornecido pelo Hungarian Institute of Cardiology de Budapeste; um

conjunto de dados fornecido pelo University Hospital Zurich da Súıça; um outro conjunto

de dados de origem súıça, fornecido pelo University Hospital Basel ; e um conjunto de da-

dos fornecido pelo V.A. Medical Center, em conjunto com a Cleveland Clinic Foundation,

dos Estados Unidos.

Após os testes, o modelo com melhor desempenho foi exportado e implantado

em um aplicativo para dispositivos móveis, onde é posśıvel realizar predições de maneira

local, sem a necessidade de conexão com um servidor.

Embora os resultados do estudo tenham demonstrado a viabilidade técnica da

solução proposta, o conjunto de dados utilizado para o treinamento e a validação dos

modelos não contempla variáveis plenamente condizentes com os parâmetros empregados

no diagnóstico de insuficiência card́ıaca na prática cĺınica brasileira. Essa constatação

fundamenta-se no desenvolvimento do presente trabalho, durante o qual foi realizada

uma Entrevista com Especialista (Subject Matter Expert – SME Interview) com a médica

cardiologista Dra. Lilian Marzullo de Carvalho Bramante. A partir dessa entrevista, foi

posśıvel identificar que poucos dos atributos presentes no conjunto de dados são realmente

utilizados no diagnóstico de insuficiência card́ıaca, enquanto a outra parcela das variáveis

não são empregadas na prática médica no Brasil. Ademais, foi posśıvel constatar que

diversos parâmetros cĺınicos relevantes, comumente avaliados pelos profissionais de saúde

no Brasil, não estão contemplados no referido conjunto de dados.

Diante desse cenário, o presente trabalho propõe a validação da predição de insu-

ficiência card́ıaca a partir de uma base de dados que contenha atributos cĺınicos e faixas de

valores alinhados às recomendações fornecidas pela especialista entrevistada. A adoção

de variáveis compat́ıveis com as práticas do sistema de saúde nacional visa ampliar a

aplicabilidade prática da ferramenta proposta, potencializando sua utilização em cenários

reais de monitoramento e apoio à decisão médica.
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1.3 Objetivos

1.3.1 Objetivos gerais

O objetivo deste trabalho é desenvolver uma ferramenta de predição de insuficiência

card́ıaca em tempo real, baseada em modelos de machine learning e computação de borda,

que apresente uma latência de resposta mı́nima, em decorrência da realização do proces-

samento local em vez da execução em nuvem. Esse objetivo leva em conta a utilização

de um conjunto de dados com atributos compat́ıveis com parâmetros cĺınicos empregados

na prática médica brasileira, de modo a investigar sua aplicabilidade e limitações quando

considerada a realidade do sistema de saúde nacional.

1.3.2 Objetivos espećıficos

Para alcançar os objetivos gerais propostos, este trabalho se desdobra nos seguintes ob-

jetivos espećıficos:

1. Seleção da base de dados: Buscar bases de dados públicas que contenham atribu-

tos e valores compat́ıveis com os parâmetros cĺınicos utilizados no sistema de saúde

brasileiro, priorizando registros públicos ou de instituições parceiras que respeitem

os prinćıpios éticos e a Lei Geral de Proteção de Dados (LGPD)(Presidência da

República, 2018).

2. Desenvolvimento dos modelos: Selecionar, treinar e ajustar modelos de apren-

dizado de máquina adequados ao problema de predição de insuficiência card́ıaca,

considerando diferentes abordagens e configurações. Depois de treinados, os mode-

los serão avaliados quanto ao desempenho preditivo e à eficiência computacional,

com foco em sua posterior implementação em ambientes de computação de borda,

garantindo viabilidade de execução em dispositivos com recursos limitados.

3. Análise dos resultados: Avaliar o desempenho dos modelos de aprendizado de

máquina por meio de métricas apropriadas, como acurácia, precisão, recall, F1-

score e curvas ROC, de modo a identificar o modelo mais adequado para a predição
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de insuficiência card́ıaca. Por fim, serão discutidas as limitações da abordagem

proposta e apresentadas posśıveis direções para aprimoramento da ferramenta.

1.4 Organização do trabalho

Diante da introdução apresentada, este trabalho de conclusão de curso está organizado da

seguinte forma: no Caṕıtulo 2 é apresentada a fundamentação teórica, com os conceitos

essenciais para a compreensão do estudo. No Caṕıtulo 3 é realizada a revisão bibliográfica,

abordando as referências e estudos relacionados a este trabalho de conclusão de curso. No

Caṕıtulo 4 é detalhado o processo de desenvolvimento do trabalho, e o Caṕıtulo 5 mostra

os resultados obtidos e as análise realizadas. Por fim, o Caṕıtulo 6 apresenta as conclusões

do estudo, bem como sugestões para posśıveis trabalhos futuros.
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2 Fundamentação teórica

Neste caṕıtulo são apresentados os conceitos para a compreensão dos temas abordados

neste trabalho. Inicialmente, discutiremos sobre doenças cardiovasculares e insuficiência

card́ıaca. Também será abordado o uso de Aprendizado de Máquina para predição em

saúde e sua relação com Computação de Borda.

2.1 Doenças cardiovasculares

As doenças cardiovasculares representam uma das principais causas de morbidade e morta-

lidade em ńıvel mundial (World Health Organization, 2024), constituindo um dos maiores

desafios para os sistemas de saúde atuais. No território brasileiro, essas enfermidades fi-

guram entre as principais causas de óbitos. Entre essas condições, a insuficiência card́ıaca

destaca-se por seu caráter crônico, progressivo e pela elevada taxa de reinternações hos-

pitalares (KHAN et al., 2021).

A insuficiência card́ıaca é caracterizada pela incapacidade do coração de bom-

bear sangue de forma adequada para suprir as necessidades metabólicas do organismo.

Essa condição pode ser agravada por diversos fatores de risco, como hipertensão arterial,

diabetes mellitus, obesidade, sedentarismo e histórico familiar de doenças cardiovascu-

lares. Em muitos casos, a evolução da doença ocorre de forma silenciosa, tornando o

diagnóstico precoce um fator essencial para a redução de complicações e mortalidade.

(Sociedade Brasileira de Cardiologia, 2018)

Nesse cenário, estratégias de monitoramento cont́ınuo e preditivo tornam-se fun-

damentais para identificar o agravamento da condição antes que eventos cŕıticos ocorram.

A utilização de dados cĺınicos e fisiológicos, coletados de maneira cont́ınua, possibilita

o monitoramento preventivo no acompanhamento de pacientes em risco cardiovascular,

contribuindo para intervenções mais rápidas (STEHLIK et al., 2020).
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2.2 Aprendizado de máquina para predição em saúde

O aprendizado de máquina (Machine Learning) é uma área da inteligência artificial de-

dicada ao desenvolvimento de métodos computacionais capazes de identificar padrões em

dados e melhorar seu desempenho em tarefas espećıficas a partir da experiência. Diferente-

mente de abordagens tradicionais baseadas em regras expĺıcitas, os algoritmos de Machine

Learning aprendem automaticamente a partir dos dados, ajustando seus parâmetros de

forma iterativa para produzir previsões ou decisões cada vez mais precisas (MITCHELL,

1997).

Em aplicações na área da saúde, o aprendizado de máquina pode ser utilizado

para apoiar o diagnóstico e o monitoramento de pacientes, uma vez que permite explorar

grandes volumes de dados cĺınicos e fisiológicos de maneira eficiente. A capacidade de

extrair relações complexas entre variáveis torna essas técnicas especialmente adequadas

para problemas médicos, nos quais múltiplos fatores podem influenciar o estado de saúde

de um indiv́ıduo (RAJKOMAR; DEAN; KOHANE, 2019).

De forma geral, os algoritmos de aprendizado de máquina podem ser organizados

em três categorias principais: aprendizado supervisionado, aprendizado não supervisio-

nado e aprendizado por reforço. No aprendizado supervisionado, o modelo é treinado

a partir de um conjunto de dados rotulado, no qual cada instância de entrada está as-

sociada a uma sáıda conhecida. O objetivo do algoritmo é aprender uma função que

mapeie corretamente as entradas para as sáıdas, possibilitando a realização de previsões

sobre novos dados. Essa abordagem é amplamente utilizada em problemas de classificação

e regressão. Entre os algoritmos mais conhecidos desse grupo destacam-se a Regressão

Loǵıstica, Máquinas de Vetores de Suporte (Support Vector Machines – SVM), Árvores

de Decisão, Random Forest, Gradient Boosting e Redes Neurais Artificiais (RUSSELL;

NORVIG, 2020).

Os modelos de aprendizado de máquina adotados utilizam abordagens distintas

para a identificação de padrões nos dados.

A Regressão Loǵıstica se baseia na combinação linear das variáveis de entrada,

cujos resultados são transformados por meio de uma função loǵıstica, que mapeia os valo-

res para o intervalo entre 0 e 1. Esse valor pode ser interpretado como a probabilidade de
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uma instância pertencer a uma determinada classe. Durante o treinamento, os parâmetros

do modelo são ajustados de forma a minimizar uma função de custo, buscando maximizar

a separação entre as classes (JR; LEMESHOW; STURDIVANT, 2013).

O Random Forest é um algoritmo baseado em um conjunto de árvores de

decisão. Seu prinćıpio fundamental consiste em treinar múltiplas árvores de forma inde-

pendente, utilizando subconjuntos aleatórios dos dados e das variáveis de entrada. Cada

árvore produz uma predição individual e, no caso de classificação, o resultado final é ob-

tido por meio de votação majoritária entre as árvores. Essa estratégia reduz o risco de

sobreajuste (overfitting) e torna o modelo mais robusto a variações nos dados, além de

melhorar sua capacidade de generalização (BREIMAN, 2001).

O Gradient Boosting é um método de aprendizado em conjunto que constrói o

modelo de forma sequencial, adicionando árvores de decisão uma a uma. Diferentemente

do Random Forest, cada nova árvore é treinada para corrigir os erros cometidos pelo

conjunto de árvores anteriores. Esse processo é orientado pela minimização de uma função

de perda, utilizando o gradiente dessa função para guiar o aprendizado, o que dá origem

ao nome do algoritmo. Como resultado, o Gradient Boosting é capaz de produzir modelos

altamente expressivos, embora seja senśıvel à escolha de hiperparâmetros e ao risco de

sobreajuste quando não adequadamente configurado (FRIEDMAN, 2001).

A Support Vector Machine (SVM) é um algoritmo cujo objetivo é encontrar

um hiperplano que separe as classes de forma ótima no espaço das caracteŕısticas. Esse

hiperplano é definido de maneira a maximizar a margem, ou seja, a distância entre os

exemplos mais próximos de cada classe, conhecidos como vetores de suporte. Por meio do

uso de funções de kernel, a SVM pode projetar os dados em espaços de maior dimensiona-

lidade, permitindo a separação de padrões não linearmente separáveis no espaço original

(CORTES; VAPNIK, 1995).

O XGBoost (Extreme Gradient Boosting) é uma implementação otimizada do

método de Gradient Boosting, projetada para oferecer maior eficiência computacional e

melhor desempenho. O algoritmo incorpora técnicas avançadas, como regularização para

controle da complexidade do modelo, paralelização do treinamento e tratamento eficiente

de dados ausentes. Assim como no Gradient Boosting tradicional, o XGBoost constrói o
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modelo de forma incremental, adicionando árvores que corrigem os erros das anteriores,

porém com mecanismos adicionais que tornam o processo mais rápido, escalável e robusto

(CHEN; GUESTRIN, 2016).

Dentro do contexto deste trabalho, o foco está no aprendizado supervisionado

aplicado a tarefas de classificação. A classificação consiste em atribuir uma instância de

dados a uma ou mais classes previamente definidas, com base em suas caracteŕısticas de

entrada. Em problemas de classificação binária, o objetivo é distinguir entre duas classes,

enquanto na classificação multiclasses existem três ou mais categorias posśıveis. No caso

da predição de risco de insuficiência card́ıaca, a classificação permite identificar se um

paciente pertence a um grupo de alto risco ou não.

2.2.1 Balanceamento de classes

O desbalanceamento entre classes é um problema recorrente em tarefas de classificação,

especialmente em aplicações da área da saúde, nas quais eventos de interesse — como

doenças ou condições cŕıticas — tendem a ocorrer com menor frequência. Esse cenário

pode levar os modelos de aprendizado de máquina a apresentarem viés em favor da classe

majoritária, comprometendo a capacidade de identificar corretamente os casos mais rele-

vantes (HE; GARCIA, 2009).

Entre as técnicas existentes para mitigar esse problema, destaca-se o Synthetic

Minority Over-sampling Technique (SMOTE). O SMOTE consiste na geração de no-

vas amostras sintéticas da classe minoritária a partir da interpolação entre exemplos

reais e seus vizinhos mais próximos no espaço de atributos. Diferentemente de métodos

de oversampling baseados na simples replicação de instâncias, o SMOTE cria exemplos

artificiais mais variados, contribuindo para uma melhor representação da classe mino-

ritária(CHAWLA et al., 2002).

Ao equilibrar a distribuição das classes, essa técnica favorece um processo de

aprendizado mais justo, permitindo que os classificadores aprendam padrões relevantes

de ambas as classes. Como resultado, observa-se uma melhora na sensibilidade do modelo

para a classe minoritária, aspecto fundamental em sistemas de apoio à decisão médica,

nos quais a detecção de casos cŕıticos é prioritária.
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2.2.2 Validação Cruzada

A validação cruzada é uma técnica utilizada em aprendizado de máquina para estimar o

desempenho de um modelo de maneira mais confiável. Diferentemente da simples divisão

dos dados em conjuntos de treino e teste, a validação cruzada particiona o conjunto de

dados em k subconjuntos (ou folds), de modo que o modelo é treinado k-1 vezes em

subconjuntos distintos e validado no subconjunto restante. Esse processo é repetido até

que todos os folds tenham sido utilizados como conjunto de validação, e o desempenho final

é obtido a partir da média das métricas avaliadas. Essa abordagem reduz o viés associado

a uma única divisão dos dados e fornece uma estimativa mais estável da capacidade de

generalização do modelo (KOHAVI, 1995).

Uma variação importante dessa técnica é a validação cruzada estratificada, co-

nhecida como Stratified K-Fold. Nesse método, a divisão dos dados em folds preserva a

proporção original das classes em cada partição. Essa caracteŕıstica é especialmente rele-

vante em problemas de classificação, principalmente quando há desbalanceamento entre

as classes, pois garante que cada fold seja representativo da distribuição global dos dados,

evitando avaliações enviesadas do desempenho do modelo (Scikit-learn, 2024b).

O processo de ajuste de hiperparâmetros é fundamental para maximizar o desem-

penho dos algoritmos de aprendizado de máquina. Nesse contexto, o Grid Search é uma

estratégia que consiste em avaliar exaustivamente todas as combinações posśıveis de um

conjunto pré-definido de hiperparâmetros. Para cada combinação, o modelo é treinado e

avaliado, permitindo identificar aquela que produz os melhores resultados de acordo com

uma métrica espećıfica (BERGSTRA; BENGIO, 2012).

O GridSearchCV (Grid Search Cross-Validation) estende essa abordagem ao in-

tegrar o Grid Search com a validação cruzada. Essa técnica automatiza simultaneamente

o processo de busca pelos melhores hiperparâmetros e a avaliação do modelo por meio de

validação cruzada, garantindo uma seleção mais robusta e menos suscet́ıvel a variações

aleatórias nos dados. Na prática, o GridSearchCV executa o Grid Search utilizando va-

lidação cruzada — frequentemente combinada com Stratified K-Fold em problemas de

classificação — assegurando que a configuração escolhida apresente bom desempenho

médio em diferentes subconjuntos dos dados (Scikit-learn, 2024a).
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2.2.3 Métricas de avaliação

A avaliação do desempenho de modelos de classificação é realizada por meio de métricas

derivadas da matriz de confusão, uma estrutura que sintetiza a relação entre as classes reais

e as classes preditas pelo modelo. A matriz de confusão é composta por quatro elementos

fundamentais: verdadeiros positivos (True Positives – TP), verdadeiros negativos (True

Negatives – TN), falsos positivos (False Positives – FP) e falsos negativos (False Negatives

– FN). A partir desses valores, é posśıvel calcular diferentes métricas que fornecem uma

visão abrangente do desempenho do classificador. A partir desses elementos, algumas

métricas podem ser calculadas, como as descritas a seguir:

Acurácia: Representa a proporção total de previsões corretas em relação ao número

total de amostras avaliadas, sendo calculada pela Equação 2.1.

Acurácia =
TP + TN

TP + TN + FP + FN
(2.1)

Precisão: Mede a proporção de previsões positivas corretas em relação ao total de

previsões positivas realizadas pelo modelo, conforme a Equação 2.2. Essa métrica

indica o quão confiáveis são as predições positivas.

Precisão =
TP

TP + FP
(2.2)

Recall: Também conhecido como sensibilidade, representa a proporção de casos positi-

vos corretamente identificados pelo modelo em relação ao total de casos positivos re-

ais, conforme a Equação 2.3. Essa métrica é particularmente relevante em aplicações

médicas, nas quais a não detecção de casos cŕıticos pode ter consequências severas.

Recall =
TP

TP + FN
(2.3)

F1-Score: Corresponde à média harmônica entre a precisão e o recall, sendo uma

métrica adequada para cenários com classes desbalanceadas. Seu cálculo é apre-
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sentado na Equação 2.4.

F1-Score = 2× Precisão× Recall

Precisão + Recall
(2.4)

Curva ROC-AUC: Avalia a capacidade do modelo em distinguir entre as classes ao

considerar diferentes limiares de decisão. A Curva ROC (Receiver Operating Cha-

racteristic) é obtida a partir da relação entre a taxa de verdadeiros positivos (True

Positive Rate – TPR) e a taxa de falsos positivos (False Positive Rate – FPR),

definidas pelas Equações 2.5 e 2.6.

TPR =
TP

TP + FN
(2.5)

FPR =
FP

FP + TN
(2.6)

A área sob a Curva ROC, denominada AUC (Area Under the Curve), resume

o desempenho do modelo em um único valor escalar, representando a probabilidade de

o classificador atribuir uma pontuação maior a uma instância positiva do que a uma

instância negativa. Valores de AUC próximos de 1 indicam excelente capacidade de

discriminação entre as classes, enquanto valores próximos de 0,5 sugerem desempenho

equivalente a uma classificação aleatória.

2.2.4 ONNX

O Open Neural Network Exchange (ONNX) é um formato aberto e padronizado para

a representação de modelos de aprendizado de máquina e aprendizado profundo, desen-

volvido com o objetivo de promover a interoperabilidade entre diferentes frameworks e

plataformas. Por meio do ONNX, modelos treinados em bibliotecas amplamente utiliza-

das, como scikit-learn, PyTorch e TensorFlow, podem ser exportados para um formato

comum, independente da ferramenta de origem, facilitando sua reutilização e implantação

em diferentes ambientes computacionais (BAI et al., 2019).

O formato ONNX descreve a arquitetura do modelo, seus parâmetros treinados e

o grafo computacional das operações envolvidas, permitindo que o modelo seja executado
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de forma consistente em diversos dispositivos, incluindo servidores, computadores pessoais

e sistemas embarcados. Essa caracteŕıstica é particularmente relevante em aplicações que

demandam portabilidade, eficiência e baixo acoplamento entre as etapas de treinamento

e inferência.

O ONNX Runtime é um mecanismo de inferência de alto desempenho projetado

para executar modelos no formato ONNX de maneira otimizada. Ele oferece suporte a

múltiplos provedores de execução, como CPU, GPU e aceleradores espećıficos, além de

realizar otimizações automáticas no grafo computacional, incluindo fusão de operações

e gerenciamento eficiente de memória. Essas otimizações contribuem para a redução da

latência e do consumo de recursos, tornando o ONNX Runtime adequado para aplicações

em tempo real (Microsoft, 2021).

No contexto de dispositivos móveis e computação de borda, o uso combinado do

ONNX e do ONNX Runtime possibilita a execução local de modelos de aprendizado de

máquina, eliminando a necessidade de comunicação constante com servidores remotos.

Essa abordagem reduz a latência, melhora a confiabilidade do sistema em ambientes com

conectividade limitada e contribui para a preservação da privacidade dos dados, uma vez

que as informações senśıveis permanecem no próprio dispositivo do usuário.

2.3 Computação de borda

Como evidenciado por (SHI; DUSTDAR, 2016), computação de borda é um paradigma

computacional no qual o processamento e a análise dos dados são realizados próximos à

sua fonte de geração, como dispositivos finais, sensores inteligentes ou servidores locais, em

vez de depender exclusivamente de centros de dados remotos em nuvem. A computação de

borda busca estender os recursos computacionais e de armazenamento para a extremidade

da rede, reduzindo a latência, o consumo de banda e a dependência de conectividade

cont́ınua com a infraestrutura centralizada.

Em sistemas convencionais centralizados, os dados coletados são enviados para

a nuvem para processamento, o que pode introduzir atrasos significativos na geração de

respostas, além de tornar o sistema dependente de uma conexão estável com a internet.

Em cenários cŕıticos, como o monitoramento de condições de saúde, essa latência pode
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comprometer a emissão de alertas e, consequentemente, a tomada de decisões. Além disso,

o envio constante de grandes volumes de dados pode sobrecarregar a infraestrutura de

rede e aumentar os custos operacionais. (WANG et al., 2020)

A computação de borda mitiga essas limitações ao permitir que parte ou a to-

talidade do processamento seja realizada localmente. Com isso, as decisões podem ser

tomadas de forma mais rápida e independente da conectividade com a nuvem, garantindo

maior continuidade do serviço mesmo em ambientes com acesso limitado à internet. Essa

caracteŕıstica é particularmente relevante para aplicações que exigem respostas imediatas

e operação cont́ınua.

Outro aspecto relevante da computação de borda diz respeito à segurança e à

privacidade dos dados. Ao reduzir a necessidade de transmissão de informações senśıveis

para servidores remotos, diminui-se a exposição a riscos de interceptação e vazamento de

dados (ROMAN; LOPEZ; MAMBO, 2018).
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3 Revisão bibliográfica

Este caṕıtulo apresenta o processo de mapeamento sistemático conduzido com

o objetivo de identificar e organizar evidências cient́ıficas relacionadas à predição de in-

suficiência card́ıaca em tempo real, por meio de técnicas de aprendizado de máquina

embarcadas em dispositivos móveis e computação de borda.

A seguir, são descritos os elementos do modelo PICO(T), as questões de pesquisa

que guiaram a busca, as palavras-chave utilizadas, as strings aplicadas em bases cient́ıficas,

os critérios de inclusão e exclusão, o processo de seleção e avaliação dos estudos e o

preenchimento do protocolo PRISMA, que registra as etapas de identificação, triagem e

inclusão dos estudos.

3.1 PICO(t)

Para guiar a formulação das questões de pesquisa e estruturar o processo de busca, foi

adotado o modelo PICO(T), que auxilia na definição dos principais elementos do problema

investigado:

P (População / Problema): Pacientes em risco de insuficiência card́ıaca.

I (Intervenção): Predição de insuficiência card́ıaca usando modelos de aprendizado de

máquina embarcados em dispositivos móveis (computação de borda).

C (Comparação): Predição de insuficiência card́ıaca usando modelos baseados em nu-

vem (computação centralizada).

O (Outcome / Desfecho): Maior precisão na detecção precoce e menor latência para

alertas.

Assim, a pergunta de pesquisa pode ser formulada da seguinte forma: “Em paci-

entes com risco de insuficiência card́ıaca (P), o uso de modelos embarcados de aprendizado

de máquina (I), em comparação com modelos baseados em nuvem (C), resulta em maior

precisão e menor latência na detecção precoce (O)?”
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3.2 Questões de Pesquisa

Com base nos objetivos deste estudo e nas lacunas identificadas na literatura, fo-

ram elaboradas as seguintes questões de pesquisa que orientam o mapeamento sistemático:

1. Quais são os principais algoritmos e técnicas de aprendizado de máquina utilizados

na predição de insuficiência card́ıaca em tempo real?

2. Como a computação de borda (edge computing) tem sido utilizada para reduzir

latência e melhorar a confiabilidade em sistemas de monitoramento de saúde?

3. Quais sensores vest́ıveis e dispositivos IoT são mais utilizados para coleta de dados

em sistemas de predição de insuficiência card́ıaca?

4. Quais métricas e métodos de avaliação são usados para validar a acurácia e a res-

ponsividade desses modelos em ambientes de computação de borda?

5. Quais frameworks, plataformas e ferramentas são utilizados para implementar sis-

temas de predição em dispositivos móveis?

6. Quais são os principais desafios e limitações para implementar modelos de aprendi-

zado de máquina embarcados em dispositivos móveis para detecção de insuficiência

card́ıaca?

7. Como a integração de sensores, dispositivos móveis e computação de borda influencia

a escalabilidade e a privacidade dos dados de saúde?

3.3 Palavras-chave

Os principais termos que refletem os temas centrais do trabalho podem ser listados como:

Heart failure prediction, Real-time, Machine learning, Edge computing, Internet of Things

(IoT).
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3.4 String de busca

A partir da elaboração da pergunta de pesquisa e da escolha das palavras-chave, foram

feitas buscas em três bibliotecas digitais – Scopus, IEEE e Web of Science – consideradas

por sua abrangência, rigor na seleção de periódicos e relevância em pesquisas interdisci-

plinares que envolvem tecnologias emergentes e inovação em saúde.

Cabe destacar que nem todas as palavras-chave apresentadas na seção 3.3 foram

inclúıdas na versão final da string de busca. A utilização integral desses termos resul-

tou em uma restrição excessiva do escopo, limitando significativamente a quantidade de

estudos recuperados. Por esse motivo, foi necessário realizar um processo iterativo de refi-

namento da string, visando equilibrar a abrangência e a relevância dos resultados obtidos.

Considerando que cada base de dados adota uma sintaxe própria para a formulação de

consultas, foram elaboradas diferentes strings de busca espećıficas para cada biblioteca,

mantendo-se as palavras-chave e as relações semânticas entre elas. As variações adotadas

estão detalhadas na Tabela 3.1.

Tabela 3.1: Strings de busca por biblioteca.

SCOPUS ABS ( "heart failure"AND "prediction"AND ( "edge

computing"OR "wearable"OR "iot") AND ( "machine

learning"OR "artificial intelligence") ) AND ( LIMIT-TO

( DOCTYPE , "ar") )

IEEE (("Abstract":"heart failure") AND ("Abstract":"prediction")

AND ( "Abstract":"edge computing"OR

"Abstract":"wearable"OR "Abstract":"iot") AND

("Abstract":"machine learning"OR "Abstract":"artificial

intelligence")))

Web of Science AB = ( "heart failure"AND "prediction"AND ( "edge

computing"OR "wearable"OR "iot") AND ( "machine

learning"OR "artificial intelligence") ))
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3.5 Critérios de inclusão e exclusão

Os seguintes critérios de inclusão (CI) e exclusão (CE) foram definidos para este mapea-

mento sistemático:

CI1: O estudo apresenta uma abordagem de predição de insuficiência card́ıaca associada

a aprendizado de máquina ou inteligência artificial.

CI2: O estudo apresenta integração com dispositivos IoT e/ou sensores vest́ıveis para

coleta e monitoramento de dados fisiológicos.

CI3: O estudo descreve a implementação de predição de insuficiência card́ıaca em dis-

positivos móveis ou em arquiteturas de computação de borda (edge computing).

CE1: O estudo não está dispońıvel para leitura.

CE2: O estudo não está escrito em inglês ou português.

CE3: O estudo não é primário.

CE4: O estudo não está relacionado à predição de insuficiência card́ıaca ou não contém

elementos de monitoramento de saúde por sensores, dispositivos IoT ou aprendizado

de máquina.

3.6 Seleção e avaliação

Para o processo de seleção e avaliação, foi adotada uma abordagem em quatro estágios.

No estágio 1, os 42 estudos encontrados a partir da aplicação da string de busca foram

importados para a ferramenta Rayyan (OUZZANI et al., 2016), que detectou 22 dupli-

catas. Após a remoção desses artigos duplicados, obteve-se um conjunto de 31 estudos

preparados para a fase de triagem. No estágio 2, foi verificada a disponibilidade dos textos

completos e o idioma de publicação de cada estudo, aplicando-se os critérios de exclusão

CE1 e CE2. Após essa filtragem, 7 estudos foram exclúıdos, resultando em 24 estudos.

Em seguida, no estágio 3, realizou-se a leitura do t́ıtulo, resumo e palavras-chave de cada

artigo, com base nos critérios CE3 e CE4. Como resultado, 13 estudos foram exclúıdos,
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totalizando 11 artigos eleǵıveis para a próxima etapa. Finalmente, no estágio 4, procedeu-

se à leitura completa dos estudos remanescentes, com a verificação do atendimento aos

critérios de inclusão. Essa etapa garantiu a seleção final dos artigos mais relevantes e

alinhados aos objetivos deste trabalho. Nessa etapa, 1 artigo foi removido por não estar

relacionado ao tema do trabalho, resultando em 10 artigos para revisão. Além disso, o

artigo motivador deste trabalho Real-Time Heart Failure Prediction: An Approach for

Ambient Assisted Living (ALMEIDA et al., 2025) foi inclúıdo como estudo obtido através

de outras fontes, resultando em 11 estudos finais.

A Figura 3.1 ilustra o fluxograma PRISMA preenchido, detalhando as etapas

percorridas.

Figura 3.1: Fluxograma PRISMA 2020

3.7 Resultados

Os 11 artigos resultantes foram selecionados para responder as questões de pesquisa a

seguir, e são apresentados na Tabela 3.2.
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Tabela 3.2: Lista de estudos selecionados.

P1 A Comprehensive Review of Heart Disease Predic-

tion using Cloud-Driven Machine Learning

(SURESH; DAYANA, 2024)

P2 An Intelligent Cardiovascular Diseases Prediction

System Focused on Privacy

(KOLHAR; MISFER, 2023)

P3 Cloud-Based Machine Learning Platform to Predict

Clinical Outcomes at Home for Patients With Cardi-

ovascular Conditions Discharged From Hospital: Cli-

nical Trial

(YANG et al., 2024)

P4 Continuous Wearable Monitoring Analytics Predict

Heart Failure Hospitalization: The LINK-HF Multi-

center Study

(STEHLIK et al., 2020)

P5 Designing a Smart Healthcare framework based on

disease prediction using Optimizer based AI

(VYAS; KALSHETTY; PA-

REEK, 2023)

P6 Enhanced cardiovascular disease prediction model

using random forest algorithm

(SUMWIZA et al., 2023)

P7 Healthcare diagnostics with an adaptive deep lear-

ning model integrated with the Internet of medical

Things (IoMT) for predicting heart disease

(BASEER et al., 2024)

P8 IoT Based Smart Monitoring of Patients’ with Acute

Heart Failure

(UMER et al., 2022)

P9 Machine learning applied to wearable fitness tracker

data and the risk of hospitalizations and cardiovas-

cular events

(KUNDRICK et al., 2025)

P10 Optimized Heart Failure Prediction using Support

Vector Machine Algorithms

(RANI, 2024)

P11 Real-Time Heart Failure Prediction: An Approach

for Ambient Assisted Living

(ALMEIDA et al., 2025)
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QP1: Quais são os principais algoritmos e técnicas de aprendizado de

máquina utilizados na predição de insuficiência card́ıaca em tempo real?

A predição de insuficiência card́ıaca em tempo real tem sido realizada por meio de

uma ampla gama de algoritmos de aprendizado de máquina. O algoritmo Support Vector

Machine (SVM) foi amplamente destacado por sua eficácia em classificação binária de

doenças card́ıacas, com acurácia de até 87,5% (P10). O Random Forest (RF) também

demonstrou desempenho notável, atingindo até 99% de acurácia ao integrar múltiplas

técnicas de seleção de atributos (P6). Técnicas mais recentes incluem o uso combinado

de TabNet(ARIK; PFISTER, 2019) e CatBoost(DOROGUSH; ERSHOV; GULIN, 2018),

que foram utilizados com sucesso na predição precisa de doenças card́ıacas em ambientes

integrados com IoMT (P7). O uso de CNNs e RNNs, especialmente em contextos de

computação em nuvem com sensores vest́ıveis, foi explorado em P3 e P4, assim como em

P8, onde o CNN superou outros modelos com acurácia de 92,89%. Técnicas de gradient

boosting, MLP e federated learning também foram utilizadas (P5, P7 e P9), indicando

uma tendência crescente em modelos otimizados para dados heterogêneos e em tempo

real.

QP2: Como a computação de borda (edge computing) tem sido utili-

zada para reduzir latência e melhorar a confiabilidade em sistemas de moni-

toramento de saúde?

A computação de borda tem sido utilizada para reduzir latência e aumentar a

confiabilidade por meio da descentralização do processamento de dados. Em P2 e P4,

o edge computing é incorporado para processar dados de sensores em dispositivos locais,

evitando atrasos de comunicação com a nuvem. Em P8, sensores IoT enviam dados dire-

tamente para a nuvem, mas com pré-processamento realizado localmente para aumentar

a eficiência. Já em P7, o modelo prevê eventos card́ıacos a partir de dados transmitidos

continuamente por dispositivos vest́ıveis, com ênfase na resposta em tempo real. Embora

alguns artigos usem computação em nuvem (P3 e P6), a tendência observada é integrar

camadas de fog ou edge computing para análise preliminar e redução da sobrecarga dos

servidores centrais.

QP3: Quais sensores vest́ıveis e dispositivos IoT são mais utilizados
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para coleta de dados em sistemas de predição de insuficiência card́ıaca?

Os sensores vest́ıveis e dispositivos IoT mais utilizados incluem smartwatches, pat-

ches multissensores, e dispositivos como Arduino. P3 e P4 destacam o uso de dispositivos

vest́ıveis que coletam ECG, frequência respiratória, postura e outros sinais vitais. Em

P6 e P10, sensores são conectados a plataformas móveis para adquirir sinais fisiológicos

como pressão arterial, colesterol e frequência card́ıaca. Já P9 analisa dados de Fitbit

combinados com registros eletrônicos de saúde (EHR), provando a eficácia de wearables

comerciais em detecção precoce de eventos cardiovasculares. A combinação de sensores

ECG, pressão arterial e sensores de movimento também é comum em modelos propostos

em P5 e P7, consolidando os dispositivos IoT como infraestrutura essencial.

QP4: Quais métricas e métodos de avaliação são usados para validar a

acurácia e a responsividade desses modelos em ambientes de computação de

borda?

As métricas mais comuns para validação incluem acurácia, sensibilidade, especi-

ficidade, AUROC (área sob a curva ROC) e F1-score. P4 utilizou medidas como tempo

médio de alerta (mediana de 6,5 dias antes da hospitalização) e ı́ndice de mudança multi-

variada. Já P10 utilizou AUROC e acurácia (87,53%), enquanto P6 apresentou resultados

com 99% de acurácia, testando diferentes algoritmos com validação cruzada. P9 também

aplicou AUROC e F1-score, com Random Forest atingindo AUROC de 0.95 na previsão

de hospitalizações. Além disso, métodos como matriz de confusão, precisão e curva de

aprendizagem foram usados para comparar modelos (P3, P5 e P8). As avaliações demons-

tram a busca por equiĺıbrio entre desempenho preditivo e aplicabilidade cĺınica em tempo

real.

QP5: Quais frameworks, plataformas e ferramentas são utilizados para

implementar sistemas de predição em dispositivos móveis?

Diversas ferramentas são empregadas, incluindo plataformas em nuvem e fra-

meworks como WEKA(HALL et al., 2009), Scikit-Learn(Scikit-learn, 2025b), e ambientes

baseados em Android-Arduino. P2 e P5 apresentam sistemas que utilizam microcontro-

ladores e sensores integrados a apps móveis para monitoramento remoto. P9 utilizou a

plataforma All of Us com integração a APIs do Fitbit e modelos em Python para análise
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de dados. P8 implementou um sistema completo de monitoramento inteligente com dis-

positivos IoT e processamento via cloud computing. Em P7, a combinação do CatBoost e

TabNet reforça o uso de frameworks modernos de deep learning para dados tabulares em

dispositivos de saúde conectados. Esses frameworks são selecionados conforme o tipo de

dado (sinal fisiológico, imagem, histórico cĺınico) e os recursos computacionais dispońıveis

nos dispositivos móveis ou embarcados.

QP6: Quais são os principais desafios e limitações para implementar

modelos de aprendizado de máquina embarcados em dispositivos móveis para

detecção de insuficiência card́ıaca?

Os principais desafios incluem limitações de hardware, heterogeneidade dos dados,

segurança e privacidade, além da necessidade de modelos interpretáveis. Em P5, destaca-

se a limitação de processamento e armazenamento dos dispositivos móveis. P2 enfatiza

questões de privacidade, enquanto P9 reforça a dificuldade de generalização dos modelos

para diferentes perfis cĺınicos. Já P10 aponta para a complexidade na seleção de atributos

e necessidade de melhorar a interpretabilidade dos modelos SVM. Além disso, a latência

e o volume de dados de sensores cont́ınuos exigem algoritmos otimizados (P3, P6 e P8).

A escalabilidade dos sistemas também é limitada pela necessidade de integração entre

múltiplos dispositivos, algo que os artigos reconhecem como área de pesquisa cont́ınua.

QP7: Como a integração de sensores, dispositivos móveis e computação

de borda influencia a escalabilidade e a privacidade dos dados de saúde?

A integração de sensores, dispositivos móveis e computação de borda possibilita

escalabilidade com resposta em tempo real e maior controle sobre a privacidade dos da-

dos. P2 e P5 indicam que, ao manter o processamento próximo ao paciente, reduz-se o

tráfego de dados senśıveis. P7 apresenta uma abordagem baseada em IoMT que permite

análises locais e imediatas, promovendo intervenções personalizadas com menor risco de

exposição de dados. Em P9, os dados do Fitbit são anonimizados e utilizados com EHRs,

demonstrando que é posśıvel manter privacidade sem comprometer o valor preditivo dos

modelos. Apesar disso, poucos artigos tratam diretamente de federated learning ou crip-

tografia ponta-a-ponta, sugerindo que essas são áreas em desenvolvimento (P2 e P10). A

tendência é clara: sensores integrados a dispositivos móveis e conectados a bordas com-
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putacionais permitem sistemas escaláveis, confiáveis e com menor dependência de centros

de dados centralizados.

3.8 Análise dos resultados

Observando os 11 estudos deste Mapeamento Sistemático da Literatura (MSL), percebe-

se que foram publicados entre os anos de 2022 e 2025, o que demonstra que a predição de

insuficiência card́ıaca por meio demachine learning (ML) embarcado é um tema altamente

atual e em crescimento na comunidade cient́ıfica.

Em relação aos algoritmos de aprendizado de máquina utilizados, observa-se uma

predominância de técnicas clássicas como Support Vector Machine (SVM) (P1, P6, P10),

Random Forest (RF) (P2, P4, P6), Logistic Regression e KNN (P6, P9) e o uso crescente

de modelos de deep learning, especialmente Redes Neurais Convolucionais (CNN), LSTM

e TabNet (P3, P5, P7, P8). Essa diversidade de abordagens revela uma busca ativa por

modelos que conciliem precisão, velocidade de inferência e interpretabilidade cĺınica, algo

fundamental para aplicação em sistemas embarcados e cenários de monitoramento em

tempo real.

No que diz respeito à infraestrutura tecnológica e sensores utilizados, destacam-se

os dispositivos vest́ıveis (wearables) e IoT, especialmente smartwatches, patches multis-

sensores e plataformas como Fitbit, que aparecem em diversos estudos (P3, P4, P7, P9).

Os sensores mais frequentes envolvem ECG, frequência card́ıaca, pressão arterial, postura,

temperatura e sinais metabólicos. Em termos de conectividade e arquitetura de sistema,

observa-se a predominância de abordagens que mesclam IoT com cloud computing (P2,

P3, P8), e mais recentemente, a incorporação de computação de borda (edge/fog com-

puting) como estratégia para reduzir latência, aliviar a carga dos servidores e permitir

resposta cĺınica mais rápida (P2, P4, P7).

As métricas de avaliação dos modelos são heterogêneas, mas predominam acurácia,

AUROC, F1-score e sensibilidade (P4, P6, P9, P10). Embora todos os artigos apresen-

tem avaliação quantitativa dos modelos, há ausência de padronização metodológica, o que

dificulta comparações diretas entre os trabalhos e impede conclusões amplas sobre qual

técnica é mais eficaz em ambientes embarcados. Apenas dois estudos (P4 e P9) avaliam
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responsividade cĺınica direta, como tempo de alerta antes da hospitalização ou previsão

de eventos cardiovasculares reais, o que sugere a necessidade de mais estudos focados em

impacto cĺınico real.

Do ponto de vista da implementação prática, os estudos utilizam desde ferra-

mentas acadêmicas como WEKA, até frameworks robustos como Python (scikit-learn,

TensorFlow, CatBoost) e integração com dispositivos móveis por meio de plataformas

como Android-Arduino (P2, P5, P9). Apesar disso, nenhum dos trabalhos relata imple-

mentação real embarcada em hardware comercial, o que aponta para uma lacuna entre o

desenvolvimento em ambiente experimental e a aplicação no mundo real.

Por fim, questões como escalabilidade, privacidade e segurança de dados são men-

cionadas, mas pouco exploradas em profundidade, embora alguns estudos citem o uso de

dados anonimizados (P9) e estratégias como edge computing ou criptografia (P2, P10).

Conclui-se, portanto, que o campo de machine learning embarcado para predição

de insuficiência card́ıaca está em rápido crescimento, com forte ênfase em técnicas precisas

e sensores vest́ıveis. Contudo, há desafios cŕıticos relacionados à validação cĺınica, privaci-

dade, escalabilidade, acessibilidade e uso em dispositivos reais, que devem ser abordados

em futuras pesquisas para que tais soluções possam ser efetivamente aplicadas em larga

escala no monitoramento remoto da saúde card́ıaca.
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4 Materiais e métodos

Este caṕıtulo apresenta o processo seguido para desenvolver e implementar o

modelo de aprendizado de máquina proposto para predição de insuficiência card́ıaca. O

intuito é descrever as etapas envolvidas na construção da ferramenta, desde a escolha da

base de dados até o desenvolvimento do modelo e o teste em sistemas embarcados.

A Figura 4.1 contém as etapas seguidas na elaboração do trabalho. Inicialmente,

foi feita a escolha da base de dados e o seu download de uma fonte pública.

A escolha da base de dados para este estudo ocorreu de maneira conscienciosa.

Para isso, foi conduzida uma entrevista com especialista (médica cardiologista), a partir

da qual foram identificadas as variáveis e faixas de valores mais frequentemente emprega-

das na prática cĺınica nacional para a avaliação de pacientes com insuficiência card́ıaca.

Entre os atributos considerados relevantes, destacam-se a pressão arterial, segmentada

em pressão sistólica e pressão diastólica; os ńıveis de colesterol, contemplando colesterol

total, HDL e LDL; a frequência card́ıaca; caracteŕısticas relacionadas à dor torácica, in-

cluindo intensidade e posśıvel irradiação para regiões como mand́ıbula, braços e outras

partes do corpo; o ńıvel de estresse; a qualidade do sono; a presença de dores em re-

pouso e durante esforço f́ısico; a variabilidade da frequência card́ıaca; medidas corporais,

como peso e altura, utilizadas para o cálculo do ı́ndice de massa corporal (IMC); o uso

de substâncias iĺıcitas, como anfetaminas; e a existência de histórico familiar de acidente

vascular cerebral (AVC).

Além disso, foi posśıvel constatar que variáveis associadas a resultados de exames

de eletrocardiograma, presentes em algumas bases de dados, não são obteńıveis de forma

remota. Assim, deu-se preferência para bases de dados que apresentassem os outros

atributos mencionados, pois possuem relevância para serem adotados no processo de alerta

em tempo real.

Após a seleção do dataset, os dados passaram por uma etapa de pré-processamento,

na qual foi feito o tratamento de valores ausentes, a engenharia das features, a codificação



4.1 Descrição dos dados 35

e normalização dos dados, etc. Em seguida, os dados tratados foram utilizados para o

treinamento e teste dos modelos. Após os testes, o modelo com melhor desempenho foi

escolhido e exportado para teste em dispositivos móveis, onde foi posśıvel avaliar o de-

sempenho do modelo em cenários simulados de uso. Nas seções a seguir, cada uma dessas

etapas é detalhada, explicando como foram desenvolvidas e implementadas.

Figura 4.1: Fluxograma das etapas do trabalho

Na etapa de pré-processamento, os dados passaram por uma análise detalhada

com o objetivo de identificar e corrigir inconsistências como valores ausentes e a presença

de outliers. Após o tratamento adequado do conjunto de dados, diferentes modelos de

aprendizado de máquina foram treinados e avaliados, visando a seleção daquele que apre-

sentou o melhor desempenho. Por fim, o modelo escolhido foi submetido a testes em um

ambientes de dispositivos móveis, com o objetivo de avaliar o desempenho da ferramenta

em ambientes de hardware limitado. Nesse ambiente, a inferência é realizada localmente,

a partir de dados vitais simulados, permitindo a emissão de alertas sempre que a predição

indicar um elevado risco de insuficiência card́ıaca.

4.1 Descrição dos dados

O objetivo desta etapa é detalhar o conjunto de dados utilizado para o treinamento dos

modelos preditivos.

Inicialmente, foi visada a utilização de uma base de dados de origem brasileira

que contemplasse as variáveis relevantes para este estudo. No entanto, diante da in-

disponibilidade de conjuntos de dados nacionais com essas caracteŕısticas, a busca foi

estendida para bases internacionais compat́ıveis. Nesse contexto, foi escolhida a base de
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dados CAIR-CVD-2025: An Extensive Cardiovascular Disease Risk Assessment Dataset

from Bangladesh (NIROB et al., 2025) , disponibilizada na plataforma Mendeley Data.

A base de dados é composta por 1.529 registros de pacientes, que foram coletados

no Hospital da Faculdade de Medicina de Jamalpur, localizado na cidade de Jamalpur,

em Bangladesh, entre 20 de janeiro de 2024 e 1 de janeiro de 2025. A escolha dessa

base justifica-se pela presença de variáveis alinhadas às recomendações obtidas junto à

profissional de saúde consultada, incluindo medidas de pressão arterial segmentadas em

valores sistólicos e diastólicos, ńıveis de colesterol (total, HDL e LDL), peso, altura e

informações relacionadas ao estilo de vida do paciente, como hábito de fumar, ńıvel de

atividade f́ısica e histórico familiar de doenças cardiovasculares. Além disso, o dataset

apresenta uma variável categórica que representa o ńıvel de risco de doença cardiovascular,

elemento fundamental para o treinamento e avaliação dos modelos classificatórios.

A base de dados foi disponibilizada gratuitamente pelo Mendeley Data em for-

mato .csv. Após o download, o arquivo foi submetido à etapa de pré-processamento, na

qual foram realizadas as análises e transformações necessárias para garantir a qualidade

dos dados antes da aplicação do treinamento nos modelos.

Abaixo, apresentamos as principais variáveis utilizadas e sua respectiva descrição:

• Idade (Age): Representa a idade do indiv́ıduo em anos.

• Sexo (Sex): Variável categórica que representa o sexo biológico do indiv́ıduo (M

– Masculino, F – Feminino).

• Peso (Weight): Representa o peso corporal do indiv́ıduo em quilogramas.

• Altura (Height): Representa a altura do indiv́ıduo em metros.

• IMC (BMI ): Representa o ı́ndice de massa corporal, calculado a partir do peso e

da altura, medido em kg/m2.

• Circunferência abdominal (Abdominal Circumference): Representa a me-

dida da circunferência da cintura em cent́ımetros.

• Proporção de cintura para altura (Waist-to-Height Ratio): Representa a

razão entre a circunferência da cintura e a altura.
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• Pressão arterial (Blood Pressure): Representa a pressão arterial do indiv́ıduo

em mmHg.

• Pressão sistólica (Systolic BP): Representa a pressão máxima exercida nas

artérias durante a śıstole, medida em mmHg.

• Pressão diastólica (Diastolic BP): Representa a pressão mı́nima exercida nas

artérias durante a diástole em mmHg.

• Categoria de pressão arterial (Blood Pressure Category): Variável ca-

tegórica que representa a classificação cĺınica da pressão arterial (Normal, Elevated,

Hypertension Stage 1, Hypertension Stage 2 ).

• Colesterol total (Total Cholesterol): Representa a concentração total de co-

lesterol no sangue, medida em mg/dL.

• HDL (HDL): Representa o ńıvel de colesterol de alta densidade (HDL) no sangue,

medido em mg/dL.

• LDL estimado (Estimated LDL): Representa o ńıvel estimado de colesterol de

baixa densidade (LDL), medido em mg/dL.

• Açúcar no sangue em jejum (Fasting Blood Sugar): Representa o ńıvel de

glicose no sangue em jejum, medido em mg/dL.

• Hábito de fumar (Smoking Status): Variável categórica que representa se o

indiv́ıduo é fumante (Y – Sim, N – Não).

• Diabético (Diabetes Status): Variável categórica que representa se o indiv́ıduo

possui diagnóstico de diabetes (Y – Sim, N – Não).

• Nı́vel de atividade f́ısica (Physical Activity Level): Variável categórica que

representa o ńıvel de prática de atividades f́ısicas do indiv́ıduo (Low, Moderate,

High).

• Histórico de doença cardiovascular na famı́lia (Family History of CVD):

Variável categórica que representa a existência de histórico familiar de doenças car-

diovasculares (Y – Sim, N – Não).
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• Nı́vel de risco de doença cardiovascular (CVD Risk Level): Variável ca-

tegórica que representa a classe de risco cardiovascular atribúıda ao indiv́ıduo (Low,

Intermediary, High).

A Figura 4.2 mostra a matriz de correlação das variáveis númericas que compõem

a base de dados. Nela, é posśıvel observar como os atributos se relacionam entre si de forma

bivariada. As cores indicam tanto o sentido quanto a intensidade dessas relações: tons em

vermelho representam correlações positivas, enquanto tons em azul indicam correlações

negativas. Quanto mais intensa a cor, mais forte é a correlação. Os valores apresentados

em cada célula correspondem ao coeficiente de correlação de Pearson, que varia de –1 a

+1.

Figura 4.2: Matriz de correlação entre variáveis numéricas

É posśıvel observar que proporção cintura-altura têm correlação positiva muito
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alta com circunferência abdominal (quanto maior a circunferência abdominal, maior a

razão) e correlação negativa com razão altura (quanto maior a altura, menor a razão).

O colesterol total e o LDL estimado têm correlação fort́ıssima, pois o LDL deriva

do total. Ambos atributos correlacionam positivamente com CVD Risk Score, indicando

posśıvel causa de insuficiência card́ıaca. Peso e IMC tem correlação considerável, e ambos

têm correlação positiva CVD Risk Score. Excesso de peso contribui para hipertensão,

resistência à insulina e sobrecarga do ventŕıculo.

4.2 Modelagem Preditiva para Insuficiência Card́ıaca

O objetivo desta seção é apresentar a abordagem metodológica utilizada para a construção

de modelos preditivos capazes de classificar o risco de insuficiência card́ıaca do paciente

com base em seus dados.

A modelagem preditiva tem como objetivo identificar padrões relevantes nos da-

dos cĺınicos e fisiológicos dos pacientes, possibilitando a compreensão dos fatores associ-

ados ao risco de insuficiência card́ıaca. A partir dessa análise, torna-se posśıvel estimar

a probabilidade de ocorrência de eventos adversos, oferecendo suporte para a tomada de

decisão tanto por parte dos profissionais de saúde quanto dos próprios pacientes. Dessa

forma, as previsões geradas pelo modelo contribuem para um acompanhamento mais efi-

ciente e para a realização de intervenções preventivas de maneira mais oportuna.

4.2.1 Pré-processamento dos dados

Tratamento de valores ausentes

Durante a etapa de análise do conjunto de dados, identificou-se a presença de valores

ausentes em diferentes atributos. Entretanto, em alguns casos, esses atributos apresen-

tavam relações diretas com outras variáveis preenchidas, o que possibilitou a realização

de inferências para o preenchimento dos valores faltantes. As inferências realizadas são

descritas a seguir.

No que se refere às variáveis Systolic BP e Diastolic BP , foram encontrados

registros em que uma ou ambas se encontravam ausentes, enquanto a variável Blood
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Pressure (mmHg) estava preenchida. Como essa última representa a pressão arterial

no formato “Sistólica/Diastólica”(por exemplo, 125/79), foi posśıvel extrair diretamente

os valores correspondentes e completar as colunas ausentes.

Em relação à altura do paciente, a base de dados disponibiliza essa informação por

meio das variáveis Height (m) e Height (cm). Dessa forma, sempre que uma dessas

colunas apresentava valor ausente e a outra estava preenchida, a inferência foi realizada

por meio de conversão direta entre as unidades, utilizando o fator de multiplicação ou

divisão por 100.

Para os atributos BMI , Weight (kg) e Height , explorou-se a relação ma-

temática conhecida entre essas variáveis, expressa pela equação IMC = peso / altura2.

Assim, nos registros em que apenas uma dessas variáveis estava ausente e as outras duas es-

tavam dispońıveis, foi posśıvel calcular o valor faltante por meio de substituição algébrica.

Procedimento semelhante foi adotado para as variáveis Abdominal Circumfe-

rence (cm), Height e Waist-to-Height Ratio. Considerando a relação definida pela

razão entre a circunferência abdominal e a altura, foi posśıvel inferir a variável ausente

sempre que dois dos três atributos estivessem presentes no registro.

Após a etapa de inferência, atributos redundantes ou altamente correlacionados

foram removidos com o objetivo de simplificar o treinamento dos modelos sem perda

significativa de informação. Nesse sentido, uma das features de altura (Height (cm))

foi exclúıda, visto que, após o preenchimento dos valores ausentes, todos os registros

passaram a conter as informações de altura tanto em metros quanto em cent́ımetros,

tornando desnecessária a presença de ambas.

A variável Waist-to-Height Ratio foi removida, pois apresentou correlação forte

com a circunferência abdominal, atributo que foi mantido no conjunto de dados por ser

amplamente utilizado em avaliações cĺınicas. De forma semelhante, o ı́ndice de massa

corporal (IMC) foi exclúıdo devido à sua forte correlação com as variáveis peso e altura,

que permaneceram no conjunto.

Além disso, a variável Blood Pressure (mmHg) foi retirada, visto que os valores de

pressão arterial já estavam representados nas colunas de pressão sistólica (Systolic BP) e

diastólica (Diastolic BP). Por fim, após a conclusão das etapas de inferência e remoção de
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atributos redundantes, todos os registros que ainda apresentavam valores ausentes foram

descartados. Como resultado desse processo, do total inicial de 1.529 registros, foram

preservados 1.193 registros para as etapas subsequentes de modelagem.

A Tabela 4.1 apresenta todos os atributos do conjunto que foram mantidos.

Tabela 4.1: Análise das variáveis utilizadas na modelagem

Variável Situação

Idade (Age) Mantida

Sexo (Sex ) Mantida

Peso (Weight) Mantida

Altura (m) (Height (m) Mantida

Altura (cm) (Height (cm)) Removida

IMC (BMI ) Removida

Circunferência abdominal (Abdominal Circumference) Mantida

Proporção-cintura-altura (Waist-to-Height Ratio) Removida

Pressão arterial (Blood Pressure) Removida

Pressão sistólica (Systolic BP) Mantida

Pressão diastólica (Diastolic BP) Mantida

Categoria de pressão arterial (Blood Pressure Category) Mantida

Colesterol total (Total Cholesterol) Mantida

HDL (HDL) Mantida

LDL estimado (Estimated LDL) Mantida

Açúcar no sangue em jejum (Fasting Blood Sugar) Mantida

Hábito de fumar (Smoking Status) Mantida

Diabético (Diabetes Status) Mantida

Nı́vel de atividade f́ısica (Physical Activity Level) Mantida

Histórico de doença cardiovascular na famı́lia (Family

History of CVD)

Mantida

Nı́vel de risco de doença cardiovascular (CVD Risk Le-

vel)

Mantida
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Transformação do problema multiclasse em classificação binária

Inicialmente, o problema foi abordado como uma tarefa de classificação multiclasse, con-

siderando os três ńıveis de risco cardiovascular dispońıveis na base de dados: Low, Inter-

mediary e High. A Figura 4.3 exibe a distribuição das classes dentre os 1193 registros,

sendo 178 pertencentes à classe Low, 441 à classe Intermediary e 574 à classe High.

Figura 4.3: Distribuição original das classes

Durante os experimentos preliminares, foram realizados testes de predição con-

siderando as três classes originais. Entretanto, ao ponderar sobre o objetivo central da

aplicação — identificar indiv́ıduos com alto risco de insuficiência card́ıaca — optou-se

por reformular o problema como uma tarefa de classificação binária. Para isso, as classes

minoritárias (Low e Intermediary) foram agrupadas em uma única categoria, denomi-

nada Non-High, enquanto a classe High foi mantida de forma isolada. Essa estratégia

permitiu direcionar o processo de aprendizado para a distinção entre pacientes de alto

risco, representados pela classe High, e aqueles que não se enquadram nessa condição,

correspondentes à classe Non-High, alinhando o modelo à aplicação prática do sistema,

cujo foco é a identificação precoce de casos cŕıticos.

A Figura 4.4 apresenta a distribuição das classes após a junção das classes mino-

ritárias, evidenciando que 619 registros passaram a compor a classe Non-High, enquanto

574 registros foram mantidos na classe High.
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Figura 4.4: Distribuição das classes após a junção

Codificação das variáveis categóricas

As variáveis categóricas presentes no conjunto de dados — como Sex, Smoking Status,

Diabetes Status, Physical Activity Level, Family History of CVD e Blood Pressure Category

— foram tratadas por meio de codificação One-hot Encoding(Scikit-learn, 2025a). Essa

técnica transforma cada categoria distinta em uma nova variável binária, assumindo valor

1 quando o registro pertence àquela categoria e 0 caso contrário.

Por exemplo, a variável Physical Activity Level, que pode assumir os valores Low,

Moderate e High, foi convertida em três novas variáveis binárias: PhysicalActivity Low,

PhysicalActivity Moderate e PhysicalActivity High. Dessa forma, um indiv́ıduo classifi-

cado como Moderate apresentará valor 1 apenas na variável correspondente (Physica-

lActivity Moderate), enquanto as demais assumirão valor 0. Esse procedimento elimina

qualquer interpretação ordinal impĺıcita entre as categorias, que poderia induzir o modelo

a inferir relações numéricas inexistentes.

Normalização das variáveis numéricas

As variáveis numéricas do conjunto de dados, como idade, peso, circunferência abdominal,

ńıveis de colesterol, glicemia em jejum, altura e valores de pressão arterial, foram norma-

lizadas utilizando a técnica de padronização Standard Scaling(Scikit-learn, 2025c). Esse
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método transforma os dados de forma que cada variável apresente média zero e desvio

padrão unitário.

A normalização é especialmente importante para algoritmos senśıveis à escala dos

dados, como Logistic Regression e Support Vector Machine, além de contribuir para uma

convergência mais estável durante o treinamento dos modelos.

Divisão dos dados em conjuntos de treino e teste

A base de dados foi dividida em conjuntos de treino e teste, utilizando a proporção de

80% dos dados para treinamento e 20% para teste. Os dados foram divididos de maneira

randômica e estratificada, isto é, preservando a proporção entre as classes HIGH e NON-

HIGH em ambos os conjuntos. Essa estratégia garante que o conjunto de teste seja

representativo da distribuição original das classes, para garantir uma avaliação confiável

do desempenho dos modelos.

Balanceamento das classes

Como a classe HIGH representava uma parcela menor dos registros, a base de dados apre-

sentava leve desbalanceamento entre as classes. Para mitigar esse problema, foi aplicada

a técnica SMOTE exclusivamente sobre o conjunto de treinamento.

4.2.2 Treinamento dos modelos

O treinamento dos modelos foi realizado por meio de pipelines que integram as etapas

de pré-processamento, balanceamento das classes e aprendizado propriamente dito, ga-

rantindo que todas as transformações fossem aplicadas de forma consistente durante o

processo de validação. Foram avaliados cinco algoritmos de aprendizado de máquina: Lo-

gistic Regression, Random Forest, Gradient Boosting, Support Vector Machine (SVM ) e

XGBoost.

A otimização dos modelos foi realizada utilizando o método de busca em grade

(Grid Search), por meio do GridSearchCV. Para a avaliação dos diferentes conjuntos

de hiperparâmetros, foi empregada validação cruzada do tipo k-fold estratificada, com

k = 5 partições, de forma a preservar a proporção entre as classes em cada subconjunto
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de treinamento e validação. Essa estratégia permitiu uma estimativa mais confiável do

desempenho dos modelos. A seleção dos hiperparâmetros considerou valores tipicamente

adotados em implementações de referência, permitindo avaliar diferentes ńıveis de regula-

rização e complexidade dos modelos. Os hiperparâmetros testados para cada modelo são

descritos na Tabela 4.2.

Tabela 4.2: Hiperparâmetros avaliados durante o treinamento dos modelos

Modelo Hiperparâmetros avaliados

Logistic Regression C ∈ {0.01, 0.1, 1, 10}

Random Forest Número de árvores ∈ {100, 200}; Profundidade

máxima ∈ {None, 10, 20}

Gradient Boosting Número de estimadores ∈ {100, 200}; Taxa de

aprendizado ∈ {0.05, 0.1}; Profundidade ∈ {3, 5}

SVM C ∈ {0.1, 1, 10}; Gamma ∈ {scale, auto}

XGBoost Número de estimadores ∈ {100, 200}; Taxa de

aprendizado ∈ {0.05, 0.1}; Profundidade ∈ {3, 5};

Subsample ∈ {0.8, 1.0}

No modelo de Logistic Regression , o parâmetro C representa o inverso da força

de regularização. Valores menores de C impõem uma regularização mais forte, resultando

em modelos mais simples e menos propensos a overfitting, enquanto valores maiores redu-

zem o efeito da regularização, permitindo modelos mais complexos e potencialmente mais

senśıveis aos dados de treinamento.

Para oRandom Forest , foram considerados o número de árvores (n estimators)

e a profundidade máxima das árvores (max depth). O parâmetro n estimators define

quantas árvores de decisão compõem a floresta; um número maior tende a aumentar a

estabilidade das previsões, embora implique maior custo computacional. Já o max depth

limita o crescimento das árvores individuais: valores menores produzem árvores mais

rasas, reduzindo o risco de overfitting, enquanto a ausência de limite permite árvores mais

profundas.

No Gradient Boosting , o parâmetro n estimators indica o número de estágios
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de boosting, ou seja, quantas árvores são adicionadas sequencialmente ao modelo. O

learning rate controla a contribuição de cada nova árvore para o modelo final; valores

menores tornam o aprendizado mais gradual e conservador, geralmente exigindo um maior

número de árvores para alcançar bom desempenho. O parâmetro max depth define a

profundidade das árvores individuais, sendo comum a utilização de árvores rasas para

evitar o overfitting em métodos de boosting.

Para a Support Vector Machine (SVM), foram avaliados os parâmetros

C e gamma. O parâmetro C controla o compromisso entre maximizar a margem de

separação entre as classes e minimizar os erros de classificação no conjunto de treinamento.

Valores maiores de C tornam o modelo menos tolerante a erros, enquanto valores menores

permitem uma margem mais suave. O parâmetro gamma, define o alcance de influência de

cada amostra de treinamento: valores maiores fazem com que a influência seja mais local,

enquanto valores menores resultam em uma influência mais global. As opções scale e auto

ajustam esse valor automaticamente com base no número de atributos e na variância dos

dados.

Por fim, noXGBoost , além dos parâmetros n estimators, learning rate emax depth,

também foi avaliado o parâmetro subsample. Esse parâmetro define a fração de amos-

tras utilizada para o treinamento de cada árvore. Valores menores que 1.0 introduzem

aleatoriedade no processo de treinamento, contribuindo para a redução do overfitting e

aumentando a capacidade de generalização do modelo.

Ao final do processo de busca e validação, o modelo que apresentou o melhor

resultado das métricas acurácia, precisão, recall, F1-Score e curva ROC-AUC foi seleci-

onado como modelo final, sendo posteriormente utilizado na etapa de implantação em

ambiente simulado de dispositivo móvel.

4.2.3 Implementação em Dispositivos Móveis

O modelo com melhor desempenho foi exportado para o formato ONNX e integrado a um

aplicativo móvel por meio do ONNX Runtime. Essa abordagem possibilitou a execução

do modelo diretamente nos dispositivos, viabilizando a predição local sem a necessidade

de comunicação com servidores externos.
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O aplicativo móvel desenvolvido permite que o usuário insira dados compat́ıveis

com o conjunto de atributos do dataset. A partir dessas informações, o modelo embarcado

realiza a predição em tempo real. Quando identificado um risco elevado de insuficiência

card́ıaca, o sistema exibe um alerta automaticamente.

Para a avaliação da aplicação em dispositivos móveis, foram realizados testes em

dois cenários distintos. No caso do smartphone, utilizou-se um dispositivo virtual com 2

GB de RAM, 4 núcleos de CPU e sistema operacional Android 16. Já para os testes em

smartwatch, foi empregado um dispositivo virtual com sistema operacional Wear OS, 512

MB de RAM, tela AMOLED de 1,4 polegadas e Android 16.

Em ambos os dispositivos, o aplicativo foi configurado para receber os dados do

paciente, processá-los localmente por meio do modelo embarcado e gerar predições em

tempo real. Para fins de experimentação e validação da aplicação, os valores utiliza-

dos nos testes foram previamente definidos e inseridos manualmente no aplicativo, de

modo a simular as caracteŕısticas presentes no dataset. Esses dados contemplaram dois

cenários distintos: um paciente classificado com baixo risco de insuficiência card́ıaca e

outro com alto risco. Em um cenário de uso real, tais informações seriam obtidas au-

tomaticamente a partir de sensores integrados aos dispositivos móveis, como sensores de

frequência card́ıaca.

No que se refere a avaliação da latência, foram conduzidos testes comparativos

entre a execução local do modelo e a execução remota em servidores. Para essa análise,

foram utilizadas 15 amostras extráıdas do conjunto de testes, representando diferentes

perfis de pacientes. Esses testes tiveram como finalidade evidenciar os desafios associados

à latência e à dependência de conectividade em arquiteturas centralizadas, em contraste

com a inferência realizada diretamente nos dispositivos móveis.

No cenário de execução remota, o modelo no formato ONNX foi previamente car-

regado em máquinas virtuais na nuvem, em instâncias provisionadas na plataforma Ama-

zon Web Services (AWS). Nessas instâncias, foi disponibilizado um serviço responsável

por receber requisições de inferência. O tempo de resposta medido correspondeu ao in-

tervalo entre o envio da requisição e o recebimento da predição retornada pelo servidor,

englobando tanto o tempo de processamento do modelo quanto os atrasos internet.
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A avaliação da latência foi conduzida considerando as seguintes configurações de

execução:

• Dispositivo Móvel (Execução Local): Smartphone com 2 GB de RAM, 4

núcleos de CPU e sistema operacional Android, utilizado para a realização das in-

ferências localmente.

• Ambiente Remoto (SA-EAST-1): Servidor com 1 GB de RAM, 2 vCPUs,

sistema operacional Linux, localizado em São Paulo – Brasil.

• Ambiente Remoto (US-EAST-2): Servidor com 1 GB de RAM, 2 vCPUs,

sistema operacional Linux, localizado em Ohio – Estados Unidos.

• Ambiente Remoto (US-WEST-2): Servidor com 1 GB de RAM, 2 vCPUs,

sistema operacional Linux, localizado em Oregon – Estados Unidos.
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5 Resultados

5.1 Resultados do treinamento dos modelos

Os cinco modelos foram treinados com 80% dos dados e sucessivamente testados com

os 20% dos dados restantes. A Figura 5.1 apresenta as matrizes de confusão de cada

modelo para o conjunto de teste. No contexto desse trabalho, as matrizes expressam

a eficácia dos modelos em identificar corretamente casos de alto risco de insuficiência

card́ıaca (verdadeiros positivos) e em classificar corretamente pacientes com baixo risco

(verdadeiros negativos). Os modelos Random Forest e XGBoost tiveram os melhores

desempenhos, manifestando valores baixos de falsos negativos, o que é essencial em um

sistema de monitoramento de saúde para evitar que casos graves de insuficiência card́ıaca

passem despercebidos.
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Figura 5.1: Matrizes de Confusão dos Modelos Classificatórios
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A Tabela 5.1 apresenta as métricas de avaliação, onde é posśıvel observar que o

XGBoost foi o modelo que teve resultados ligeiramente melhores no geral.

Tabela 5.1: Desempenho dos modelos de classificação
Modelo Acurácia (%) Precisão (%) Recall (%) F1-Score (%)
Logistic Regression 0.77 0.79 0.77 0.78
Random Forest 0.81 0.80 0.85 0.82
Gradient Boosting 0.81 0.80 0.84 0.82
SVM 0.79 0.76 0.86 0.81
XGBoost 0.82 0.81 0.85 0.83

A Tabela 5.2 apresenta os hiperparâmetros de melhor desempenho no treina-

mento para cada modelo.

Tabela 5.2: Melhores hiperparâmetros selecionados para cada modelo

Modelo C max depth n estimators learning rate gamma subsample

Logistic Regression 10 – – – – –

Random Forest – 10 200 – – –

Gradient Boosting – 3 200 0.1 – –

SVM 1 – – – scale –

XGBoost – 5 100 0.05 – 0.8

As curvas ROC dos modelos considerados aqui são apresentadas na Figura 5.2.

Em geral, todos os modelos apresentaram curvas ROC com inclinação significativa em

direção ao canto superior esquerdo, indicando alta sensibilidade e especificidade. Isso ex-

plicita a capacidade do modelo na detecção de insuficiência card́ıaca, oferecendo segurança

para alertas em situações de risco.
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Figura 5.2: Curvas ROC

5.2 Resultados da aplicação em Dispositivos Móveis

Os testes de predição no aplicativo móvel foram executados para os cenários de pacientes

com baixo e alto risco de insuficiência card́ıaca.

A Figura 5.3 ilustra os resultados observados para as simulações no smartphone.
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Figura 5.3: Funcionamento do aplicativo em smartphone

A Figura 5.4 ilustra os resultados observados para as simulações no smartwatch.
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Figura 5.4: Funcionamento do aplicativo em smartwatch

Nos testes, o aplicativo demonstrou alta responsividade e precisão, exibindo o

resultado imediato após o fornecimento da entrada de dados.

A Figura 5.5 ilustra a comparação dos tempos de latência (em milissegundos)

para diferentes quantidades de predições executadas nos cenários local e remoto. Nota-se

que a inferência realizada localmente apresentou tempos de resposta ı́nfimos e estáveis ao

longo das amostras avaliadas, enquanto a execução em ambiente remoto evidenciou um

crescimento praticamente linear da latência conforme aumentou o número de predições.
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Figura 5.5: Comparação da latência de execução (em ms) em diferentes ambientes

Os resultados indicam que a execução local apresentou latência na média de 1

ms, caracterizando um tempo de resposta praticamente imediato do modelo embarcado

no dispositivo móvel. Em contrapartida, no cenário de execução remota, observou-se que

a latência aumentou de forma proporcional ao número de predições realizadas. De ma-

neira quantitativa, o tempo médio de resposta das inferências locais foi aproximadamente

99,3% menor quando comparado ao ambiente remoto localizado em Oregon, evidenci-

ando a eficiência da computação de borda na redução do tempo de inferência. Além

disso, constatou-se a influência direta da localização geográfica do servidor de proces-

samento em relação à origem dos dados, com uma diminuição significativa da latência à

medida que o processamento ocorre mais próximo da fonte. Esse comportamento confirma

a premissa de que a proximidade entre os dados e o ambiente de inferência contribui para

respostas mais rápidas. Em conjunto, esses resultados reforçam a viabilidade da aborda-

gem de computação de borda para aplicações de saúde, destacando seu potencial como

uma solução prática para o monitoramento cont́ınuo em ambientes com infraestrutura de

conectividade limitada.
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6 Considerações Finais e Trabalhos Futuros

Os resultados obtidos neste trabalho demonstram a viabilidade do uso de modelos de

aprendizado de máquina aliados à computação de borda para a predição do risco de insu-

ficiência card́ıaca em tempo real. A abordagem proposta mostrou-se eficiente ao realizar

a inferência localmente em dispositivos móveis, reduzindo a latência e a dependência de

conectividade cont́ınua com a internet, caracteŕısticas fundamentais para aplicações em

ambientes de vida assistida e monitoramento cont́ınuo da saúde. Ainda que os experi-

mentos tenham sido conduzidos em ambiente simulado, os resultados indicam o potencial

da solução como ferramenta de acompanhamento preventivo de indiv́ıduos em risco car-

diovascular.

Como trabalhos futuros, destaca-se a necessidade de validação do sistema em

cenários reais, envolvendo a participação de profissionais da área da saúde e pacientes. Tes-

tes emṕıricos em dispositivos móveis com diferentes capacidades computacionais também

são fundamentais para avaliar a confiabilidade da ferramenta em condições de uso reais.

Outra possibilidade relevante de expansão do trabalho consiste na ampliação do

conjunto de variáveis monitoradas. Dados como Variabilidade da Frequência Card́ıaca

(HRV), qualidade do sono, ńıvel de estresse já são medidos automaticamente por disposi-

tivos de marcas como Garmin e Polar. A incorporação dessas informações pode enriquecer

o modelo preditivo, permitindo uma análise mais senśıvel às variações diárias do estado

de saúde do paciente.

Para cenários em que o usuário não dispõe de dispositivos vest́ıveis com sensores

espećıficos, uma alternativa viável é o desenvolvimento de um aplicativo móvel comple-

mentar. Nesse modelo, além do cadastro inicial com informações como sexo, idade, altura,

o usuário poderia informar diariamente dados mais voláteis, como peso corporal, ńıvel de

estresse percebido, qualidade do sono, presença de dores, fadiga e outros sintomas rele-

vantes.

No que se refere aos modelos de aprendizado de máquina, embora os algoritmos

avaliados tenham apresentado desempenho satisfatório, futuras investigações podem ex-
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plorar técnicas mais avançadas, como redes neurais profundas, incluindo redes neurais

convolucionais (CNN) e recorrentes (RNN), capazes de capturar padrões temporais e não

lineares mais complexos. A comparação entre essas abordagens e os modelos tradicionais

pode auxiliar na identificação da estratégia mais adequada para aplicações em tempo real

e dispositivos com recursos limitados.

Por fim, o aprendizado federado surge como um caminho inovador para trabalhos

futuros, ao permitir o treinamento colaborativo de modelos diretamente nos dispositivos

dos usuários, preservando a privacidade dos dados senśıveis. Essa abordagem possibilitaria

a atualização cont́ınua do modelo com dados reais de uso, promovendo uma adaptação

dinâmica às caracteŕısticas individuais dos pacientes e às variações populacionais, sem a

necessidade de centralização das informações.

Em śıntese, as perspectivas apresentadas reforçam a relevância de uma aborda-

gem multidisciplinar que integre avanços em aprendizado de máquina, computação de

borda e dispositivos vest́ıveis às necessidades cĺınicas reais. A evolução dessas direções

pode contribuir significativamente para o desenvolvimento de soluções de monitoramento

de saúde mais precisas, acesśıveis e adaptáveis, fortalecendo o cuidado preventivo em

ambientes de vida assistida e no contexto do sistema de saúde como um todo.
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//agenciadenoticias.ibge.gov.br/agencia-noticias/2012-agencia-de-noticias/noticias/
44050-internet-chega-a-74-9-milhoes-de-domicilios-do-pais-em-2024⟩.

JR, D. W. H.; LEMESHOW, S.; STURDIVANT, R. X. Applied Logistic Regression. [S.l.]:
John Wiley & Sons, 2013.

KHAN, M. S. et al. Trends in 30- and 90-day readmission rates for heart failure. Cir-
culation: Heart Failure, v. 14, n. 4, p. e008335, 2021. Dispońıvel em: ⟨https://www.
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doi.org/10.17632/d9scg7j8fp.1⟩.

OUZZANI, M. et al. Rayyan—a web and mobile app for systematic reviews. Systematic
Reviews, BioMed Central, v. 5, n. 1, p. 210, 2016.

Presidência da República. Lei n.º 13.709, de 14 de agosto de 2018 – Lei Geral de
Proteção de Dados Pessoais (LGPD). 2018. ⟨https://www.planalto.gov.br/ccivil 03/
ato2015-2018/2018/lei/l13709.htm⟩. Acesso em 16 de julho de 2025.

RAJKOMAR, A.; DEAN, J.; KOHANE, I. Machine learning in medicine. New England
Journal of Medicine, v. 380, n. 14, p. 1347–1358, 2019.

RANI, R. Optimized heart failure prediction using support vector machine algorithms.
In: . [s.n.], 2024. p. 1265 – 1268. Cited by: 1. Dispońıvel em: ⟨https://www.scopus.
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